Some Basic Concepts of Chemistry - Result Question 33

####31. Ratio of $C_p$ and $C_v$ of a gas ’ $X$ ’ is 1.4. The number of atoms of the gas ’ $X$ ’ present in 11.2 litres of it at NTP will be

(a) $6.02 \times 10^{23}$

(b) $1.2 \times 10^{23}$

(c) $3.01 \times 10^{23}$

(d) $2.01 \times 10^{23}$

[1989]

[1988]

(a) $\frac{1.8}{224} \times 10^{22}$ atoms

(b) $\frac{6.02}{22400} \times 10^{23}$ molecules

(c) $\frac{1.32}{224} \times 10^{23}$ electrons

(d) all the above

Show Answer

Solution:

  1. (a) $C_p / C_v=1.4$ shows that the gas is diatomic. 22.4 litre at NTP $\equiv 6.02 \times 10^{23}$ molecules

$11.2 L$ at NTP $=3.01 \times 10^{23}$ molecules

No. of atoms in gas $=3.01 \times 10^{23} \times 2$ atoms $=6.02 \times 10^{23}$ atoms

$r=\frac{C_p}{C_v}=1+\frac{2}{F}$, where $F=$ degree of freedom of the gas molecules For mono atomic gas, $F=3$

$\therefore \gamma=\frac{C_p}{C_v}=1+\frac{2}{3}=\frac{5}{3}=1.67$

For diatomic gas, $F=5$

$\therefore \gamma=\frac{C_p}{C_v}=1+\frac{2}{5}=\frac{7}{5}=1.40$

For triatomic gas, $F=6$ or 7 (depending upon the nature of the gas)

$ \begin{matrix} \therefore \quad \gamma=\frac{C_p}{C_v}=1+\frac{2}{6}=1.33 \\ \quad \gamma=\frac{C_p}{C_v}=1+\frac{2}{7}=1.29 \end{matrix} $



NCERT Chapter Video Solution

Dual Pane