Nuclear Chemistry - Result Question 3

####4. The radioactive isotope, tritium, $( _1^{3} H)$ has a halflife of 12.3 years. If the initial amount of tritium is $32 mg$, how many milligrams of it would remain after 49.2 years?

[2003]

(a) $8 mg$

(b) $1 mg$

(c) $2 mg$

(d) $4 mg$

Show Answer

Solution:

  1. (c) Given $t _{1 / 2}=12.3$ years

Initial amount $(N_0)=32 mg$

Total time $=49.2$ years

No. of half lives $(n)=\frac{T}{t _{1 / 2}}=\frac{49.2}{12.3}=4$

Now $N_t=N_0(\frac{1}{2})^{n}=32(\frac{1}{2})^{4}=\frac{32}{16}=2 mg$

Hence $32 mg$ becomes $2 mg$ in 49.2 years

(a) $ _{92} U^{235}+ _0 n^{1} \to _{54} Xe^{139}+ _{38} Sr^{94}+X$

$92+0=54+38+a \Rightarrow a=0$

$235+1=139+94+b \Rightarrow b=3$ So, $X=3 _0 n^{1}$

i.e 3 neutrons.



NCERT Chapter Video Solution

Dual Pane