Equilibrium - Result Question 62

####64. At $25^{\circ} C$, the dissociation constant of a base, $BOH$, is $1.0 \times 10^{-12}$. The concentration of hydroxyl ions in $0.01 M$ aqueous solution of the base would be

[2005]

(a) $1.0 \times 10^{-5} mol L^{-1}$

(b) $1.0 \times 10^{-6} mol L^{-1}$

(c) $2.0 \times 10^{-6} mol L^{-1}$

(d) $1.0 \times 10^{-7} mol L^{-1}$

Show Answer

Solution:

  1. (d) Given $K_b=1.0 \times 10^{-12}$

$[BOH]=0.01 M$

$ \alpha=\sqrt{K_b / c} $

$ =\sqrt{\frac{1 \times 10^{-12}}{0.01}}=1.0 \times 10^{-5} $

Now $[OH^{-}]=c . \alpha=0.01 \times 10^{-5}$

$ =1 \times 10^{-7} mol L^{-1} $

65

(c) $CH_3 COOH \rightarrow CH_3 COO^{-}+H^{+}$

$ K_a=\frac{[CH_3 COO^{-}][H^{+}]}{[CH_3 COOH]} $

Given that,

$[CH_3 COO^{-}]=[H^{+}]=3.4 \times 10^{-4} M$

$K_a$ for $CH_3 COOH=1.7 \times 10^{-5}$

$CH_3 COOH$ is weak acid, so in it $[CH_3 COOH]$ is equal to initial concentration. Hence

$ \begin{aligned} & 1.7 \times 10^{-5}=\frac{(3.4 \times 10^{-4})(3.4 \times 10^{-4})}{[CH_3 COOH]} \\ & \begin{aligned} {[CH_3 COOH] } & =\frac{3.4 \times 10^{-4} \times 3.4 \times 10^{-4}}{1.7 \times 10^{-5}} \\ & =6.8 \times 10^{-3} M \end{aligned} \end{aligned} $



NCERT Chapter Video Solution

Dual Pane