Equilibrium - Result Question 59

####61. At $100^{\circ} C$ the $K_w$ of water is 55 times its value at $25^{\circ} C$. What will be the $pH$ of neutral solution? $(\log 55=1.74)$

[NEET Kar. 2013]

(a) 6.13

(b) 7.00

(c) 7.87

(d) 5.13

Show Answer

Solution:

  1. (a) $K_w$ at $25^{\circ} C=1 \times 10^{-14}$

At $25^{\circ} C$

$K_w=[H^{+}][OH^{-}]=10^{-14}$

At $100^{\circ} C$ (given)

$K_w=[H^{+}][OH^{-}]=55 \times 10^{-14}$

$\because$ for a neutral solution

$ [H^{+}]=[OH^{-}] $

$\therefore \quad[H^{+}]^{2}=55 \times 10^{-14}$

or $[H^{+}]=(55 \times 10^{-14})^{1 / 2}$

$\because pH=-\log [H^{+}]$ On taking $\log$ on both side

$ \begin{aligned} & -\log [H^{+}]=-\log (55 \times 10^{-14})^{1 / 2} \\ & pH=\frac{1}{2}(-\log 55+14 \log 10) \\ & pH=6.13 \end{aligned} $

Calculation of $pOH$ in this question: value of $pH$ and $pOH$ must be same for a neutral solution. Thus, $pOH=6.13$, also $pH+pOH=-\log (55 \times 10^{-14})$



NCERT Chapter Video Solution

Dual Pane