Equilibrium - Result Question 18

####19. If $K_1$ and $K_2$ are the respective equilibrium constants for the two reactions

$XeF_6(g)+H_2 O(g) \rightarrow XeOF_4(g)+2 HF(g)$

$XeO_4(g)+XeF_6(g) \rightarrow XeOF_4(g)+XeO_3 F_2(g)$

the equilibrium constant of the reaction

$XeO_4(g)+2 HF(g) \rightarrow XeO_3 F_2(g)+H_2 O(g)$ will be

[1998]

(a) $K_1 /(K_2)^{2}$

(b) $K_1 \cdot K_2$

(c) $K_1 / K_2$

(d) $K_2 / K_1$

Show Answer

Solution:

  1. (d) For the reaction

$XeF_6(g)+H_2 O(g) \rightarrow XeOF_4(g)+2 HF(g)$

$K_1=\frac{[XeOF_4][HF]^{2}}{[XeF_6][H_2 O]}$

and for the reaction

$XeO_4(g)+XeF_6(g) \rightarrow XeOF_4(g)+HeO_3 F_2(g)$

$K_2=\frac{[XeOF_4][XeO_3 F_2]}{[XeO_4][XeF_6]}$

For reaction :

$XeO_4(g)+2 HF(g) \to XeO_3 F _{2(g)}+H_2 O(g)$ $K=\frac{[XeO_3 F_2][H_2 O]}{[XeO_4][HF]^{2}}$

$\therefore$ From eq. no. (a) and (b)

$K=K_2 / K_1$



NCERT Chapter Video Solution

Dual Pane