Chemical Kinetics - Result Question 53

####54. The rate constants $k_1$ and $k_2$ for two different reactions are $10^{16} \cdot e^{-2000 / T}$ and $10^{15} \cdot e^{-1000 / T}$, respectively. The temperature at which $k_1=k_2$ is :

(a) $1000 K$

(b) $\frac{2000}{2.303} K$

(c) $2000 K$

(d) $\frac{1000}{2.303} K$

[2008]

Show Answer

Solution:

  1. (d) Given, $k_1=10^{16} \cdot e^{-\frac{2000}{T}}$

and $k_2=10^{15} \cdot e^{-\frac{1000}{T}}$

When $k_1$ and $k_2$ are equal at any temperature $T$, we have

$ \begin{aligned} & 10^{16} \cdot e^{-\frac{2000}{T}}=10^{15} \cdot e^{-\frac{1000}{T}} \\ & \text{ or } 10 \times 10^{15} \cdot e^{-\frac{2000}{T}}=10^{15} \cdot e^{-\frac{1000}{T}} \\ & \text{ or } 10 . e^{-\frac{2000}{T}}=e^{-\frac{1000}{T}} \\ & \text{ or } \ln 10-\frac{2000}{T}=-\frac{1000}{T} \end{aligned} $

or $\ln 10=\frac{2000}{T}-\frac{1000}{T}$

or $2.303 \log 10=\frac{1000}{T}$

or $2.303 \times 1 \times T=1000 \quad[\therefore \log 10=1]$

or $T=\frac{1000}{2.303} K$



NCERT Chapter Video Solution

Dual Pane