Unit 04 Work energy and power

Work

Work is said to be done when a force is applied on a body and the body undergoes a finite displacement. For a finite work $(\neq 0)$ to be done on a body; the following two conditions must be satisfied:

(a) A force must act on the body.

(b) There is a finite displacement of the body.

Examples

(1) The force of gravity does work on a falling body.

(2) Frictional force used to bring a moving car to rest;

(3) A horse pulling a cart etc. making cart move does work on the cart.

Work done by a Constant Force

For constant force $\mathbf{F}$ applied on body producing a displacement $\mathbf{S}$ as shown in Fig.; the work is measured as scalar product of the force vector and the displacement vector.

Work done, $\mathrm{W}=\mathbf{F} . \mathbf{S}$

$$ \begin{aligned} & =\mathrm{FS} \cos \theta \\ & =(\mathrm{F} \cos \theta) \mathrm{S} \end{aligned} $$

$=$ Component of force in the direction of displacement $\times$ Magnitude of displacement.

It is also equal to magnitude of force and the component of displacement in the direction of force. Work is a scalar quantity.

The dimensions of work, W, are

$$ \begin{aligned} {[\mathrm{W}]=} & {[\text { Force }][\text { Displacement }]=\mathrm{MLT}^{-2} \mathrm{~L} } \\ & =\mathrm{ML}^{2} \mathrm{~T}^{-2} \end{aligned} $$

The SI unit of work in joule ( $\mathrm{J}) 1 \mathrm{~J}=1 \mathrm{Nm}$.

The gravitatinoal unit of work in $\mathrm{kg} \quad \mathrm{wt}-\mathrm{m}$ or $\mathrm{kgf} \mathrm{m}$. We have $1 \mathrm{kgfm}=9.8 \mathrm{Nm}=9.8 \mathrm{~J}$.

Work done by a force may be positive, negative or zero.

(i) Positive Work : For $0 \leq \theta<90^{\circ}$ i.e. when angle between $\overrightarrow{\mathrm{F}}$ and $\overrightarrow{\mathrm{S}}$ is acute; the work done by the force is positive. We say the applied force does work on the body.

(ii) Negative Work: For $90^{\circ}<\theta \leq 180^{\circ}$ i.e. when the angle between $\mathbf{F}$ and $\mathbf{S}$ is obtuse; the work done by the force is negative. In other words work is done against the applied force.

(iii) Zero Work: Work done can be zero if

(a) No force is applied on the body i.e. $\mathrm{F}=0$.

(b) $\mathrm{F} \neq 0$ but the force is unable to produce any displacement i.e. $\mathbf{S}=0$.

(c) Both force and displacement have finite, non-zero values but $\mathbf{F} \perp \mathbf{S}$ i.e. the angle between the directions of force and displacement is $90^{\circ}$.

Example-1 :

What is the sign of work done in each of the following cases? Justify your answer:

(a) Work done by the force of gravitation on a freely falling body.

(b) Work done by the force of gravitation when a body is lifted upwards.

(c) Work done by the electrostatic force when a positive charge is moved closer to another positive charge.

(d) Work done by the electrostatic force of nucleus on an electron revolving around it.

(e) Work done by the gas enclosed in a cylinder fitted with a piston when the gas is allowed to expand.

Show Answer

Solution :

(a) Positive because; force of gravity and the displacement are in same direction i.e vertically downwards

Remember :

Positive work done by a force on a system increases the energy of the system by imparting energy to the system $\Delta \mathrm{E}=\mathrm{E} _{\mathrm{f}}-\mathrm{E} _{\mathrm{i}}>0$.

Negative work takes away energy from the system. Hence the final energy of the system is less than its initial energy $\Delta \mathrm{E}=\mathrm{E} _{\mathrm{f}}-\mathrm{E} _{\mathrm{i}}<0$.

Zero work neither increases nor decreases the energy of the system $\Delta \mathrm{E}=0$ or $\mathrm{E} _{\mathrm{f}}=\mathrm{E} _{\mathrm{i}}$.

(b) Negative because $\mathbf{F} _{\text {gravity }}$ is vertically downwards and the displacement is upwards. So $\theta=180^{\circ}$

$$ \mathrm{W}=\mathrm{FS} \cos 180^{\circ}=-\mathrm{FS} $$

(c) Negative. The direction of $\mathbf{F}$ and $\mathbf{S}$ are opposite to one another as shown in Fig. (a)

(d) Zero. The infitesimally small displacement $\mathbf{d S}$ is always perpendicular to instantaneous direction force as shown in Fig. (b)

(e) Positive because force applied by the gas on the cylinder and the displacement are in same direction.

Example-2 :

A braking force of $2000 \mathrm{~N}$ applied on a car stops it in $7.5 \mathrm{~m}$. How much work is done by the force on

(i) the car (ii) the road?

Show Answer

Solution :

(i) We have, $\mathrm{F}=2000 \mathrm{~N}$

$$ \mathrm{S}=7.5 \mathrm{M} $$

$\theta=180^{\circ}$ because the braking force acts opposite to displacement or motion.

$\therefore$ Work done by the applied force $=\mathrm{W}=\mathrm{FS} \cos 180^{\circ}$

$$ =(2000)(7.5)(-1)=-15000 \mathrm{~J} $$

(ii) Work done on the road is zero because there is not displacement of the road.

Example-3 :

A $1 \mathrm{sq}$. $\mathrm{km}$ area records a rainfall of $25 \mathrm{~mm}$ due to $1000 \mathrm{~m}$ high clouds. Calculate the work done to raise the water to the height of the clouds. Given $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$. Density of water $=1000 \mathrm{~kg} \mathrm{~m}^{-3}$.

Show Answer

Solution :

We have area $\mathrm{A}=1 \mathrm{sq} . \mathrm{km}=1000 \mathrm{~m} \times 1000 \mathrm{~m}$

$$ \begin{gathered} =10^{6} \mathrm{~m}^{2} \\ \mathrm{~d}=25 \mathrm{~mm}=25 \times 10^{-3} \mathrm{~m} \end{gathered} $$

Volume of water collected due to rainfall $=\mathrm{A} . \mathrm{d}=25 \times 10^{3} \mathrm{~m}^{3}$

Mass of water $=$ Volume $\times$ density

$$ =25 \times 10^{6} \mathrm{~kg} $$

Fore applied to raise water $=\mathrm{F}=\mathrm{mg}=25 \times 10^{7} \mathrm{~N}$

Distance moved $=\mathrm{h}=1 \mathrm{~km}=10^{3} \mathrm{~m}$

$\therefore$ Work done $=\mathrm{Fh}=25 \times 10^{7} \times 10^{3}=2.5 \times 10^{11} \mathrm{~J}$

Example-4 :

A $60 \mathrm{~kg}$ man carrying a $30 \mathrm{~kg}$ brick load moves $20 \mathrm{~m}$ up an incline of 1 in 10 . What is the work done by the $\operatorname{man}$ ? $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Show Answer

Solution :

Total mass of man and bricks $=60+30=90 \mathrm{~kg}$

Let $\mathrm{F}$ be force applied by the man along the plane as shown in Fig.

For dynamic equilibrium $\mathrm{F}=\mathrm{mg} \sin \theta$

$$ =90 \times 9.8 \times \frac{1}{10}=88.2 \mathrm{~N} $$

$\mathrm{W}=$ The work done $=\mathrm{F} \times \mathrm{s}$

$$ \begin{aligned} & =88.2 \times 20 \\ & =1764 \mathrm{~J} \end{aligned} $$

Example-5 :

A force $\mathbf{F}=(7 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k})$ newton acting on a particle produces a displacement of $(2 \mathbf{i}+8 \mathbf{j}+\mathrm{n} \mathbf{k}) \mathrm{m}$ but does no work in the process. Calculate $n$ and the magnitude of displacement.

Show Answer

Solution :

We have, $\mathbf{F}=(7 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \mathrm{N}$

$$ \mathbf{S}=(2 \mathbf{i}+8 \mathbf{j}+\mathrm{n} \mathbf{k}) \mathrm{m} $$

Work done $=\mathrm{W}=$ F.S

$$ \begin{aligned} & =(7 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \cdot(2 \mathbf{i}+8 \mathbf{j}+\mathrm{n} \mathbf{k}) \\ & =(7)(2)+(2)(8)-(3)(\mathrm{n}) \\ & =30-3 \mathrm{n} \end{aligned} $$

Given $\mathrm{W}=0$; therefore,

$$ 30-3 n=0 $$

or

$$ \mathrm{n}=10 $$

$\therefore \mathbf{S}=(2 \mathbf{i}+2 \mathbf{j}+10 \mathbf{k}) \mathrm{m}$

and

$$ \begin{aligned} & |\mathbf{S}|=\sqrt{(2)^{2}+(8)^{2}+(10)^{2}} \\ & =\sqrt{4+64+100}=\sqrt{168} \\ & =2 \sqrt{42} \mathrm{~m} \end{aligned} $$

Example-6 :

A $2 \mathrm{~kg}$ block is suspended by a light thread in an elevator. The elevator accelerates upwards at a uniform rate of $2 \mathrm{~m} / \mathrm{s}^{2}$. What is work done by the tension in the thread in $4 \mathrm{~s}$ and the fourth second. [Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ]

Show Answer

Solution :

For the block using free body diagram; shown in Fig. we have

$$ \begin{aligned} & \mathrm{T}-\mathrm{mg}=\mathrm{ma} \\ & \mathrm{T}=\mathrm{m}(\mathrm{g}+\mathrm{a}) \\ & =2(10+2)=24 \mathrm{~N} \end{aligned} $$

$S=$ The distance travels in $4 \mathrm{~s}$

$$ \begin{aligned} & =u t+\frac{1}{2} a t^{2} \\ & =0+\frac{1}{2}(2)(4)^{2}=16 \mathrm{~m} \end{aligned} $$

$\therefore$ Work done is $4 \mathrm{~s}=\mathrm{FS}=$ T.S. $=(24)(16)=384 \mathrm{~J}$

$\mathrm{S} _{4}=$ Distance in 4 th is given by

$\mathrm{S} _{\mathrm{n}}=\mathrm{u}+\frac{\mathrm{a}}{2}(2 \mathrm{n}-1)$

$\mathrm{S} _{4}=(0)+\frac{2}{2}(7)=7 \mathrm{~m}$

$\therefore$ Work done in $4^{\text {th }}$ second $=\mathrm{W}^{\prime}=(24)(7)=168 \mathrm{~J}$

Example-7 :

A particle subjected to a force $\mathbf{F}=(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$ is constrained to move along negative $z$ direction. Calculate the work done to displace the particle through $2 \mathrm{~m}$.

Show Answer

Solution :

We have $\mathbf{F}=(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \mathrm{N}$

$\mathbf{S}=-2 \mathbf{k m}$ (In negative z-direction)

$\therefore \mathrm{W}=$ F.S

$$ \begin{aligned} & =(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \cdot(-2 \mathbf{k}) \\ & =-6 \mathrm{~J} \end{aligned} $$

The following facts about work be noted carefully.

1. Work done by a force depends on the frame of reference. Let a man pull a box inside a moving bus through a distance S; work done with the bus as reference frame is F.S. However the work done by the force with respect to an observer on ground will be $\mathrm{W}^{\prime}=\mathbf{F} .\left(\mathbf{S}+\mathbf{S}^{\prime}\right)$ where $\mathbf{S}^{\prime}$ is the displacement of the bus with respect to the observer on ground.

2. Work done by force of friction may be zero, positive or negative. If the force applied on a body is unable to move the body, the work done by the frictional force is zero.

If the force applied on a body exceeds the limiting friction and the body moves, the work done by the friction is negative.

Consider a trolley with rough surface accelerating along horizontal; the force of friction between a block in the trolley and the trolley does positive work an the trolley.

Work done by a Variable Force

Let the force applied on a body vary with time or position; of the body. The work done is given by $\mathrm{W}=\int \mathbf{F} . \mathrm{ds}$ where $\mathbf{F}$ is instantaneous force and $\mathbf{d s}$ is infinitesimally small displacement in time interval dt.

The work done by a variable force equals the area under force vs displacement graph. Fig. shows F vs S graph. For displacement from $\mathrm{S} _{1}$ to $\mathrm{S} _{2}$.

The work done, $\mathrm{W}=$ Area of the shaded part of the F vs S graph.

The area above the displacement axis is taken as positive and below it as negative.

Net work done for a displacement from the origin $\mathrm{O}$ to $\mathrm{S} _{1}$ (Fig. b) is given by

$$ \mathrm{W}=\mathrm{W} _{1}-\mathrm{W} _{2} $$

Work done by a Spring Force

Consider a spring of spring constant $\mathrm{k}$; extended by an external applied force $\mathrm{F}$. The force applied and the elongation / compression produced are in same direction. Therefore the done by the applied force in positive.

The spring exerts a force against the direction of deformation. So the work done by the restoring force on an external agent is negative.

Conservative Force

Consider a body moving from point $\mathrm{A}$ to $\mathrm{B}$ in space under an applied force. A force is conservation if the work done by the force is independent of the path followed in moving from A to B. The work however depends on the initial and the final positions; A and B only. The work in such cases in also called the line integral of the force of the field $\mathrm{W}=\int _{\mathrm{A}}^{\mathrm{B}} \mathrm{F} \cdot \mathrm{d} \ell($ Path 1$)=\int _{\mathrm{A}}^{\mathrm{B}} \mathrm{F} \cdot \mathbf{d} \ell($ Path 2). Fig shows particle moving fromA to $\mathrm{B}$ in three different paths 1,2 and 3 . For a conservative force.

$$ \mathrm{W} _{1}=\mathrm{W} _{2}=\mathrm{W} _{3} $$

The net work done by a conservative force over any closed path is zero. Expressed mathematically.

$$ \oint \mathbf{F} \cdot \mathbf{d s}=0 $$

Gravitational and electrostatic fields are examples of conservative fields and the corresponding forces are called conservative forces. The energy is stored in the system when work in done against conservative force.

Non-conservative Force

A force is said to be non-conservative if work done to move a body between two points A and B depends on the path followed. Frictional force is an example of non-conservative force. Note that the work done against friction gets dissipated as heat energy and is not stored in the system. This work cannot be recovered.

Example-8 :

The force F applied on a body vs displacement produced in it is shown in the Fig. Calculate the work done for a displacement from $0 \mathrm{~m}$ to $6 \mathrm{~m}$.

Show Answer

Solution :

Work done $=$ Area under $\mathrm{F}$ vs $\mathrm{S}$ graph

$$ \begin{aligned} & =\operatorname{Ar}(\mathrm{OABC})+\operatorname{Ar}(\mathrm{CDE}) \\ & =\frac{1}{2}(\mathrm{AB}+\mathrm{OC})(\perp \text { lar distance between } \mathrm{AB} \text { and } \mathrm{OC})-\frac{1}{2}(\mathrm{CE}) \mathrm{DE} \\ & =\frac{1}{2}(2+5) \times 4-\frac{1}{2} \times 1 \times 4 \\ & =14-2=12 \mathrm{~J} \end{aligned} $$

Please note that the net work done is algebraic sum of the areas of different parts. For the part of the graph below displacement axis; the work is to be taken as negative.

Example-9:

An elastic spring with spring constant $k$ has one of its ends (A) fixed to a rigid support. The other end $B$ is gradually pulled to produce an elongation ’ $a$ ‘. Calculate the work done by the applied force.

Show Answer

Solution :

When the spring is relaxed; the force $\mathrm{F}$ is zero. As the extension increases; the force required $(\mathrm{k} x)$ to produce extension $x$ also increases. So the force is a variable force. The work done has to calculated by integration.

For an instantaneous extension $x$; the force $\mathrm{F}=\mathrm{k} x$

Work done to produce a further extension $\mathrm{d} x$ i.e., $x$ to $x+\mathrm{d} x$ is $\mathrm{dW}=\mathrm{Fd} x=\mathrm{k} x \mathrm{~d} x$

Work done for an increase in length from 0 to ’ $a$ ’ is given by

$\mathrm{W}=\int \mathrm{dW}=\mathrm{k} \int _{0}^{\mathrm{a}} x \mathrm{~d} x$

$$ =\mathrm{k}\left|\frac{x^{2}}{2}\right| _{0}^{\mathrm{a}}=\frac{1}{2} \mathrm{ka}^{2} $$

Note: This work remains stored in the spring as potential energy.

Example-10 :

A particle moves along the $\mathrm{X}$-axis from $x=0$ to $x=3$ m under the action of a force given by

$\mathrm{F}=2 x^{2}-3 x+4$. Calculate the work done.

Show Answer

Solution :

We have $\mathrm{F}=2 x^{2}-3 x+4$

Work done for a displacement $\mathrm{d} x$ is

$$ \mathrm{dW}=\mathrm{Fd} x=\left(2 x^{2}-3 x+4\right) \mathrm{d} x $$

Work done for displacement from $x=0$ to $x=3 \mathrm{~m}$ is

$$ \begin{gathered} \mathrm{W}=\int \mathrm{dW}=\int _{x=0}^{3 \mathrm{~m}}\left(2 x^{2}-3 x+4\right) \mathrm{d} x=\left|2 \frac{x^{3}}{3}-3 \frac{x^{2}}{2}+4 x\right| _{0}^{3} \\ =18-\frac{27}{2}+12=30-\frac{27}{2}=\frac{33}{2} \mathrm{~J}=16.5 \mathrm{~J} \end{gathered} $$

Example-11 :

The position $x$ of a body moving along $\mathrm{X}$-axis, varies with time as $x=\frac{\mathrm{t}^{3}}{3}$; where $x$ is in $\mathrm{m}$ and $\mathrm{t}$ in second.

Calculate the work done by the body in first $4 \mathrm{~s}$. The mass of the body is $2 \mathrm{~kg}$.

Show Answer

Solution :

Given $x=\frac{1}{3} \mathrm{t}^{3}$

The instantaneous velocity, $\mathrm{v}=\frac{\mathrm{d} x}{\mathrm{dt}}=\mathrm{t}^{2}$

The instantaneous acceleration, $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{t}^{2}\right)=2 \mathrm{t}$

The instantaneous force $\mathrm{F}$ on the particle, from Newton’s $2^{\text {nd }}$ law is

$\mathrm{F}=\mathrm{ma}=2(2 \mathrm{t})=4 \mathrm{t}$

$\mathrm{W}=\int \mathrm{F} d x=\int \mathrm{F} \frac{\mathrm{d} x}{\mathrm{dt}} \cdot \mathrm{dt}=\int \mathrm{Fvdt}$

$=\int _{\mathrm{t}=0}^{4}(4 \mathrm{t})\left(\mathrm{t}^{2}\right) \mathrm{dt}$

$=\int _{\mathrm{t}=0}^{4} 4 \mathrm{t}^{3} \mathrm{dt}=\left|4 \cdot \frac{\mathrm{t}^{4}}{4}\right| _{0}^{4}$

$=\left[(4)^{4}-0\right]=256 \mathrm{~J}$

Example-12 :

A “lawn-roller” has a moveable handle of length $50 \mathrm{~cm}$. It is pulled along a horizontal surface by some external applied force $\mathrm{F}=10^{2} \mathrm{~N}$ in two different ways as shown in Fig. (a) and (b). What is ratio of work done by the applied force in the two cases?

Show Answer

Solution :

Work done in case I;

$$ \mathrm{W} _{1}=\mathrm{F} \cos \alpha \cdot \mathrm{S}=10^{2} \mathrm{~N}\left(\frac{40}{50}\right) \times 10 \mathrm{~m}=10^{3} \mathrm{~J} $$

Work done in case II;

$$ \begin{aligned} & \mathrm{W} _{2}=\mathrm{F} \cos \beta \mathrm{S}=10^{2} \times \frac{30}{50} \times 10=\frac{1000 \times 3}{5}=600 \mathrm{~J} \\ \therefore & \frac{\mathrm{W} _{1}}{\mathrm{~W} _{2}}=\frac{1000}{600}=5: 3 \end{aligned} $$

Example-13 :

A $\mathrm{mkg}$ object in lying on the surface of earth. Calculate the work done to move the objected vertically upwards through a distance equal to the radius of the earth, R. M= the mass of earth.

Show Answer

Solution :

Let the mass $\mathrm{m}$ be at A on the surface of the earth. As the mass is moved upwards; the total distance $\mathrm{R}$ involved being large; the acceleration due to gravity does not remain constant. So the force is variable. Hence the work done is calculated by integration.

When the body is at distance ’ $x$ ’ from the centre of the earth, i.e. at point $L$, we have

$$ \mathrm{F} _{\mathrm{gra}}=\frac{\mathrm{GmM}}{x^{2}} $$

Work done to move the body from a distance $x$ to a distance $x+\mathrm{d} x$ or through $\mathrm{d} x$ is given by

$$ \mathrm{dW}=-\mathrm{Fd} x=-\frac{\mathrm{GmM}}{x^{2}} \mathrm{~d} x $$

Work done to move the body from A to $\mathrm{B}$ is

$$ \begin{aligned} \mathrm{W}=\int \mathrm{dW} & =-\mathrm{GmM} \int _{\mathrm{R}}^{2 \mathrm{R}} x^{-2} \mathrm{~d} x \\ & =\mathrm{GmM}\left|x^{-2+1}\right| _{\mathrm{R}}^{2 \mathrm{R}} \\ & =\mathrm{GmM}\left|\frac{1}{x}\right| _{\mathrm{R}}^{2 \mathrm{R}} \\ & =\mathrm{GmM}\left|+\frac{1}{2 \mathrm{R}}-\frac{1}{\mathrm{R}}\right| \\ & =-\left(\frac{\mathrm{GmM}}{2 \mathrm{R}}\right) \end{aligned} $$

$$ \mathrm{W}=-\left[\frac{\mathrm{GmM}}{2 \mathrm{R}}\right] $$

Negative sign indicates that work is done against the gravitational force of earth.

Example-14 :

A spring with spring constant $40 \mathrm{Nm}^{-1}$ is compressed through $2 \mathrm{~cm}$. How much additional work has to be done to compress is further through $2 \mathrm{~cm}$ ?

Show Answer

Solution :

We have $\mathrm{k}=40 \mathrm{Nm}^{-1}$

Initially $x _{1}=2 \mathrm{~cm}=\frac{2}{100} \mathrm{~m}$

Work done for compression through $2 \mathrm{~cm}$

or $\mathrm{W} _{1}=\frac{1}{2} \mathrm{k} x _{1}^{2}$

$$ =\frac{1}{2} \times 40 \times \frac{2}{100} \times \frac{2}{100}=8 \times 10^{-3} \mathrm{~J} $$

Work done for a compression from $0 \mathrm{~cm}$ to $4 \mathrm{~cm}$ is

$$ \begin{aligned} \mathrm{W} _{2}=\frac{1}{2} \mathrm{k} & x _{2}^{2} \\ & =\frac{1}{2} \times 40 \times \frac{4}{100} \times \frac{4}{100}=32 \times 10^{-3} \mathrm{~J} \end{aligned} $$

$\therefore$ Work for a compression from $2 \mathrm{~cm}$ to $4 \mathrm{~cm}$

$$ \begin{aligned} & =\mathrm{W} _{2}-\mathrm{W} _{1}=(32-8) \times 10^{-3} \\ & =.024 \mathrm{~J} \end{aligned} $$

Newton’s III Law and Work done

For a system, the bodies within the system exert forces of action and reaction on each other. $\operatorname{So} \mathbf{F} _{12}+\mathbf{F} _{21}=0$. For a pair of bodies in the system.

It should be remembered that the work done by the action reaction pair need not always cancel. The distance traveled by the two bodies of different masses in coming to rest, when allowed to move until their

mutual force is not necessarily same. So $\mathrm{W} _{12}+\mathrm{W} _{21} \neq 0$.

However in some cases, the work done by the action-reaction pair is zero.

Energy

It is defined as the ability of a body to do work. It is a scalar. Its SI Unit is same as that of work (J). Energy can exist many different forms like, kinetic energy, potential energy, spring energy, chemical energy, electrical energy, wind energy, nuclear energy etc. The smaller units of energy used are:

$$ \begin{aligned} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\ & 1 \mathrm{keV}=1.6 \times 10^{-16} \mathrm{~J} \quad\left(=10^{3} \mathrm{eV}\right) \\ & 1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J} \quad\left(=10^{6} \mathrm{eV}\right) \end{aligned} $$

Kinetic Energy

It is the energy possessed by a body by virtue of its motion. For a body of mass m moving with velocity $v$,

K.E. is given by $\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$

Linear momentum $p$ and kinetic energy $k$ are related as

$$ \begin{array}{r} \mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \cdot \frac{1}{\mathrm{~m}} \mathrm{~m}^{2} \mathrm{v}^{2} \\ =\frac{(\mathrm{mv})^{2}}{2 \mathrm{~m}}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} \end{array} $$

So, $k=\frac{p^{2}}{2 m} \quad$ or $\quad p=\sqrt{2 m K}$

Note :

1. For two bodies having equal momenta; the lighter body has larger value of KE.

From $K=\frac{p^{2}}{2 m}$. If $p$ is same; $K \alpha \frac{1}{m}$

2. For the two bodies having equal kinetic energy; the heavier body will have larger momentum. As $\mathrm{p}=\sqrt{2 \mathrm{mK}}$

For constant $k ; p=p \alpha \sqrt{m}$. So larger the mass, more will be the momentum.

Potential Energy

The energy stored in a body or a system by virtue of its position or configuration is called potential energy. For a body moving from position A to position B; under a conservative force; by definition.

$$ \mathrm{U} _{\mathrm{A}}-\mathrm{U} _{\mathrm{B}}=\mathrm{W} _{\mathrm{AB}}=\int _{\mathrm{A}}^{\mathrm{B}} \mathbf{F} \cdot \mathbf{d s} $$

Let $\mathrm{U} _{\mathrm{A}}$ and $\mathrm{U} _{\mathrm{B}}$ denote the potential energy at A and $\mathrm{B}$ respectively. The above equation defines difference in potential energy.

For potential energy at $\mathrm{A}$; if $\mathrm{B}$ is taken as a standard reference point;

$$ \mathrm{U} _{\mathrm{A}}=\mathrm{U} _{\mathrm{std}}+\int _{\mathrm{B}}^{\mathrm{A}} \mathbf{F} . \mathbf{d s} $$

The potential energy $U _{A}$ at a point A is not uniquely defined. Its value depends on standard reference point chosen. However difference in potential is uniquely defined i.e. it does not depend on the standard reference point chosen.

Gravitational Potential Energy

Consider a particle of mass $m$ being moved very-very slowly from ground (i.e. point $\mathrm{A}$ ) to a point $\mathrm{B}$ at a height $\mathrm{h}$ above ground. For $\mathrm{h}«\mathrm{R}$; $\mathrm{R}$ is radius of earth; the force $\mathrm{mg}$ on particle is constant. Let $\mathrm{U}$ be potential energy of mass at $\mathrm{B}$, then

$\mathrm{U} _{\mathrm{A}}-\mathrm{U} _{\mathrm{B}}=$ Work done by force of gravity in moving mass $\mathrm{m}$ from A to $\mathrm{B}$

Taking $U _{A}$ as zero, i.e. ground as standard reference point and assigning zero value to P.E. at $A$; we have $\mathrm{U}=\mathrm{mgh}$

Potential Energy of a Spring

Consider a spring of spring constant $k$. Let $\mathrm{U} _{0}$ be potential energy of spring when it has its natural length. $U$ is the potential energy when length of spring changes by $x$. By definition

$\mathrm{U} _{0}-\mathrm{U}=$ work done by spring force to produce a change $x$ in length of spring.

$$ =\left(\frac{1}{2} \mathrm{k} x^{2}\right) $$

$\therefore \mathrm{U}=\mathrm{U} _{0}+\frac{1}{2} \mathrm{k} x^{2}$

U vs $x$ graph is as shown in Fig. (a). Commonly; $\mathrm{U} _{0}$ is chosen as zero i.e. when spring is in its natural state, potential energy is zero. Then

$$ \mathrm{U}=\frac{1}{2} \mathrm{k} x^{2} $$

Under these conditions U vs $x$ graph is shown in Fig. (b).

Total Energy (E)

The sum of kinetic energy $(\mathrm{K})$ and potential energy $(\mathrm{U})$ is known as the total mechanical energy $\mathrm{E}$, i.e.

$$ E=K+U $$

For a conservative force; the kinetic energy and potential energy are inter-convertible. However, the total energy (E) remains a constant. In other words, if K.E. decreases, P.E. increases and vice-versa. This is known as law of conservation of energy. The law of conservation of energy is one of the basic law of nature. It is very useful in solving problems in a simple and convenient manner.

The following important points about energy should be carefully noted and used appropriately, as required; in solving problems:

(1) Kinetic energy is always positive.

(2) Potential energy may be positive or negative.

(3) Potential energy is present in a system of two or more bodies / molecules / atoms due to forces of mutual interaction.

(4) The potential energy due to gravitational force is called gravitational potential energy.

(5) The potential energy due to electrostatic forces is called electrostatic potential energy.

(6) The potential energy may be present in a body due to inter atomic / inter molecular forces. (e.g. elastic energy in a spring / stretched wire etc.)

(7) The potential energy of a body/ system is measured with respect to certain reference position.

When the forces involved are repulsive; potential energy is positive. If the forces involved are attractive, potential energy is negative.

(8) The total mechanical energy ( $\mathrm{KE}+\mathrm{PE})$ may be zero, negative or positive.

(9) An electron in its orbit around an atom has negative energy. Similarly a satellite in its orbit around earth has negative energy.

(10) Negative mechanical energy signifies that the electron is bound to the nucleus and work will have to be done to make it free from the nucleus / atom.

Like wise, work has to be done to take a satellite out of the gravitational field of the planet ( to $\infty$ ).

Force $\mathrm{F}$ and $\mathrm{PE}$ ’ $\mathrm{U}$ ’ are related as $\mathrm{F}(x)=-\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{U}(x)$

The PE of a body cannot exceed the total energy of the body. KE may however be greater than total energy.

Work-Energy Theorem

According to work energy theorem; work done by a body is equivalent to change in kinetic energy of the body (for same value of potential energy).

Work $\mathrm{W}=$ Change in kinetic energy

$$ =\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} m u^{2} $$

Work done on a body results in an increase in kinetic energy of the body by an amount which equals the work done.

Work done by a body is equal to the decrease in kinetic energy of the body by an equal amount.

During transformation of energy from one form (say PE to KE) to another; the total energy of an isolated system always remains conserved.

Mass-Energy Equivalence

Mass is also a form of energy. According to Einstein’s relation; a mass ’ $\mathrm{m}$ ’ may be destroyed and completely are related as $E=\mathrm{mc}^{2}$ where ’ $\mathrm{c}$ ’ is the speed of light in vacuum. $\left(\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.

In certain nuclear reactions, energy is also converted to mass according to the above equation.

So mass or energy can be obtained at the cost of the other (energy or mass).

In light of mass-energy equivalence, instead of talking separately about (i) law of conservation of mass and (ii) law of conservation of energy, we talk about “law of conservation of mass-energy.”

It can be shown that 1 atomic-mass unit, if completely converted into energy; is nearly equivalent to $931 \mathrm{MeV}$ of energy.

Example-15 :

The potential energy function of a particle in one dimension as a function of position ’ $x$ ’ is shown in Fig. The total energy ’ $E$ ’ of the particle is also marked in the diagram. For the system shown, the particle cannot exist in the region for which the value of $x$ is

(1) $<-\frac{b}{2}$

(2) $> \frac{b}{2}$

(3) $-\frac{\mathrm{a}}{2}<x<\frac{\mathrm{a}}{2}$

(4) $-\frac{\mathrm{b}}{2}<x<-\frac{\mathrm{a}}{2}$

Show Answer

Solution :

A careful observation of the graph shows the relative values of $\mathrm{E}$, the total energy and the potential energy of the particle.

In the regions $-\frac{\mathrm{b}}{2}<x<-\frac{\mathrm{a}}{2}$ and $+\frac{\mathrm{a}}{2}<x<+\frac{\mathrm{b}}{2}$; the PE of the particle exceeds the total energy ’ $\mathrm{E}$ ‘. Hence the particle cannot exist in these two regions. For all other regions; the PE is less than E and hence the particle can exist.

Hence option (4) above is correct.

Example-16:

The potential energy function $\mathrm{V}(x)$ of a particle in simple harmonic motion is given by

$$ \mathrm{V}(x)=\frac{1}{8} \mathrm{k} x^{2} $$

where $\mathrm{k}$ is the force constant for the oscillator with appropriate dimension.

For $\mathrm{k}=2 \mathrm{Nm}^{-1}$; show that for values of $x= \pm 1 \mathrm{~m}$, the particle must return towards the origin if the total energy of the particle is $1 \mathrm{~J}$.

Show Answer

Solution :

The total energy of a particle is equal to the sum of its PE and KE.

$\therefore \mathrm{E}=\mathrm{PE}+\mathrm{KE}$

$$ =\frac{1}{2} \mathrm{k} x^{2}+\frac{1}{2} \mathrm{mv}^{2} $$

Where $x$ and $\mathrm{v}$ denote instantaneous displacement and instantaneous speed respectively.

Given; P.E. $\mathrm{v}(x)=\frac{1}{8} \mathrm{k} x^{2}$

We know, $\mathrm{PE}$ is maximum when $\mathrm{KE}$ is zero.

$\therefore(\mathrm{PE}) _{\max }=\mathrm{E}$ when $\mathrm{K}=0$

$$ =\frac{1}{2} \mathrm{k} x _{\max }^{2} $$

$\therefore x _{\text {max }}=\sqrt{\frac{(\mathrm{PE}) _{\text {max }} \times 2}{k}}=\sqrt{\frac{2 \mathrm{E}}{\mathrm{k}}}$

$$ = \pm \sqrt{\frac{2 \times 1}{2}}=1 \mathrm{~m} \text { or }-1 \mathrm{~m} $$

Hence the particle must turn back at $x=+1$ and $x=-1 \mathrm{~m}$.

Example-17 :

A cloud burst occurs $500 \mathrm{~m}$ above the surface of earth and the resulting rainfall causes $8 \mathrm{~cm}$ rainfall over an area of $1 \mathrm{sq} . \mathrm{km}$. How much work is done by the gravitational force during the rainfall. Given $\rho _{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Show Answer

Solution:

$\mathrm{d}=$ Depth of rain water received $=8 \mathrm{~cm}=0.08 \mathrm{~m}$

Total volume of water received in rainfall $=\mathrm{A} \times \mathrm{d}$

$$ \begin{aligned} & =1000 \times 1000 \times \frac{8}{100} \\ & =8 \times 10^{4} \mathrm{~m}^{3} \end{aligned} $$

$$ \rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3} $$

$\therefore$ Mass of water received as rainfall $=\mathrm{V} \rho$

$$ \begin{aligned} & =8 \times 10^{4} \times 10^{3} \\ & =8 \times 10^{7} \mathrm{~kg} \end{aligned} $$

W.D. by the gravitational force

$=$ Decrease in gravitational potential energy

$=\mathrm{mgh}=8 \times 10^{7} \times 10 \times 250$

Example-18 :

It is well known that a raindrop falls under the influence of the downward gravitational force and an opposing resistive/viscous force. The later is known to be proportional to the speed of the drop, but is otherwise undetermined. Consider a drop of mass $1.00 \mathrm{~g}$ falling from a height of 1.00 . The drop hits the ground with a speed of $50.0 \mathrm{~ms}^{-1}$. What is the work done by the unknown resistive force?

Show Answer

Solution :

Given $\mathrm{m}=1 \mathrm{~g}=10^{-3} \mathrm{~kg}$,

$$ \begin{aligned} & \mathrm{h}=1 \mathrm{~km}=1000 \mathrm{~m} \\ & \mathrm{v}=50 \mathrm{~ms}^{-1} \end{aligned} $$

$\mathrm{E} _{\mathrm{e}}=$ The total initial energy of rain drop

$$ \begin{aligned} & =\mathrm{mgh}+0 \\ & =10^{-3} \times 10 \times 10^{3}=10 \mathrm{~J} \end{aligned} $$

$\mathrm{E} _{\mathrm{f}}=$ The total final energy of rain drop (i.e. when rain drop is just about to hit ground).

$$ \begin{aligned} & =\frac{1}{2} \mathrm{mv}^{2}+0 \\ & =\frac{1}{2} \times 10^{-3} \times(50)^{2}=1.25 \mathrm{~J} \end{aligned} $$

Let $\mathrm{W}$ be work done on the rain drop by resistive force. Then

$$ \begin{aligned} & =\mathrm{E} _{\mathrm{e}}+\mathrm{E} _{\mathrm{f}}=\mathrm{W} \\ & =10+1.25=\mathrm{W} \end{aligned} $$

or

$$ \mathrm{W}=-8.75 \mathrm{~J} $$

Example-19:

An automobile is moving at $54 \mathrm{~km} / \mathrm{hr}$ when it reaches the foot of a $30^{\circ}$ upward inclined road. The engine of the automobile is switched off and it is allowed to go up the incline having 0.2 as the coefficient of friction. What distance does it cover or the incline before coming to rest?

Show Answer

Solution :

The initial KE of the automobile is partially used to work against friction and is partly converted to potential energy. We have

Initial $\mathrm{KE}=\mathrm{PE}$ gained + work done against friction.

We have,

$$ \mathrm{u}=54 \mathrm{~km} / \mathrm{hr}=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{s} $$

Component of gravitational force down the plane $=\mathrm{mg} \sin \theta=\mathrm{mg} \sin 30^{\circ}$

Normal reaction $\mathrm{N}=\mathrm{mg} \cos 30$

$\therefore \mathrm{F} _{\text {friction }}=\mu \mathrm{N}=0.2 \mathrm{mg} \cos 30^{\circ}$

Net force down the plane $=\mathrm{F} _{\mathrm{fr}}+\mathrm{mg} \sin \theta$

$$ \begin{aligned} & =\mu \mathrm{mg} \cos \theta+\mathrm{mg} \sin \theta \\ & =\mathrm{mg}(\sin \theta+\mu \cos \theta) \end{aligned} $$

Let ’ $\ell$ ’ be the distance moved by the automobile up the plane before coming to rest; Then

$$ \frac{1}{2} m u^{2}=m g(\sin \theta+\mu \cos \theta) \ell $$

or

$$ \ell=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}(\sin \theta+\mu \cos \theta)} $$

$$ \begin{aligned} & =\frac{15 \times 15}{2 \times 10(\sin 30+0.2 \cos 30)} \\ & =\frac{15 \times 15}{2 \times 10(0.5+0.1732)} \end{aligned} $$

$$ \begin{aligned} & =\frac{225}{13.464} \mathrm{~m} \\ & =16.7 \mathrm{~m} \end{aligned} $$

Example-20 :

The velocity of a $5 \mathrm{~kg}$ object changes from $(3 \mathbf{i}-4 \mathbf{j}) \mathrm{m} / \mathrm{s}$ to $(2 \mathbf{j}-6 \mathbf{k}) \mathrm{m} / \mathrm{s}$. What is the change in $\mathrm{KE}$ of the body?

Show Answer

Solution :

We have, $\mathrm{m}=5 \mathrm{~kg}$

$$ \begin{aligned} \mathbf{u} & =(3 \mathbf{i}-4 \mathbf{j}) \mathrm{m} / \mathrm{s} \\ \therefore|\mathbf{u}|= & \sqrt{4 _{x}^{2}+4 _{y}^{2}}=5 \mathrm{~m} / \mathrm{s} \\ & \mathbf{v}=(2 \mathbf{j}-6 \mathbf{k}) \mathrm{m} / \mathrm{s} \\ \therefore|\mathbf{v}|= & \sqrt{(2)^{2}+(-6)^{2}} \\ & =\sqrt{40} \mathrm{~m} / \mathrm{s} \end{aligned} $$

$\therefore$ Change in $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2}$

$$ \begin{aligned} & =\frac{1}{2} \mathrm{~m}\left[(\sqrt{40})^{2}-(5)^{2}\right] \\ & =\frac{1}{2} \times 5 \times 15=37.5 \mathrm{~J} \end{aligned} $$

Example-21 :

Calculate the kinetic energy acquired by a system of two masses of $5 \mathrm{~kg}$ and $4 \mathrm{~kg}$ shown in (i) Fig. (a) (ii) Fig. (b) is $4 \mathrm{~s}$. Take g= $10 \mathrm{~ms}^{-2}$ and the pulleys as well as the surfaces to be frictionless and ideal. The system is let go from rest in both cases.

Show Answer

Solution :

Fig. (b)

Case (i)

Mass, the FBD is as shown. The equation of motion of the two masses is:

For $4 \mathrm{~kg}$ mass : $\mathrm{mg}-\mathrm{T}=\mathrm{ma} \hspace{40mm} . . . . . . (1)$

For $5 \mathrm{~kg}$ mass $\mathrm{T}=\mathrm{Ma} \hspace{40mm} . . . . . . (2)$

From (1) and (2) we have

$$ \begin{aligned} & \mathrm{mg}=(\mathrm{m}+\mathrm{M}) \mathrm{a} \\ & \text { or } \quad \mathrm{a}=\left(\frac{\mathrm{m}}{\mathrm{m}+\mathrm{M}}\right) \mathrm{g} \\ & =\frac{4 \times 10}{9}=\frac{40}{9} \mathrm{~m} / \mathrm{s}^{2} \end{aligned} $$

After $4 \mathrm{~s} ; \mathrm{v}=\mathrm{u}+\mathrm{at}=0+\frac{40}{9} \times 4$

$$ =\frac{160}{9} \mathrm{~m} / \mathrm{s} $$

KE of system $=\frac{1}{2}(m+M) v^{2}$

$$ \begin{aligned} & =\frac{1}{2} \times 9 \times \frac{160}{9} \times \frac{160}{9} \\ & =\frac{12800}{9} \mathrm{~J} \end{aligned} $$

Case (ii)

The $5 \mathrm{~kg}$ mass will move downwards and $4 \mathrm{~kg}$ upwards. Let $\mathrm{T}$ be the tension in the string. Using free body diagram(FBD) we get

$\mathrm{Mg}-\mathrm{T}=\mathrm{Ma} _{1} \hspace{40mm} . . . . . . (1)$

and $\quad \mathrm{T}-\mathrm{mg}=\mathrm{ma} _{1} \hspace{40mm} . . . . . . (2)$

(1) $+(2)$ gives

$(M-m) g=(M+m) a _{1}$

or $\quad a _{1}=\left(\frac{5-4}{5+4}\right) g=\frac{10}{9} \mathrm{~m} / \mathrm{s}^{2}$

$$ (M-m) g=(M+m) a _{1} $$

$$ \mathrm{a} _{1}=\left(\frac{5-4}{5+4}\right) \mathrm{g}=\frac{10}{9} \mathrm{~m} / \mathrm{s}^{2} $$

Velocity after $4 \mathrm{~s}=$ at $(\because \mathrm{u}=0)$

$$ =\frac{40}{9} \mathrm{~m} / \mathrm{s} $$

$\therefore$ KE of system at $\mathrm{t}=4 \mathrm{~s}=\frac{1}{2}(\mathrm{~m}+\mathrm{M}) \mathrm{v}^{2}$

$$ =\frac{1}{2} \times 9 \times \frac{40}{9} \times \frac{40}{9}=\frac{800}{9} \mathrm{~J} $$

Example-22 :

A shot fired with a velocity $V _{1}$ on a mud wall is able to pierce $4 \mathrm{~cm}$ thick wall. The same shot fired at $V _{2}$ pierces $9 \mathrm{~cm}$ thickness of an identical wall. Compare $V _{1}$ and $V _{2}$ assuming the resistance offered by the walls to remain same.

Show Answer

Solution :

Let $\mathrm{F}$ be the resistive force offered to the shots.

Work done against the force $=$ Initial K.E.

$\therefore$ F. $\mathrm{S} _{1}=\frac{1}{2} \mathrm{mV} _{1}^{2}$

F. $\mathrm{S} _{2}=\frac{1}{2} \mathrm{mV} _{2}^{2}$

$\Rightarrow \frac{\mathrm{V} _{1}^{2}}{\mathrm{~V} _{2}^{2}}=\frac{\mathrm{S} _{1}}{\mathrm{~S} _{2}}=\frac{4}{9}$

$\frac{\mathrm{V} _{1}}{\mathrm{~V} _{2}}=2: 3$

Example-23 :

A seconds pendulum (length $\simeq 1 \mathrm{~m}$ ) is designed using an ideal string and a bob of mass $200 \mathrm{gm}$ and suspended from a rigid support. The bob is pulled up till the angular displacement of the bob with the vertical becomes $30^{\circ}$. The bob is now released. Calculate its $\mathrm{KE}$ at the lowest point. (Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ).

Show Answer

Solution :

Given $\mathrm{m}=200, \mathrm{gm}=0.2 \mathrm{~kg}$

$$ \mathrm{OA}=\mathrm{OB}=1 \mathrm{~m} $$

$$ \angle \mathrm{AOB}=30^{\circ} $$

With $\mathrm{BC} \perp \mathrm{OA}$; we have

$$ \begin{aligned} & \frac{\mathrm{OC}}{\mathrm{OB}}=\cos 30^{\circ} \\ \therefore \quad \mathrm{OC} & =\mathrm{OB} \cos 30^{\circ}=\frac{\sqrt{3}}{2} \mathrm{~m} \quad[\mathrm{OB}=1 \mathrm{~m}] \\ & =0.866 \mathrm{~m} \end{aligned} $$

Vertical height through which the bob is raised $=\mathrm{h}(1-0.866) \mathrm{m}$

$$ =0.134 \mathrm{~m} $$

Potential energy gained by the bob from $A$ to $B$

$$ \begin{aligned} & =\mathrm{mgh}=0.2 \times 10 \times 0.134 \\ & =0.268 \mathrm{~J} \end{aligned} $$

This PE is converted to $\mathrm{KE}$ as the bob goes back to $\mathrm{A}$.

$\therefore \mathrm{KE}$ at the lowest point $=\mathrm{PE}$ at $\mathrm{B}$

$$ =0.268 \mathrm{~J} $$

Example-24 :

A block of mass $\mathrm{m}=1 \mathrm{~kg}$ moving on a horizontal surface with speed $2 \mathrm{~ms}^{-1}$ enters a rough patch ranging from $x=0.10 \mathrm{~m}$ to $x=2.01 \mathrm{~m}$. The retarding force $\mathrm{F} _{\mathrm{r}}$ on the block in this range is inversely proportional to $x$.

With $\mathrm{F} _{\mathrm{r}}=-\frac{\mathrm{k}}{x}$ for $0.1<x<2.01 \mathrm{~m}$

$=0$ for $x<0.1 \mathrm{~m}$ and $x>2.01 \mathrm{~m}$

where $\mathrm{k}=0.5 \mathrm{~J}$. What is the final $\mathrm{KE}$ and speed $\mathrm{v}$ of the block as it crosses the patch?

Show Answer

Solution :

We have $\mathrm{m}=1 \mathrm{~kg}, \mathrm{u}=2 \mathrm{~ms}^{-1} ; \mathrm{k}=0.5 \mathrm{~J}$

Initial $\mathrm{KE}=\frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \times 1 \times(2)^{2}=2 \mathrm{~J}$

Frictional force over $x=0.1 \mathrm{~m}$ to $2.01 \mathrm{~m}$ range is $\mathrm{F} _{\mathrm{r}}=-\frac{\mathrm{k}}{x}$

As the force is variable; work against friction can be calculated by integration.

We have, $\mathrm{W}=\int _{x=0.1 \mathrm{~m}}^{2.01 \mathrm{~m}} \mathrm{~F} _{\mathrm{r}} \mathrm{d} x=\int _{x=0.1 \mathrm{~m}}^{x=2.01 \mathrm{~m}} \frac {\mathrm{k}}{\mathrm{x}} \mathrm{d}{x}$

$$ \begin{aligned} & =-0.5\left|\log _{\mathrm{e}} x\right| _{x=0.1 \mathrm{~m}}^{x=2.01 \mathrm{~m}} \\ & =-0.5 \log _{\mathrm{e}} \frac{2.01}{0.1} \\ & =-0.5 \times 2.303\left[\log _{10} 20.01\right] \\ & =-0.5 \times 2.303 \times 1.303 \quad \text { [Using tables] } \\ & =-1.5 \mathrm{~J} \end{aligned} $$

$\therefore \mathrm{K} _{\text {final }}-\mathrm{K} _{\text {initial }}=$ Work done

$\Rightarrow \mathrm{K} _{\text {final }}=\mathrm{K} _{\text {initial }}+$ Work done

$$ =2.0 \mathrm{~J}-1.5 \mathrm{~J}=0.5 \mathrm{~J} $$

Also, $\mathrm{K} _{\text {final }}=\frac{1}{2} \mathrm{mv}^{2}=0.5 \mathrm{~J}$

$\therefore \mathrm{v}^{2}=\sqrt{\frac{2 \times 0.5}{1}}=1 \mathrm{~ms}^{-1}$

Example-25 :

In a ballistics demonstration, a police officer fires a bullet of mass $50.0 \mathrm{~g}$ with speed $200 \mathrm{~ms}^{-1}$ on soft plywood of thickness $2.00 \mathrm{~cm}$. The bullet emerges only with $10 \%$ of its initial kinetic energy. What is the emergent speed of the bullet?

Show Answer

Solution :

We have $\mathrm{m}=50.0 \mathrm{~g}=\frac{50}{1000} \mathrm{~kg}=\frac{1}{20} \mathrm{~kg}$

$$ \mathrm{u}=200 \mathrm{~ms}^{-1} $$

Initial $\mathrm{KE}=\frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \times \frac{1}{20} \times 200 \times 200=1000 \mathrm{~J}$

Final $\mathrm{KE}=10 \%$ of initial $\mathrm{KE}=\frac{10}{100} \times 1000$

$$ =100 \mathrm{~J} $$

$\therefore \frac{1}{2} \mathrm{mv}^{2}=100$

$\mathrm{v}=\sqrt{\frac{2 \times 100}{\frac{1}{20}}}=\sqrt{4000}$

$=63.2 \mathrm{~m} / \mathrm{s}$

It is important to note that a $90 \%$ decreases in KE reduces the speed by $\left(\frac{200-63.2}{200} \times 100\right) \%$ or $68 \%$.

Example-26:

A block of mass $M$ is moving with a certain velocity on a horizontal surface. It approaches the free end of a spring shown in the figure with a velocity $u$. The other end of the spring (assumed to be ideal) with force constant $\mathrm{k}$ is fixed to a rigid,

(i) Calculate the maximum compression produced in the spring if the horizontal surface is smooth.

(ii) Let the horizontal surface shown above be increasingly rough towards the spring and the coefficient of friction between the block and the surface varies as $\mu=a x$ where $a$ is a constant with appropriate dimensions and $x$ is the instantaneous compression in the spring. What will be the maximum compression produced in the spring in this case?

Show Answer

Solution :

Case (i)

When the surface is smooth; the entire KE of the block is stored in the spring as elastic PE. If $x _{0}$ is the maximum compression produced in the spring; we have

$$ \begin{aligned} & \frac{1}{2} \mathrm{k} x _{0}^{2}=\frac{1}{2} \mathrm{mu}^{2} \\ & x _{0}=\sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \cdot \mathrm{u} \end{aligned} $$

Case (ii)

When the surface is rough; work has to be done to overcome friction and to cause a compression in the spring.

For a compression ’ $x$ ’ in the spring, we have $\mu=a x$.

$\therefore$ Force of friction for a compression $x$ is

$$ \mathrm{F} _{\mathrm{fr}}=\mu \mathrm{N}=\mu \mathrm{Mg}=(\mathrm{a} x) \mathrm{Mg}=(\mathrm{aMg}) x $$

Work done against friction for a maximum compression $x _{1}$ (say) is

$$ \begin{aligned} & \mathrm{W} _{\mathrm{fr}}=\int _{0}^{x _{1}} \mathrm{~F} _{\mathrm{fr}} \mathrm{d} x=\mathrm{aMg} \int _{0}^{x _{1}} x \mathrm{~d} x \\ & =\mathrm{aMg}\left|\frac{x^{2}}{2}\right| _{0}^{x _{1}}=\frac{1}{2} \mathrm{aMg} x _{1}^{2} \end{aligned} $$

Energy stored in the spring $=\frac{1}{2} \mathrm{k} x _{1}^{2}$

From law of conservation of energy;

$$ \frac{1}{2} \mathrm{Mu}^{2}=\frac{1}{2} \mathrm{k} x _{1}^{2}+\frac{1}{2} \mathrm{a} M g x _{1}^{2} $$

or

$$ \begin{aligned} & \mathrm{Mu}^{2}=\mathrm{k} x _{1}^{2}+\mathrm{aMg} x _{1}^{2} \\ & =(\mathrm{k}+\mathrm{aMg}) x _{1}^{2} \end{aligned} $$

$$ \therefore \quad x _{1}=\left[\sqrt{\frac{\mathrm{M}}{\mathrm{k}+\mathrm{aMg}}}\right] \mathrm{u} $$

Example-27 :

To simulate car accidents, the auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass $1000 \mathrm{~kg}$ moving with a speed of $18.0 \mathrm{~km} / \mathrm{h}$ on a road with coefficient of friction 0.5 and colliding with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \mathrm{Nm}^{-1}$. What is the maximum compression of the spring? What will to the maximum compression on a smooth road?

Show Answer

Solution :

As the car collides with the spring, it does work against the force of friction and for compression in the spring. Let $x _{0}$ be the maximum compression produced in the spring.

Work done for compression $=\frac{1}{2} \mathrm{k} x _{0}^{2}$

Work done against friction $=(\mu \mathrm{mg}) x _{0}$

By work energy theorem;

Change in $\mathrm{KE}=$ Work done in compressing spring + Work done against friction.

$\therefore \frac{1}{2} \mathrm{mu}^{2}=\frac{1}{2} \mathrm{k} x _{0}^{2}+\mu \mathrm{mg} x _{0}$

or $\quad \mathrm{k} x _{0}^{2}+2 \mu \mathrm{mg} x _{0}-\mathrm{mu}^{2}=0$

Using quadratic formula with $\mathrm{a}=\mathrm{k} ; \mathrm{b}=2 \mu \mathrm{mg}$ and $\mathrm{c}=-\mathrm{mu}^{2}$

$$ \begin{aligned} x _{0}= & \frac{-2 \mu \mathrm{mg} \pm\left[4 \mu^{2} \mathrm{~m}^{2} \mathrm{~g}^{2}+4 \mathrm{mku}^{2}\right]^{1 / 2}}{2 \mathrm{k}} \\ & =\frac{-\mu \mathrm{mg}+\left[\mu^{2} \mathrm{~m}^{2} \mathrm{~g}^{2}+\mathrm{mku}^{2}\right]^{1 / 2}}{\mathrm{k}} \quad \text { [Neglecting-ve value] } \\ \therefore x _{0} & =\frac{(-0.5)(1000)(10)+\left[(0.25)(10)^{6}(100)+(1000)\left(6.25 \times 10^{3}\right)(5)^{2}\right]}{6.25 \times 10^{3}} \quad[\mathrm{u}=18 \mathrm{~km} / \mathrm{hr}=5 \mathrm{~m} / \mathrm{s}] \\ & =1.35 \mathrm{~m} \end{aligned} $$

On a smooth road,

$\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} u x _{0}^{2}$

or $\quad x _{0}=\sqrt{\frac{\mathrm{mv}^{2}}{\mathrm{k}}}$

$=\sqrt{\frac{1000 \times 25}{6250}}$

$=2 \mathrm{~m}$

Example-28 :

In nuclear power plant, nuclear fusion reactions are used to produce electric energy. In one such mega project; the capacity of the plant is $10000 \mathrm{MW}$. Assuming the entire energy of the mass lost to be converted into electrical energy, calculate the amount of mass converted to energy per day in the plant.

Show Answer

Solution :

We have, power $\mathrm{P}=10000 \mathrm{MW}$

$$ =10^{10} \mathrm{~W} $$

Energy generated per second $=10^{10} \mathrm{~W}$

1 day $=24 \times 60 \times 60 \mathrm{~s}$

$\therefore$ Total energy produced per day $=24 \times 60 \times 60 \times 10^{10} \mathrm{~J}$

$\mathrm{E}=36 \times 24 \times 10^{12} \mathrm{~J}$

Let $\mathrm{m}$ be the mass converted into energy each day.

We have, $\mathrm{mc}^{2}=\mathrm{E}$

or

$$ \begin{aligned} & \mathrm{m}=\frac{\mathrm{E}}{\mathrm{c}^{2}}=\frac{36 \times 24 \times 10^{12}}{\left(3 \times 10^{8}\right)^{2}} \\ & =\frac{36 \times 24}{9} \times 10^{-4} \mathrm{~kg} \\ & =9.6 \times 10^{-3} \mathrm{~kg}=9.6 \mathrm{~g} \end{aligned} $$

Example-29 :

Calculate the increase in mass of $1000 \mathrm{~kg}$ of water heated from $20^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$.

(Given Sp. heat of water $=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{ \degree C} ^{-1}$ )

Show Answer

Solution :

We have,

$\mathrm{M} _{\mathrm{w}}=1000 \mathrm{~kg}$

$\theta _{\mathrm{i}}=20^{\circ} \mathrm{C} ; \theta _{\mathrm{f}}=100^{\circ} \mathrm{C}$

$\mathrm{C}=4200 \mathrm{~J} \mathrm{~kg}^{-10} \mathrm{C}^{-1}$

$\therefore$ Heat gained by water $=\mathrm{M} _{\mathrm{w}} \mathrm{C}\left(\theta _{\mathrm{f}}-\theta _{\mathrm{i}}\right)$

$$ \begin{aligned} & =1000 \times 4200 \times(100-20) \\ & =336 \times 10^{6} \mathrm{~J} \end{aligned} $$

If ’ $m$ ’ is the equivalent mass, we have

$$ \begin{aligned} & \mathrm{mc}^{2}= 336 \times 10^{6} \\ & \mathrm{~m}=\frac{336 \times 10^{6}}{\left(3 \times 10^{8}\right)^{2}} \\ &= 37.3 \times 10^{-10} \mathrm{~kg} \\ &= 3.73 \times 10^{-9} \mathrm{~kg} \end{aligned} $$

Example-30 :

Estimate the amount of energy released in the nuclear fusion reaction.

$$ { } _{1} \mathrm{H}^{2}+{ } _{1} \mathrm{H}^{2} \rightarrow _{2} \mathrm{He}^{3}+{ } _{0} \mathrm{n}^{1} $$

Given, $\mathrm{m}\left({ } _{1} \mathrm{H}^{2}\right)=2.0141 \mathrm{u}$

$$ \begin{aligned} & \mathrm{m}\left({ } _{2} \mathrm{He}^{3}\right)=3.0160 \mathrm{u} \\ & \mathrm{m}\left({ } _{0} \mathrm{n}^{1}\right)=1.0087 \mathrm{u} \end{aligned} $$

and $\quad 1 \mathrm{u}=931.5 \mathrm{MeV}$

Show Answer

Solution :

Total mass of the reacting particles $=2 \times \mathrm{m}\left({ } _{1} \mathrm{H}^{2}\right)=2 \times 2.0141=4.0282 \mathrm{u}$

Total mass of the product particles $=\mathrm{m}\left({ } _{2} \mathrm{He}^{3}\right)+\mathrm{m}\left({ } _{0} \mathrm{n}^{1}\right)$

$=(3.0160+1.0087) \mathrm{u}$

$=4.0247 \mathrm{u}$

$\therefore \Delta \mathrm{M}=$ Mass lost during the reaction $=(4.0282-4.0247) \mathrm{u}$

$=0.0035 \mathrm{u}$

$\mathrm{E}=$ The energy released $=(\Delta \mathrm{M}) \times \mathrm{c}^{2}=0.035 \times 931.5 \mathrm{MeV}$

$$ =3.2602 \quad \mathrm{MeV} $$

Example-31 :

A motor boat is moving steadily at $18 \mathrm{~km} \mathrm{hr}^{-1}$. If the water resistance to motion of the boat is $5000 \mathrm{~N}$, calculate the power of the engine.

Show Answer

Solution :

Give $\mathrm{F} _{\text {res }}=5000 \mathrm{~N}$

$$ \mathrm{v}=18 \mathrm{~km} \quad \mathrm{hr}^{-1}=18 \times \frac{5}{18}=5 \mathrm{~ms}^{-1} $$

Power $=\mathbf{F} \cdot \mathbf{v}=\mathbf{F} _{\text {app }} \cdot \mathbf{v}\left[\mathbf{F} _{\text {app }}=\mathbf{F} _{\text {res }}\right.$ for steady motion $]$

$$ \begin{aligned} & =5000 \times 5=25000 \mathrm{~W} \\ & =25 \mathrm{~kW} \end{aligned} $$

Example-32 :

A train weighing 1000 metric ton is moving up an inclined plane rising 1 in 200 at a uniform speed of $54 \mathrm{~km}$ $\mathrm{hr}^{-1}$. The frictional resistance is $0.4 \mathrm{~kg}$ per metric ton. What is the power of the engine? [Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ]

Show Answer

Solution :

We have $\mathrm{m}=1000$ metric ton $=10^{6} \mathrm{~kg}$

Frictional resistance $=0.4 \mathrm{~kg} /$ metric ton.

$\therefore$ Total frictional force $\mathrm{F} _{\mathrm{fr}}=1000 \times 0.4=400 \mathrm{~kg}$ wt

$$ =400 \times \mathrm{gN}=4000 \mathrm{~N} $$

Gravitational force down the plane $=\mathrm{mg} \sin \theta$

$$ \begin{aligned} & =10^{6} \times 10 \times \frac{1}{200} \mathrm{~N} \\ & =5 \times 10^{4} \mathrm{~N}=50000 \mathrm{~N} \end{aligned} $$

Net opposing force $=\mathrm{F} _{\mathrm{fr}}+\mathrm{mg} \sin \theta$

$$ =4000+50000=54000 \mathrm{~N} $$

$\mathrm{V}=54 \mathrm{~km} \quad \mathrm{hr}^{-1}=54 \times \frac{5}{18}=15 \mathrm{~ms}^{-1}$

The power of the engine $=\mathrm{P}=$ F.v. $=54000 \times 25 \mathrm{~W}$

$$ =810 \mathrm{~kW} $$

Example-33 :

An object acted upon by a force $\overrightarrow{\mathrm{F}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}) \mathrm{N}$ is constrained to move along $x$ direction with position vector $x$ given by $\boldsymbol{x}=\left(2 \mathrm{t}^{2}+3 \mathrm{t}+5\right) \mathbf{i m}$. Calculate the power delivered by the force at $\mathrm{t}=2 \mathrm{~s}$.

Show Answer

Solution :

We have $\mathbf{F}=(2 \mathbf{i}+3 \mathbf{j}) \mathrm{N}$

$$ \begin{gathered} \boldsymbol{x}=\left(2 \mathrm{t}^{2}+3 \mathrm{t}+5\right) \mathbf{i} \\ \therefore \mathbf{v}=\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{dt}}=(4 \mathrm{t}+3) \mathbf{i}, \mathrm{m} / \mathrm{s} \\ \text { At } \mathrm{t}=2 \mathrm{~s} ; \mathbf{v}=[4(2)+3] \mathbf{i}=11 \mathbf{i}, \mathrm{m} / \mathrm{s} \end{gathered} $$

Instantaneous power $\mathrm{P}=\mathbf{F} . \mathbf{v}$

$$ \begin{aligned} & =(2 \mathbf{i}+3 \mathbf{j})(11 \mathbf{i}) \\ & =22 \mathbf{J} / \mathrm{s}=22 \mathrm{~W} \end{aligned} $$

Example-34 :

A particle of mass $10 \mathrm{~kg}$ is moving along a circular path of a constant radius of $5 \mathrm{~m}$ such that its centripetal acceleration $a _{c}$ varies with time as $a _{c}=25 \mathrm{rt}^{2} \mathrm{~m} / \mathrm{s}^{2}$. Calculate the power delivered to the particle at $\mathrm{t}=5 \mathrm{~s}$.

Show Answer

Solution :

We have $\mathrm{a} _{\mathrm{c}}=25 \mathrm{rt}^{2} \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{r}=5 \mathrm{~m}$

Also, $\mathrm{a} _{\mathrm{c}}=\frac{\mathrm{v}^{2}}{\mathrm{r}}$

$\therefore \frac{\mathrm{v}^{2}}{\mathrm{r}}=25 \mathrm{rt}^{2}$

or $\quad \mathrm{v}^{2}=25 \mathrm{r}^{2} \mathrm{t}^{2}$

$\therefore \mathrm{v}=5 \mathrm{rt}$

The tangential acceleration $=\mathrm{a} _{\mathrm{T}}=\frac{\mathrm{dv}}{\mathrm{dt}}=5 \mathrm{r}=25 \mathrm{~m} / \mathrm{s}^{2}$

The tangential force $=\mathrm{F} _{\mathrm{T}}=\mathrm{a} _{\mathrm{T}}=10 \times 25=250 \mathrm{~N}$

Power is delivered only by tangential force;

$$ \begin{aligned} \mathrm{P}=\mathbf{F} _{\mathrm{t}} \cdot \mathbf{v} & =(250)(5 \mathrm{rt}) \\ & =250(5 \times 5 \times 2) \quad[\text { At } \mathrm{t}=2 \mathrm{~s}] \\ & =12500 \mathrm{~W} \\ & =12.5 \mathrm{~kW} \end{aligned} $$

Example-35 :

A wind-powered generator converts wind energy to electrical energy. It is known that the generator transforms a fixed fraction of the wind energy intercepted by its blades into electrical energy. Show that the electrical power output varies directly as the third power of the wind speed.

Show Answer

Solution :

We have $\mathbf{F}=\frac{\mathrm{d} \mathbf{p}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{m} \mathbf{v})=\mathbf{v} \frac{\mathrm{dm}}{\mathrm{dt}}$

$$ =\mathrm{v} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \quad[\text { Volume } \times \text { density of wind }] $$

$$ =\mathrm{v} \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{A} x \times \rho) $$

Where $\mathrm{A}$ is area of close section of blades. Therefore

$$ \mathrm{F}=\mathrm{vA} \rho \frac{\mathrm{d} x}{\mathrm{dt}}=\mathrm{A} \rho \mathrm{v}^{2} $$

The instantaneous power $=\mathrm{P}=\mathbf{F} \cdot \mathbf{v}=\left(\mathrm{A\rho v}^{2}\right) \mathrm{v}=\mathrm{A} \rho \mathrm{v}^{3}$

$\therefore$ Power $\mathrm{P} \propto \mathrm{v}^{3}$

Collision

Two particles / bodies are said to have undergone a collision if as a result of their interaction, there is a change in the momentum of the bodies. A collision need not always be caused by an actual physical contact between the bodies e.g. two protons may collide without actually coming in contact with one another.

Elastic Collision: A collision is said to be elastic if there is no loss of KE during the collision.

Inelastic Collision: A collision is said to be inelastic if there is a loss of KE during collision.

Perfectly Inelastic Collision: It is a collision which leads to a total loss of KE and the bodies stick together after the collision.

Head on Collision: It is a collision in which the colliding bodies move along the same straight line before and after the collision.

Oblique Collision: It is a collision in which the bodies do not move along a straight path before and after collision.

One-dimensional Elastic Collision: Consider two bodies $A$ and $B$ with masses $m _{1}$ and $m _{2}$ moving with velocities $\mathrm{u} _{1}$ and $\mathrm{u} _{2}$ along same line in same direction. Let $\mathrm{u} _{1}>\mathrm{u} _{2}$.

Suppose the bodies have velocities $\mathrm{v} _{1}$ and $\mathrm{v} _{2}$ after an elastic head-on collision.

Applying principle of conservation of momentum.

$$ \begin{equation*} \mathrm{m} _{1} \mathrm{u} _{1}+\mathrm{m} _{2} \mathrm{u} _{2}=\mathrm{m} _{1} \mathrm{v} _{1}+\mathrm{m} _{2} \mathrm{v} _{2} \tag{1} \end{equation*} $$

For an elastic collision, kinetic energy is conserved.

$\therefore \quad \frac{1}{2} \mathrm{~m} _{1} \mathrm{u} _{1}^{2}+\frac{1}{2} \mathrm{~m} _{2} \mathrm{u} _{2}^{2}=\frac{1}{2} \mathrm{~m} _{1} \mathrm{v} _{1}^{2}+\frac{1}{2} \mathrm{~m} _{2} \mathrm{v} _{2}^{2} \hspace{40mm} . . . . . . . (2)$

Solving the above equations (1) and (2); we get

$$ \mathrm{u} _{1}-\mathrm{u} _{2}=\mathrm{v} _{2}-\mathrm{v} _{1} $$

or velocity of approach before collision = velocity of separation after collision.

Further, $v _{1}=\left(\frac{m _{1}-m _{2}}{m _{1}+m _{2}}\right) u _{1}+\left(\frac{2 m _{2}}{m _{1}+m _{2}}\right) u _{2}$

and $\quad \mathrm{v} _{2}=\left(\frac{2 \mathrm{~m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}+\left(\frac{\mathrm{m} _{2}-\mathrm{m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{2}$

Special Cases

(i) B initially at rest i.e. $\mathrm{u} _{2}=0$

We get $\mathrm{v} _{1}=\left(\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}$

and $\mathrm{v} _{2}=\left(\frac{2 \mathrm{~m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}$

(ii) For $\mathrm{m} _{1}=\mathrm{m} _{2}=\mathrm{m}$

We get $\mathrm{v} _{1}=\mathrm{u} _{2}$

and $\mathrm{v} _{2}=\mathrm{u} _{1}$

i.e. the bodies exchange their velocities and momentum.

(iii) $\mathrm{m} _{1}«\mathrm{m} _{2}$ and $\mathrm{u} _{2}=0$

We get $\mathrm{v} _{1}=-\mathrm{u} _{1}$ and $\mathrm{v} _{2}=0$

(iv) $\mathrm{m} _{1}>\mathrm{m} _{2}$ and $\mathrm{u} _{2}=0$

We get $v _{1}=u _{1}$ and $v _{2}=2 u _{1}$

Coefficient of Restitution (e)

The coefficient of restitution for a collision between two bodies is the ratio of their relative speed after collision to the relative speed before collision.

We have e $=\frac{\left|\mathrm{v} _{1}-\mathrm{v} _{2}\right|}{\left|\mathrm{u} _{1}-\mathrm{u} _{2}\right|}$

Remember :

(a) $\mathrm{e}=0$ for a perfectly inelastic collision.

(b) $\mathrm{e}=1$ for a perfectly elastic collision.

(c) In general $0<\mathrm{e}<1$

(d) When a ball strikes a floor with a velocity ‘u’ and rebounds with a velocity ‘v’, we have e $=\frac{|\mathbf{v}|}{|\mathbf{u}|}=\frac{\mathrm{v}}{\mathrm{u}}$

Additional Information

1. For a perfectly elastic collision, linear momentum, total energy and kinetic energy are conserved. For a perfectly inelastic collision, linear momentum and total energy are conserved. Only KE is not conserved.

2. For a body dropped from a height ’ $\mathrm{h} _{1}$ ‘; hitting ground with velocity ’ $\mathrm{u}$ ‘; rebounding with velocity $\mathrm{v}$ and rising to a height ’ $h _{2}$ ‘, we have

$$ \mathrm{e}=\frac{|\mathrm{v}|}{|\mathrm{u}|}=\sqrt{\frac{\mathrm{h} _{2}}{\mathrm{~h} _{1}}} $$

For a body having undergone ’ $n$ ’ collisions; we have

$$ \frac{\mathrm{v} _{\mathrm{n}}}{\mathrm{u}}=\left(\frac{\mathrm{h} _{\mathrm{n}}}{\mathrm{h} _{1}}\right)^{1 / 2}=\mathrm{e}^{\mathrm{n}} $$

Where $\mathrm{h} _{\mathrm{n}}$ denotes the height to which the body rises after $\mathrm{n}$ rebounds from the ground.

3. The elastic, magnetic and gravitational forces are conservative forces. Friction and viscosity are nonconsecutive forces.

4. $\mathrm{KE}$ is always positive. PE may be positive or negative or zero. Repulsive forces imply positive potential energy; attractive force imply negative potential energy. Total mechanical energy ( $\mathrm{KE}+\mathrm{PE}$ ) may be positive, negative or zero.

5. A gun firing $n$ bullets each with K.E. ’ $E$ ’ in one second delivers a power $P=n E=n \cdot \frac{1}{2} m v^{2}$.

6. The power dissipated by centripetal force in circular motion is always zero. Only tangential component of force dissipates power.

7. Stopping distance covered $=\frac{\mathrm{KE}}{\text { Total opposing force }}$

$=\frac{\mathrm{KE}}{\mu \mathrm{mg}} \quad$ [When only friction acts on a horizontal surface]

8. For two bodies subjected to equal stopping force;

We have $\frac{x _{1}}{x _{2}}$ (Ratio of stopping distances) $=\frac{(\mathrm{KE}) _{1}}{(\mathrm{KE}) _{2}}$

and $\frac{t _{1}}{t _{1}}$ (Ratio of stopping times) $=\frac{m _{1} v _{1}}{m _{2} v _{2}}=\frac{p _{1}}{p _{2}} \quad\left(K=\frac{p^{2}}{2 m}\right)$

9. For $\left|\mathbf{p} _{1}\right|=\left|\mathbf{p} _{2}\right|$; K.E. of lighter mass is more.

10. For two bodies with equal $\mathrm{KE}$; the heavier mass has larger momentum.

11. The graphical relations between $\mathrm{KE}\left(\mathrm{E} _{\mathrm{K}}\right)$ and linear momentum ’ $\mathrm{p}$ ’ are as under.

12. (a) For an electron; $\mathrm{Me}=9.1 \times 10^{-31} \mathrm{~kg}=0.53 \mathrm{MeV}$

(b) For a neutron $/$ proton $\mathrm{m} \simeq 1 \mathrm{amu}=1.67 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV}$

(c) For alpha particle $\mathrm{m}=6.68 \times 10^{-27} \mathrm{~kg}=3724 \mathrm{MeV}$

(d) For $\mathrm{m}=1 \mathrm{~kg} ; \mathrm{E}=9 \times 10^{16} \mathrm{~J}=5.6 \times 10^{29} \mathrm{MeV}$

13. (a) For a body in stable equilibrium

$$ \text { P.E. }=\mathrm{U}=\text { MINIMUM; } \frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{d} x^{2}}=\text { Positive and } \frac{\mathrm{dU}}{\mathrm{d} x}=0 $$

(b) In unstable equilibrium;

$$ \frac{\mathrm{dU}}{\mathrm{d} x}=0 ; \mathrm{U}=\text { Maximum } ; \frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{d} x^{2}}=\text { Negative } $$

(c) In neutral equilibrium

$$ \frac{\mathrm{dU}}{\mathrm{d} x}=0 ;=\frac{\mathrm{d}^{2} \mathrm{U}}{\mathrm{d} x^{2}} 0 \text { and } \mathrm{U}=\text { constant } $$

14. If an elastic spring with spring constant $\mathrm{k}$ is cut into $\mathrm{n}$ parts of equal length; the spring constant of each part is $n k$.

15. For a spring with constant $\mathrm{k}$, length $\ell$ cut into two parts with $\ell _{1}+\ell _{2}=\ell$, we have

$$ \mathrm{k} _{1}=\frac{\mathrm{k}\left(\ell _{1}+\ell _{2}\right)}{\ell _{1}} \text { and } \mathrm{k} _{2}=\frac{\mathrm{k}\left(\ell _{1}+\ell _{2}\right)}{\ell _{2}} $$

16. For springs in series $\frac{1}{\mathrm{k}}=\frac{1}{\mathrm{k} _{1}}+\frac{1}{\mathrm{k} _{2}}$

17. For springs in parallel $\mathrm{k}=\mathrm{k} _{1}+\mathrm{k} _{2}$

18. Connecting springs in parallel increases spring constant whereas in series reduces spring constant.

Example-36:

A body of mass ’ $m$ ’ moving with a velocity ’ $u$ ’ collides elastically with another body at rest and continues to move in the original direction with a speed $\frac{\mathrm{u}}{2}$. Find the mass of the second body.

Show Answer

Solution :

We have $\mathrm{m} _{1}=\mathrm{m} \quad \mathrm{m} _{2}=x$ (Say)

$$ \mathrm{u} _{1}=\mathrm{u} \quad \mathrm{u} _{2}=0 $$

$$ \mathrm{v} _{1}=\frac{\mathrm{u}}{2} $$

As $\mathrm{v} _{1}=\left(\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}$; we get

$$ =\frac{\mathrm{u}}{2}=\left(\frac{\mathrm{m}-x}{\mathrm{~m}+x}\right) \mathrm{u} $$

or

$$ \mathrm{m}+x=2 \mathrm{~m}-2 x $$

$\therefore \quad x=\frac{\mathrm{m}}{3}$

Example-37 :

Two bodies A and B have masses $\mathrm{m}$ and $4 \mathrm{~m}$. A collides head on elastically with B (at rest). Calculate the percentage of KE of A transferred to $B$.

Show Answer

Solution :

We have $\mathrm{m} _{1}=\mathrm{m} ; \quad \mathrm{m} _{2}=4 \mathrm{~m}$

$$ \mathrm{u} _{1}=\mathrm{u}(\text { say }) \quad \mathrm{u} _{2}=0 $$

As $\quad \mathrm{v} _{2}=\left(\frac{2 \mathrm{~m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u}$;

We get $\mathrm{v} _{2}=\frac{2 \mathrm{~m}}{5 \mathrm{~m}} \mathrm{u}=\frac{2}{5} \mathrm{u}$

$\therefore \frac{\mathrm{KE} \text { of } \mathrm{B}(\text { after collision })}{\text { Initial } \mathrm{KE} \text { of } \mathrm{A}}=\frac{\frac{1}{2} \mathrm{~m} _{2} \mathrm{v} _{2}^{2}}{\frac{1}{2} \mathrm{~m} _{1} \mathrm{v} _{1}^{2}}$

$=\frac{(4 \mathrm{~m})\left(\frac{2}{5} \mathrm{u}\right)^{2}}{m u^{2}}$

$=\frac{16}{25}$

$=\frac{16}{25} \times 100=64 \%$

Example-38 :

A body at rest emits a particle of mass $\frac{1}{4}$ th of its original mass with a certain velocity. Calculate the ratio of their (i) momentum (ii) KE after emission of the particle.

Show Answer

Solution :

Initial momentum $=0$

$\therefore$ Final momentum $=0$ or $\quad \mathbf{p} _{1}+\mathbf{p} _{2}=0$

$\Rightarrow\left|\mathbf{p} _{1}\right|=\left|\mathbf{p} _{2}\right|$

$\therefore \frac{\mathrm{p} _{1}}{\mathrm{p} _{2}}=1$

$\frac{\text { KE of emitted particle }}{\text { KE of residual part }}=\frac{p _{2}^{2} / 2(m / 4)}{p _{1}^{2} / 2\left(m-\frac{m}{4}\right)}=3: 1$

Example-39 :

A sphere of mass $m$ moving with a velocity $u$ hits another stationary sphere of identical mass. If e is the coefficient of restitution, what is the ratio of the KE of the spheres after collision?

Show Answer

Solution :

We have, $\mathrm{m} _{1}=\mathrm{m} _{2}=\mathrm{m}$

$$ \mathrm{u} _{1}=\mathrm{u} ; \mathrm{u} _{2}=0 $$

From principle of conservation of linear momentum, we have

$\mathrm{m} _{1} \mathrm{u} _{1}+\mathrm{m} _{2} \mathrm{u} _{2}=\mathrm{m} _{1} \mathrm{v} _{1}+\mathrm{m} _{2} \mathrm{v} _{2}$

$\therefore \mathrm{mu}+0=\mathrm{mv} _{1}+\mathrm{mv} _{2}=\mathrm{m}\left(\mathrm{v} _{1}+\mathrm{v} _{2}\right)$

$$ \begin{equation*} \Rightarrow \mathrm{v} _{1}+\mathrm{v} _{2}=\mathrm{u} \tag{1} \end{equation*} $$

Also $\frac{\left|\mathrm{v} _{2}-\mathrm{v} _{1}\right|}{\left|\mathrm{u} _{2}-\mathrm{u} _{1}\right|}=\frac{\mathrm{v} _{2}-\mathrm{v} _{1}}{\mathrm{u}-0}=\frac{\mathrm{v} _{2}-\mathrm{v} _{1}}{\mathrm{u}}=\mathrm{e}$

$\therefore \mathrm{v} _{2}-\mathrm{v} _{1}=\mathrm{ue} \hspace{60mm} (2)$

From (1) and (2) $\frac{\mathrm{v} _{1}}{\mathrm{v} _{2}}=\frac{1-\mathrm{e}}{1+\mathrm{e}}$

$\therefore \frac{\mathrm{K} _{1}}{\mathrm{~K} _{2}}=\frac{\frac{1}{2} \mathrm{mv} _{1}^{2}}{\frac{1}{2} \mathrm{mv} _{2}^{2}}=\left(\frac{1-\mathrm{e}}{1+\mathrm{e}}\right)^{2}$

Example-40 :

In the figure shown; a ball $\mathrm{B}$ of mass $\mathrm{m}$ is suspended from a rigid support $A _{1}$ by means of a massless string. Another ball A of identical mass ’ $m$ ’ traveling horizontally towards $B$ hits it elastically head on.

At the moment ‘A’ hits ’ $\mathrm{B}$ ‘; the string breaks on its own and the balls A and $\mathrm{B}$ fall on ground $\mathrm{XY}$. Calculate the distance between the points at which the balls hit the ground. [Use $g=9.8 \mathrm{~ms}^{-2}$ ]

Show Answer

Solution :

We have $\mathrm{m} _{1}=\mathrm{m} ; \mathrm{m} _{2}=\mathrm{m}$

$$ \mathrm{u} _{1}=10 \mathrm{~m} / \mathrm{s} ; \mathrm{u} _{2}=0 $$

$\mathrm{v} _{1}=\left(\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}=0$

$\mathrm{v} _{2}=\left(\frac{2 \mathrm{~m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}=\left(\frac{2 \mathrm{~m}}{2 \mathrm{~m}}\right) 10=10 \mathrm{~m} / \mathrm{s}$

Hence the ball A comes to rest and falls vertically downward just below B.

Time taken by A to fall down is given by $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$

or $\quad \mathrm{t}^{2}=\frac{2 \times 4.9}{9.8} \Rightarrow \mathrm{t}=1 \mathrm{~s}$

Horizontal distance covered by B in $1 \mathrm{~s}=\mathrm{v} _{2} \times \mathrm{t}$

$=10 \mathrm{~m}$

Hence the required distance $=10 \mathrm{~m}$

PROBLEMS FOR PRACTICE

1. A block of mass $10 \mathrm{~kg}$ is pressed against a vertical wall by a normal force of $300 \mathrm{~N}$, the coefficient of friction being 0.5 . Calculate the work done to displace the block through $5 \mathrm{~m}$ (i) horizontally (ii) up the wall (iii) down the wall. [Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ]

Show Answer Answer: (i) $375 \mathrm{~N}$, (ii) $1250 \mathrm{~N}$, (iii) $250 \mathrm{~N}$

2. A block slides down an inclined plane of slope $\theta$ with a uniform velocity and reaches the foot of the incline. The block is then projected up the plane with an initial speed ’ $u$ ‘. How far up the incline will the block move before coming to rest? Will it slide down again?

Show Answer Answer: $\frac{\mathrm{u}^{2}}{4 \mathrm{~g} \sin \theta}$; No

3. A $500 \mathrm{~g}$ knife penetrates $5 \mathrm{~cm}$ into wood as it falls through a height of $5 \mathrm{~m}$. How much will it penetrate if it is thrown horizontally at $15 \mathrm{~m} / \mathrm{s}$ ? [Use $\mathrm{g}=10 \mathrm{~ms}^{-2}$ ]

Show Answer Answer: $11.25 \mathrm{~cm}$

4. A $20 \mathrm{~g}$ bullet traveling horizontally at $100 \mathrm{~ms}^{-1}$ embeds itself in the centre of a wooden block of mass $1 \mathrm{~kg}$ and suspended by means of a $1 \mathrm{~m}$ long ideal string. Calculate the maximum inclination attained by the string with the vertical.

Show Answer Answer: $37^{0}$

5. A flat truck is loaded with rates having coefficient of friction 0.25 with the truck. Calculate the shortest distance over which the truck can be stopped without letting the rates slide if the truck in initially moving at $30 \mathrm{~km} \quad \mathrm{hr}^{-1}$.

Show Answer Answer: $14.16 \mathrm{~m}$

6. A body of mass ’ $m$ ’ slides down a length $\ell$ of an inclined plane with angle of inclination $\theta$ with the horizontal. Calculate its speed at the bottom of the incline. How far further will it slide on an identical horizontal surface before coming to a stop?

Show Answer Answer: $\sqrt{2 \mathrm{~g} \ell(\sin \theta-\mu \cos \theta)}, \frac{\ell}{\mu}(\sin \theta-\mu \cos \theta)$

7. Calculate the power developed by a grinding machine whose wheel has a radius of $0.20 \mathrm{~m}$ and is making $150 \mathrm{rpm}$ to sharpen a tool pressed with $20 \mathrm{~kg}$. Given $=\mu 0.3$ between the tool and the wheel.

Show Answer Answer: $185 \mathrm{~W}$

8. The figure below shows the vertical section of a frictionless surface. $\mathrm{A} 2 \mathrm{~kg}$ block is released from position $\mathrm{P}$. Compute its velocity at $\mathrm{Q}, \mathrm{R}$ and $\mathrm{S}$.

Show Answer

Answer: $12.12 \mathrm{~ms}^{-1} ; 9.9 \mathrm{~ms}^{-1} ; 14 \mathrm{~ms}^{-1}$

9. A block of mass $2 \mathrm{~kg}$ is dropped from a height of $40 \mathrm{~cm}$ on a spring whose spring constant is 1960 $\mathrm{Nm}^{-1}$. Calculate the maximum compression in the spring.

Show Answer Answer: $10 \mathrm{~cm}$

10. A bullet of mass $0.01 \mathrm{~kg}$ moving at $500 \mathrm{~m} / \mathrm{s}$ strikes a $2 \mathrm{~kg}$ block suspended by a $5 \mathrm{~m}$ long string. The c.g. of the block rises by $10 \mathrm{~cm}$. What is the speed with which the bullet emerges from the block?

Show Answer Answer: $220 \mathrm{~m} / \mathrm{s}$

11. A ball is thrown vertically downward from a height of $10 \mathrm{~m}$ with a velocity $\mathrm{v} _{0}$. It collides with the ground losing $50 \%$ of its energy is collision and rebounds to the same height.

Find the initial velocity $\mathrm{v} _{0}$ and the height to which the ball would rise after the collision if the ball were thrown upwards with same velocity.

Show Answer Answer: $14 \mathrm{~m} / \mathrm{s} ; 10 \mathrm{~m}$

12. A flexible but inextensible chain of length $\ell$ is placed on a smooth table with an initial length ’ $a$ ’ hanging down the table. Calculate the velocity with which the chain will leave the table if released from root.

Show Answer Answer: $\sqrt{\frac{\mathrm{g}}{\ell}\left(\ell^{2}-\mathrm{a}^{2}\right)}$

13. A uniform chain of length and ’ $\ell$ ’ and mass $m$ overhands a horizontal table with three fourth of the length on the table. If is $\mu$ the coefficient of friction between the chain and the table, calculate the work done by the force of friction during the period it slips off the table.

Show Answer Answer: $9 \mu \quad \mathrm{mg} \frac{\ell}{32}$

14. A pendulum bob of mass $10^{-2} \mathrm{~kg}$ is raised to a height of $5 \mathrm{~cm}$ and released. At the bottom of the swing, it picks up a mass of $10^{-3} \mathrm{~kg}$. To what height will the combined mass rise?

Show Answer Answer: $4.545 \times 10^{-2} \mathrm{~m}$

15. The figure shows five identical springs with spring constant $\mathrm{k}$ arranged and supporting loads $\mathrm{m}$ in each of the cases. Calculate the ratio of the elongations $\left(\ell _{1} ; \ell _{2} ; \ell _{3}\right)$ produced in the three cases.

Show Answer Answer: 2:4:1

16. The displacement $x$ of a $2 \mathrm{~kg}$ object varies with time ’ $\mathrm{t}$ ’ as $x=2 \mathrm{t}^{2}+\mathrm{t}+5$. Calculate the power development at $\mathrm{t}=2 \mathrm{~s}$.

Show Answer Answer: $72 \mathrm{~W}$

17. At high attitude, a body explodes at rest into two equal fragments with one fragment receiving a velocity of $10 \mathrm{~m} / \mathrm{s}$. Calculate the time taken by the two radius vectors connecting the point of explosion to the fragments to make $90^{\circ}$ angle between than. What is the ratio of their KE at this instant?

Show Answer Answer: $2 \mathrm{~s} ; 1: 2$

18. A massless strong of length $L$ is suspended from a rigid support in a vertical plane. A bob of mass $m$ is attached to the free and of string. The bob is given a horizontal speed $\mathrm{v} _{0}=\sqrt{3.58 \mathrm{~L}}$ in its equilibrium position. Calculate the maximum height and the speed of bob in its vertical circular path.

Show Answer Answer: $1.5 \mathrm{~L}$ from bottom $\sqrt{0.5 \mathrm{gL}}$

19. A ball is dropped from a height $\mathrm{H}$. The ball undergoes two successive $50 \%$ of $\mathrm{H}$. What is coefficient of restitution between ball and floor?

Show Answer Answer: $(0.5)^{1 / 4}$

20. Two blocks A and B of the on a smooth horizontal table. The mass of block A and B is $2 \mathrm{~kg}$ and 5 $\mathrm{kg}$ respectively. Initially A is moving with a speed $\mathrm{u} _{1}=10 \mathrm{~m} / \mathrm{s}$ as shown in Fig. Block B has spring of spring constant $11.2 \mathrm{~N} / \mathrm{cm}$ attached to it and is moving with a speed $\mathrm{u} _{2}=3 \mathrm{~ms}^{-1}$. Block A collides, perfectly elastically with $B$.

(i)What is maximum compression of spring?

(ii) What is speed of $A$ and $B$ when they seprate from one another?

Show Answer Answer: $0.25 \mathrm{~m}$; zero and $7 \mathrm{~ms}^{-1}$

21. Two particles A and B of mass $20 \mathrm{~g}$ and $40 \mathrm{~g}$ are projected simultaneously from ground in vertical plane with same speed of $49 \mathrm{~ms}^{-1}$ as shown collision. After collision a retraces its path. How long after collision particle $\mathrm{B}$ hits ground?

Show Answer Answer: Nearly $3.6 \mathrm{~s}$

22. A shell of mass $\mathrm{M}$ moving with a speed of $5 \times 10^{2} \mathrm{~ms}^{-1}$ breaks up into three fragments of equal masses. In the process the K.E. of system increases by $50 \%$ of its initial value. What is the maximum velocity one fragment can acquire?

Show Answer Answer: $10^{3} \mathrm{~ms}^{-1}$

23. A body of mass $\mathrm{M}$ has an initial kinetic energy $\mathrm{K}$. Due to an internal spring mechanism it divides itself into two parts having masses in ratio of $1: 3$. The two fragments move on either side of the original direction of motion of $m$ making equal angle of $30^{\circ}$. What is energy released by spring mechanics?

Show Answer Answer: $7 \mathrm{k} / \mathrm{g}$

24. A bullet of mass $2 \mathrm{~g}$ moving in a horizontal direction with a speed of $5 \times 10^{2} \mathrm{~ms}^{-1}$ hits a wooden block of mass $1 \mathrm{~kg}$ initially at rest. The bullet emerges act of block with a speed $20 \%$ of initial speed and the block moves a distance of $200 \mathrm{~mm}$ on the surface from its initial position. What is (i) coefficient of function between wooden block and surface in contact, (ii) decrease in K.E. of bullet?

Show Answer Answer: (i) 0.163 , (ii) $240 \mathrm{~J}$

25. Two balls $A$ and $B$ of mass $10 \mathrm{~g}$ and $30 \mathrm{~g}$ are moving towards one another on a smooth horizontal surface with initial speed of $200 \mathrm{~ms}^{-1}$ and $10 \mathrm{cms}^{-1}$ respectively. The two undergo a perfectly elastic head on collision. What is velocity of each ball after collision?

Show Answer Answer: $-25 \mathrm{~cm} \mathrm{~s}^{-2}$ and $5 \mathrm{~cm} \mathrm{~s}^{-1}$

Question Bank

Key Learning Points

1. Work done (W) by a constant force $\mathbf{F}$ in producing a displacement $\mathbf{S}$ in a body is given by $\mathrm{W}=\mathbf{F} \cdot \mathbf{S}=\mathrm{FS} \cos \theta$ where $\theta$ is angle between $\mathbf{F}$ and $\mathbf{S}$.

2. The work done by a variable force is given by $\mathrm{W}=$ area under force vs displacement graph $=\mathbf{F} \cdot \mathbf{S}=\int \mathrm{Fds} \cos \theta$

3. Work is a scalar. It is positive if $\theta$ is acute and negative if $\theta$ in obtuse. Work done is zero if $\theta=\frac{\pi}{2}$. SI unit of work is joule ( $\mathrm{J}$ ) or $\mathrm{Nm}$.

4. Work done on a body by a given force over a given displacement is independent of the time taken to produce the displacement.

5. Gravitational, electrostatic and magnetic forces are conservative forces. Work done by such forces to move a body between two points is independent of the path followed between the points.

6. For a spring with initial deformation $x _{1}$ to a final deformation $x _{2}$; the work done in given by

$$ \mathrm{W}=\frac{1}{2} \mathrm{k}\left(x _{2}^{2}-x _{1}^{2}\right) $$

7. The energy stored in a spring with spring constant $\mathrm{k}$; compressed or elongated through ’ $x$ ’ from its original length; the energy stored in given by

$$ \mathrm{U}=\frac{1}{2} \mathrm{k} x^{2} $$

8. The power of an agent is defined as the rate of doing work.

Mathematically $\mathrm{P}=\frac{\mathrm{dw}}{\mathrm{dt}}=\frac{\text { F.dS }}{\mathrm{dt}}$

$=\mathbf{F} . \mathbf{v}$ gives the instantaneous power

Average power $\mathrm{P}=\frac{\text { Total work }}{\text { Total time }}=\frac{\mathrm{W}}{\mathrm{t}}$

9. Power is a scalar quantity. Its SI unit is watt $\left(=1 \mathrm{Js}^{-1}\right)$. The practical unit of power is horse power. Where $1 \mathrm{HP}=746 \mathrm{~W}$.

10. Energy of a body is measure of its capacity to do work. It is a scalar with units and dimensions same as that of work. Some practical units of energy in common use are:

$$ \begin{aligned} & 1 \text { calorie }=4.2 \mathrm{~J} \\ & 1 \mathrm{kw} \quad \mathrm{hr}=3.6 \times 10^{6} \mathrm{~J} \\ & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \end{aligned} $$

11. Energy can exist in nature in many forms. Mechanical, electrical, wind, hyde, chemical, thermal, sound, light, nuclear, solar etc. are some examples. The energy can change from one form to another.

12. According to the principle of conservation of energy; the total energy of an isolated system always remains conserved. The energy may however change from one form to another form.

13. The energy present in a body by virtue of its motion is called kinetic energy. It may be translational or rotational energy. We have

Translational $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$

where $m$ is mass and $v$ the velocity of the body.

Rotational KE $\frac{1}{2} \mathrm{\omega}^{2}$

where I is the moment of inertia of the body and $\omega$ the angular velocity of the body about the given axis of rotation.

14. The energy stored in a body by virtue of its position w.r.t. earth is called gravitational potential energy and is given by $\mathrm{mgh}$.

$\mathrm{m}$ is mass of the body, $\mathrm{g}$ acceleration due to gravity and ’ $\mathrm{h}$ ’ the height above a certain reference level.

15. The total P.E. and K.E. of a body is termed as mechanical energy.

16. The K.E. of a body in always positive. The PE and total mechanical energy of a body may be positive, negative or zero.

17. Repulsive forces generate positive energy and attractive forces generate negative energy. A negative value of mechanical energy indicates that the body is in bound state.

18. According to work-energy theorem, work done by a body is equal to a decrease in its K.E. The work done on a body equals an increase in energy.

19. Mass and energy are interconvertible and are related as $\mathrm{E}=\mathrm{mc}^{2}$ (Einstein mass-energy relation). where $\mathrm{m}$ is mass and $\mathrm{c}$ the speed of the light in vacuum $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

20. When the interaction between two bodies results in a change in their momentum; the bodies are said to have undergone a collision. The collision may be elastic or inelastic.

21. In a perfectly elastic collision; the $\mathrm{KE}$ of the system remains conserved.

22. In an inelastic collision, there is a loss of K.E. In a perfectly inelastic collision; the colliding bodies stick together after collision and move as a single object.

23. The principle of momentum conservation is always obeyed irrespective of the nature of collision.

24. In a head on collision, the initial and the final velocities of the bodies are along same line.

25. For such elastic collision; we can apply following equations.

$$ \begin{aligned} & \mathrm{m} _{1} \mathrm{u} _{1}+\mathrm{m} _{2} \mathrm{u} _{2}=\mathrm{m} _{1} \mathrm{v} _{1}+\mathrm{m} _{2} \mathrm{v} _{2} \\ & \frac{1}{2} \mathrm{~m} _{1} \mathrm{u} _{1}^{2}+\frac{1}{2} \mathrm{~m} _{2} \mathrm{u} _{2}^{2}=\frac{1}{2} \mathrm{~m} _{1} \mathrm{v} _{1}^{2}+\frac{1}{2} \mathrm{~m} _{2} \mathrm{v} _{2}^{2} \end{aligned} $$

The final velocities after collision are given by

$$ \mathrm{v} _{1}=\left(\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{1}+\left(\frac{2 \mathrm{~m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right) \mathrm{u} _{2} $$

and $\quad v _{2}=\left(\frac{2 m _{2}}{m _{1}+m _{2}}\right) u _{1}+\left(\frac{m _{2}-m _{1}}{m _{1}+m _{2}}\right) u _{2}$

26. The ratio of relative velocity after separation to the relative velocity of approach before collision is called coefficient of restitution. We have

$$ \mathrm{e}=\frac{\left|\mathrm{v} _{2}-\mathrm{v} _{1}\right|}{\left|\mathrm{u} _{1}-\mathrm{u} _{2}\right|} $$

$\mathrm{e}=1$ for perfectly elastic collision.

$\mathrm{e}=0$ for perfectly inelastic collision.

$\therefore 0 \leq \mathrm{e} \leq 1$

1. A block of mass $M$ is placed on smooth inclined plane of inclination

$\theta$. An ideal spring has one end fixed to a rigid support at $A$. The spring constant, $k$, of the string is $\left(\frac{\mathrm{Mg}}{\mathrm{a}}\right)$. The block is not attached to the spring. The block is pushed up the plane through a distance ’ $a$ ’ along the plane from the uncompressed position of the spring and released. The speed of the block when it just gets detached form of spring is

(1) $\sqrt{\mathrm{ga}}$

(2) $\sqrt{2 g a}$

(3) $\sqrt{\mathrm{ga}(1+2 \sin \theta)}$

(4) $\sqrt{\mathrm{ga}(1+2 \cos \theta)}$

Show Answer

Correct answer: (3)

Solution:

Take the initial position of the mass with the spring compressed as zero gravitational potential energy position. When the block and the spring are released; the potential energy of the spring and the decrease in gravitational potential energy of the block get converted to kinetic energy of the block. The block moves down through a vertical distance $=a \sin \theta$. From law of conservation of energy the gain in K.E. equals loss in total potential energy of system.

$$ \begin{aligned} & \therefore \frac{1}{2} \mathrm{Mv}^{2}=\frac{1}{2} \mathrm{ka}^{2}+(\mathrm{Mg}) \mathrm{a} \sin \theta \\ & \quad=\frac{1}{2}\left(\frac{\mathrm{Mg}}{\mathrm{a}}\right) \mathrm{a}^{2}+(\mathrm{Mga}) \sin \theta \\ & \text { or } \quad \mathrm{v}^{2}=\mathrm{ga}+2 \mathrm{ga} \sin \theta \\ & \quad=\mathrm{ga}(1+2 \sin \theta) \\ & \mathrm{v}=\sqrt{\mathrm{ga}(1+2 \sin \theta)} \end{aligned} $$

2. A bullet of mass $m$ leaves the barrel of a gun of mass $M$ with a velocity $v$. The gun is known to recoil with a velocity $V$. If $k$ and $K$ respectively denote the kinetic energies of bullet and the gun respectively; then

(1) $K=\left(\frac{m}{M}\right)^{2} \mathrm{k}$

(2) $K=\sqrt{\frac{m}{M}} \mathrm{k}$

(3) $K=\left(\frac{m}{M}\right) k$

(4) $K=\left(\frac{M}{m}\right) k$

Show Answer

Correct answer: (3)

Solution:

We known that the momentum acquired by the bullet and the gun have equal magnitude (Principle of conservation of linear momentum).

$\therefore$ Momentum of bullet and gun $=|\overrightarrow{\mathrm{p}}|$ each.

The kinetic energy $k$ and $K$ of bullet and gun are:

$$ \mathrm{k}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} $$

and $\quad \mathrm{K}=\frac{\mathrm{p}^{2}}{2 \mathrm{M}}$

$\therefore \frac{\mathrm{K}}{\mathrm{k}}=\frac{\mathrm{m}}{\mathrm{M}}$

or $\quad \mathrm{K}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{k}$

3. A particle slides along a track with elevated ends and a flat central part of length ’ $\ell$ ‘. The curved paths are frictionless and the flat part BC has a coefficient of kinetic friction $\mu _{\mathrm{k}}$. The particle is released from a point $A$ at a height ’ $h$ ’ above the flat part $B C$ of the track. It moves along BC (or CB); a distance $n \ell$ coming to rest. Value of $n$ is

(1) $\mu _{\mathrm{k}} \frac{\mathrm{h}^{2}}{\ell^{2}}$

(2) $\frac{\mathrm{h}}{\mu _{\mathrm{k}} \ell}$

(3) $\frac{\mu _{\mathrm{k}} \ell}{\mathrm{h}}$

(4) $\mu _{\mathrm{k}} \sqrt{\frac{\mathrm{h}}{\ell}}$

Show Answer

Correct answer: (2)

Solution:

The initial potential energy mgh of the particle is used in doing work against friction in the flat part BC.

The distance traveled along $\mathrm{BC}$ before coming to rest $=\mathrm{S}=\mathrm{n} \cdot \ell$

$\mathrm{W}=$ the work done against force of friction $=\mathrm{F} _{\mathrm{fr}} .\mathrm{S}$

$$ =\mu _{\mathrm{k}} \mathrm{mg} \cdot \mathrm{S}=\left(\mu _{\mathrm{k}} \mathrm{mg}\right) \mathrm{n} \ell $$

By work-energy theorem;

Work done $=$ Change in energy $\mu _{\mathrm{k}} \mathrm{mg} \mathrm{n} \ell=\mathrm{mgh}$

$$ \mathrm{n}=\frac{\mathrm{h}}{\mu _{\mathrm{k}} \ell} $$

4. A solid sphere of density half that of water falls freely under gravity from a $19.6 \mathrm{~m}$ high bridge and then enters inside water. It travels a distance $d$ inside water and then starts moving upwards. $t$ is the time after which the sphere is back to the surface. Then

(1) $\mathrm{d}=19.6 \mathrm{~m}, \mathrm{t}=2 \mathrm{~s}$

(2) $\mathrm{d}=19.6 \mathrm{~m}, \mathrm{t}=4 \mathrm{~s}$

(3) $\mathrm{d}=9.8 \mathrm{~m}, \mathrm{t}=8 \mathrm{~s}$

(4) $\mathrm{d}=9.8 \mathrm{~m}, \mathrm{t}=1 \mathrm{~s}$

Show Answer

Correct answer: (2)

Solution:

Let $m$ be the mass of the sphere and $\rho$ its density. Then density of water is $2 \rho$. Kinetic energy of ball as it hits the water surface $=\mathrm{mgh}$

$=19.6 \mathrm{mg}$ joule

Net upward force on sphere when it is inside water $=$ upthrust - weight of the ball

$$ \begin{aligned} & =\left(\frac{\mathrm{m}}{\rho} \times 2 \rho \mathrm{g}\right)-\mathrm{mg} \\ & =\mathrm{mg} \end{aligned} $$

Let the sphere go to a depth d inside water; when it is momentarily at rest. We have,

Work done $=$ Change in K.E.

$\therefore \quad \mathrm{mg} \times \mathrm{d}=\mathrm{mg} \times 19.6$

or $\mathrm{d}=19.6 \mathrm{~m}$

$\mathrm{u}=$ velocity the sphere as it hits the water $=\mathrm{u}=\sqrt{2 \mathrm{gh}}$

or $\quad \mathrm{u}=\sqrt{2 \times 9.8 \times 19.6}=\sqrt{19.6 \times 19.6}$

$=19.6 \mathrm{~m} / \mathrm{s}$ downwards

Inside water, acceleration $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ upwards

Let $t _{1}$ be time taken by sphere to come to rest inside water.

Using $\mathrm{u}+\mathrm{at}=\mathrm{v}$, we get

$19.6-9.81=0$ or $\mathrm{t} _{1}=2 \mathrm{~s}$

Again time of ascent $=$ Time of descent

$$ =2 \mathrm{~s} $$

$\therefore \mathrm{t}=$ The time spend inside water $=2 \mathrm{~s}+2 \mathrm{~s}$

$$ =4 \mathrm{~s} $$

Option (2)

5. Two identical blocks of mass $20 \mathrm{~kg}$ each are moving at $5 \mathrm{~m} / \mathrm{s}$ towards each other on a frictionless horizontal surface. The blocks collide; stick together and come to rest. Considering the blocks as a system, the work done by the external forces and the internal forces respectively are

(1) $\mathrm{W} _{\text {ext }}=0 \quad \mathrm{~W} _{\text {int }}=-500 \mathrm{~J}$

(2) $\mathrm{W} _{\text {ext }}=0 \quad \mathrm{~W} _{\text {int }}=+500 \mathrm{~J}$

(3) $\mathrm{W} _{\text {ext }}=-500 \mathrm{~J} \mathrm{~W} _{\text {int }}=0$

(4) $\mathrm{W} _{\text {ext }}=+500 \mathrm{~J} \mathrm{~W} _{\text {int }}=0$

Show Answer

Correct answer: (1)

Solution:

As there are no external forces acting on the system; work done by the external forces is zero.

$$ \therefore \mathrm{W} _{\mathrm{ext}}=0 \mathrm{~J} $$

Total initial K.E. of the system $=\frac{1}{2} \mathrm{mu}^{2}+\frac{1}{2} \mathrm{mu}^{2}$

$$ \begin{aligned} & =\frac{1}{2} \times 20 \times(25)+\frac{1}{2}(20)(25) \\ & =500 \mathrm{~J} \end{aligned} $$

Final K.E. of the system $=0$ (The blocks came to rest)

By work energy thorem; work done by internal forces, $\mathrm{W} _{\text {int }}$ equals change in K.E.

$\therefore \mathrm{W} _{\text {int }}=$ Final K.E. - Initial K.E.

$=0 \mathrm{~J}-(500 \mathrm{~J})=-500 \mathrm{~J}$

The negative sign of work in due to the fact that the internal forces of action and reaction oppose the motion of masses.

6. A particle of mass $m$ at rest at $A$; is moved very slowly up a irregular shaped hill as shown in Fig. The particle is moved from bottom (i.e. A) to the top (i.e. B) of hill. $\mu$ is coefficient of friction. The external applied force $F$ is always tangential to the instantaneous position on track. The net work done by $F$ is

(1) mgh

(2) $\frac{\mu \mathrm{mg} \ell}{\left(\ell^{2}+\mathrm{h}^{2}\right)^{1 / 2}}$

(3) $\operatorname{mg}(\mathrm{h}-\mu \ell)$

(4) $\operatorname{mg}(\mathrm{h}+\mu \ell)$

Show Answer

Correct answer: (4)

Solution:

The net work done $(=W)$ is sum of gain in gravitational potential energy of mass and the work done against friction. $\mathrm{U}=$ gain in gravitational P.E. $=\mathrm{mgh}$

To calculate work done against friction we can assume that block moves an incline of inclination $\theta$ as shown in Fig. The work done

$$ \begin{aligned} \mathrm{W} _{1}= & \mathrm{f} _{\mu} \times \mathrm{AB}=[\mu \mathrm{mg} \cos \theta] \times \mathrm{AB} \\ & =\mu \mathrm{mg}\left[\frac{\ell}{\sqrt{\ell^{2}+\mathrm{h}^{2}}}\right] \times \sqrt{\ell^{2}+\mathrm{h}^{2}} \\ & =\mu \mathrm{mg} \ell \end{aligned} $$

$\therefore \mathrm{W}=\mathrm{u}+\mathrm{W} _{1}$

$$ =m g(h+\mu \ell) $$

7. Two blocks of mass $5 \mathrm{~kg}$ and $10 \mathrm{~kg}$ are connected by a massless inextensible string passing over a frictionless pulley. The 5 $\mathrm{kg}$ block rests on a frictionless surface. It is connected to a spring of force constant $100 \mathrm{Nm}^{-1}$ as shown in Fig. A is a rigid support. The blocks are released from rest when the spring in upstretched. The $10 \mathrm{~kg}$ block is allowed to fall through $1 \mathrm{~m}$. The instantaneous kinetic energy of the two blocks at this moment and the maximum extension in the spring when the blocks momentarily come to rest are: [Use $\mathrm{g}=\mathbf{1 0} \mathrm{ms}^{-2}$ ]

(1) $\sqrt{\frac{20}{3}} \mathrm{~m} / \mathrm{s} ; 4 \mathrm{~m}$

(2) $2 \sqrt{\frac{5}{3}} \mathrm{~m} / \mathrm{s} ; 2 \mathrm{~m}$

(3) $\sqrt{20} \mathrm{~m} / \mathrm{s} ; 2 \sqrt{2} \mathrm{~m}$

(4) $\sqrt{20} \mathrm{~m} / \mathrm{s} ; \frac{3}{2} \mathrm{~m}$

Show Answer

Correct answer: (2)

Solution:

As the hanging block falls; the potential energy ( $\mathrm{Mgh})$ changes to K.E. of the blocks and the potential energy of the spring. The distance ’ $h$ ’ through which the block falls is equal to the extension in the spring.

From law of conservation of energy, we have

$\operatorname{Mgh}=\frac{1}{2}(\mathrm{~m}+\mathrm{M}) \mathrm{v}^{2}+\frac{1}{2} \mathrm{k} x^{2}$

Given $\mathrm{M}=10 \mathrm{~kg} ; \mathrm{h}=1 \mathrm{~m} ; \mathrm{k}=100 \mathrm{Nm}^{-1} ; x=\mathrm{h}=1 \mathrm{~m}$

$\therefore 10 \times 10 \times 1=\frac{1}{2}(5+10) \mathrm{v}^{2}+\frac{1}{2} \times 100 \times(1)^{2}$

$\mathrm{v}^{2}=\frac{100}{15}=\frac{20}{3}$

or $\quad \mathrm{v}=2 \sqrt{\frac{5}{3}} \mathrm{~m} / \mathrm{s}$

Let $\mathrm{H}$ be the maximum distance of fall of block.

In this position both masses are at rest. The $100 \%$ gravitational P.E. lost by M is converted in potential energy of spring.

$\therefore \frac{1}{2} \mathrm{kH}^{2}=\mathrm{MgH}$

or $\mathrm{H}=\frac{2 \mathrm{Mg}}{\mathrm{k}}$

$$ =\frac{2 \times 10 \times 10}{100}=2 \mathrm{~m} $$

8. A net force of $5 \mathrm{~N}$ act on a $15 \mathrm{~kg}$ object initially at rest. The work done in the third second and the instantaneous power at the end of the third second are

(1) $7.5 \mathrm{~J} ; 7.5 \mathrm{~W}$

(2) $7.5 \mathrm{~J} ; 5 \mathrm{~W}$

(3) $\frac{25}{6} \mathrm{~J} ; 7.5 \mathrm{~W}$

(4) $\frac{25}{6} \mathrm{~J} ; 5 \mathrm{~W}$

Show Answer

Correct answer: (4)

Solution:

We have $\mathrm{F}=5 \mathrm{~N}, \mathrm{~m}=15 \mathrm{~kg}, \mathrm{u}=0$

$$ \mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{5}{15}=\frac{1}{3} \mathrm{~m} / \mathrm{s}^{2} $$

$\mathrm{S} _{3}=$ Displacement in third second $=\mathrm{u}+\frac{\mathrm{a}}{2}(2 \mathrm{n}-1)$

$$ 3^{\mathrm{rd}}=0+\frac{1}{6}(5)=\frac{5}{6} \mathrm{~m} $$

Work done in the third second $=$ $F.S _{3}$

$$ =5 \times \frac{5}{6}=\frac{25}{6} \mathrm{~J} $$

$\mathrm{v}=$ Instantaneous velocity at the end of $3^{\text {rd }}$ second $=u+$ at

$$ =0+\frac{1}{3} \times 3=1 \mathrm{~m} / \mathrm{s} $$

$\therefore \mathrm{P} _{\text {inst }}=\mathbf{F . v}=5 \times 1=5 \mathrm{Js}^{-1}$ or $5 \mathrm{~W}$.

9. A vehicle is under the action of a constant force and moving along a straight horizontal track. At $t=0 ; u=0$. There is no air resistance or friction. The vehicle acquires a kinetic energy $K$ in time $t$ and power developed by the motor is $P$. The graph which correctly represents variation of $P$ with time ’ $t$ ’ is

Show Answer

Correct answer: (4)

Solution:

As the force exerted on the vehicle is constant; the vehicle will move with a constant acceleration. Let ’ $a$ ’ be the acceleration produced.

Velocity of the vehicle at time ’ $\mathrm{t}$ ’ $=\mathrm{v}=$ at.

We have $\mathrm{u}=0$

$\therefore$ Initial K.E. $=0$

$\mathrm{KE}$ at time $\mathrm{t}=\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$

$$ =\frac{1}{2} \mathrm{ma}^{2} \mathrm{t}^{2} $$

From work-energy theorem

Work done $=$ Change in $\mathrm{KE}$ of particle by applied force

$\therefore \mathrm{W}=\frac{1}{2} \mathrm{ma}^{2} \mathrm{t}^{2}$

The power; $\mathrm{P}$, developed by the motor is

$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}=\frac{1}{2} \mathrm{~m} \mathrm{a}^{2} \mathrm{t}$

$$ \begin{aligned} & =\frac{1}{2}(\mathrm{ma})(\mathrm{at}) \\ & =\frac{1}{2} \mathrm{~F} \cdot \mathrm{at} \end{aligned} $$

The $\mathrm{P}$ vs ’ $\mathrm{t}$ ’ graph is a straight line passing through the origin.

10. A particle of mass $m$ is projected with velocity ’ $u$ ’ at an angle $\theta$ with horizontal. During the period when the particle descends from the highest point in its trajectory to a point where its velocity vector makes an angle half the angle of projection with the horizontal; the work done by the force of gravity is

(1) $-\frac{1}{2} m u^{2} \cos ^{2} \theta \tan ^{2} \frac{\theta}{2}$

(2) $+\frac{1}{2} m u^{2} \cos ^{2} \theta \tan ^{2} \frac{\theta}{2}$

(3) $\frac{1}{2} m u^{2} \tan ^{2} \frac{\theta}{2}$

(4) $\frac{1}{2} \operatorname{mu}^{2} \sec ^{2} \frac{\theta}{2} \tan ^{2} \theta$

Show Answer

Correct answer: (2)

Solution:

At the highest point, A, in the trajectory; only horizontal component of velocity $u$ will be present i.e. $u \cos \theta$. At $P$, the instantaneous velocity v, makes an angle $\frac{\theta}{2}$ with the horizontal.

Horizontal component of $\mathrm{v}=\mathrm{v} \cos \left(\frac{\theta}{2}\right)$

horizontal component of velocity remains constant, we have,

$\mathrm{v} \cos \left(\frac{\theta}{2}\right)=\mathrm{u} \cos \theta$

$\therefore \mathrm{v}=\frac{\mathrm{u} \cos \theta}{\cos \frac{\theta}{2}}$

Work done by force of gravity.

$=$ Change in K.E. from A to B.

$=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{~m}(\mathrm{u} \cos \theta)^{2}$

$=\frac{1}{2} m u^{2} \cos ^{2} \theta\left(\frac{1}{\cos ^{2} \frac{\theta}{2}}-1\right)$

$=\frac{1}{2} m u^{2} \cos ^{2} \theta\left(\sec ^{2} \frac{\theta}{2}-1\right)$

$=\frac{1}{2} m u^{2} \cos ^{2} \theta \tan ^{2} \frac{\theta}{2}$

Option (2)

11. Two blocks of mass $m$ and $M$ are placed on a table with coefficient of friction $\mu$. The blocks are joined by a spring of spring constant $k$. The minimum force $F$ applied to $B$ which just makes A to move (See fig) is

(1) $\mu\left(\frac{M+m}{2}\right) g$

(2) $\mu(M-m) g$

(3) $\mu \mathrm{Mg}-\frac{\mu \mathrm{mg}}{2}$

(4) $\mu \mathrm{g}\left(\mathrm{M}+\frac{\mathrm{m}}{2}\right)$

Show Answer

Correct answer: (4)

Solution:

Mass $\mathrm{m}$ (or body A) will be on brink of moving when the force applied by the spring (i.e. $\mathrm{kx}$ ) is just equal to the force of limiting friction between $A$ and surface in contact. Therefore

$$ \begin{equation*} \mathrm{k} x=\mu \mathrm{mg} \tag{1} \end{equation*} $$

$x$ is the elongation in the spring

$$ \begin{equation*} x=\frac{\mu \mathrm{mg}}{\mathrm{k}} \tag{2} \end{equation*} $$

The force will be minimum for $\mathrm{M}$ when it has no kinetic energy. Applying work energy theorem to M, we get

Work done $=$ Change in kinetic energy

$$ \begin{gathered} \int _{0}^{x}(\mathrm{~F}-\mu \mathrm{Mg}-\mathrm{k} x) \mathrm{d} x=0 \\ \mathrm{~F} x-\mu \mathrm{Mg} x-\frac{1}{2} \mathrm{k} x^{2}=0 \\ \text { or } \quad \mathrm{F}=\mu \mathrm{Mg}+\frac{1}{2} \mathrm{k} x \\ =\mu \mathrm{Mg}+\frac{1}{2} \mathrm{k}\left(\frac{\mu \mathrm{mg}}{\mathrm{k}}\right) \\ =\mu \mathrm{Mg}+\frac{1}{2} \mu \mathrm{mg} \\ =\mu \mathrm{g}\left(\mathrm{M}+\frac{1}{2} \mathrm{~m}\right) \end{gathered} $$

12. Two cylindercal vessels of equal area of cross-section ’ $A$ ’ contain a liquid of density $\rho$ up to heights $h _{1}$ and $h _{2}$. The vessels are interconnected by a pipe fitted with a value tap. The tap in opened to connect the two vessel and allow flow of liquid so that the level in the two vessels becomes equal. The work done by the force of gravity during the process is proportional to

(1) $\left(\mathrm{h} _{1}-\mathrm{h} _{2}\right)$

(2) $\left(\mathrm{h} _{1}-\mathrm{h} _{2}\right)^{2}$

(3) $\left(\mathrm{h} _{1}+\mathrm{h} _{2}\right)$

(4) $\left(\mathrm{h} _{1}-\mathrm{h} _{2}\right)^{3}$

Show Answer

Correct answer: (2)

Solution:

Initial level of water in $A=h _{1}$

Initial level of water in $B=h _{2}$

Final level of water in $A$ and $B=\frac{h _{1}+h _{2}}{2}$

Let $\mathrm{h} _{1}>\mathrm{h} _{2}$;

Fall in water level in $A=\left(h _{1}-\frac{h _{1}+h _{2}}{2}\right)=\frac{h _{1}-h _{2}}{2}$

Rise in water level in $B=\left(\frac{h _{1}+h _{2}}{2}-h _{2}\right)=\frac{h _{1}-h _{2}}{2}$

Mass of water transferred $=\mathrm{m}=\rho \mathrm{A}\left(\frac{\mathrm{h} _{1}-\mathrm{h} _{2}}{2}\right)$

Work done $=$ Change in gravitational P.E. $=\rho A\left(\frac{h _{1}-h _{2}}{2}\right) g\left(\frac{h _{1}-h _{2}}{2}\right)$

$$ =\alpha\left(\mathrm{h} _{1}-\mathrm{h} _{2}\right)^{2} $$

Option (2)

13. A bullet of a certain material at a temperature $\theta^{0} \mathrm{C}$ is fired from a horizontal surface with a velocity ’ $u$ ’ at an angle $\alpha$ with the horizontal. The bullet moves in its trajectory and returns to the same horizontal level to strike a huge ice block at $0^{\circ} \mathrm{C}$. Assuming that the entire energy of the bullet is used in melting depends the mass ’ $m$ ’ of ice melted

(1) Both on $\alpha$ and $\theta$

(2) Only on $\alpha$ but not on $\theta$

(3) Only on $\theta$ but not on $\alpha$

(4) Neither on $\alpha$ not $\theta$

Show Answer

Correct answer: (3)

Solution:

The kinetic energy of the bullet fired changes to partly kinetic and partly potential at the highest point. The body however returns to the same horizontal with K.E. equal to the initial K.E. irrespective of the angle of projection ’ $\alpha$ ‘. So $(\mathrm{KE}+\mathrm{mc} \quad \theta)$ is the total energy available for melting ice. It depends on $\theta$ but not on $\alpha$.

Option (3).

14. The potential energy of a $1 \mathrm{~kg}$ particle free to move along the $\mathrm{X}$-axis is given by

$\mathrm{V}(x)=\frac{x^{4}}{4}-\frac{x^{2}}{4} \quad$ (in Joules)

The total mechanical energy of the particle is $2 \mathrm{~J}$. The maximum speed of particle (in $\mathrm{ms}^{-1}$ ) is

(1) $\frac{1}{\sqrt{2}}$

(2) 2

(3) $\frac{3}{\sqrt{2}}$

(4) $\sqrt{2}$

Show Answer

Correct answer: (3)

Solution:

Given potential energy $\mathrm{V}=\frac{x^{4}}{4}-\frac{x^{2}}{2}$ Joule

For maximum or minimum; $\frac{\mathrm{dV}}{\mathrm{d} x}=0$

or $x^{3}-x=0$ or $x\left(x^{2}-1\right)=0 \Rightarrow x=0,-1$ or 1

$\frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{~d} x^{2}}=3 x^{2}-1$

At $x=0 ; \frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{~d} x^{2}}=-1<0$ which implies maximum $\mathrm{v}(x)$

At $x= \pm 1 ; \frac{\mathrm{d}^{2} \mathrm{~V}}{\mathrm{~d} x^{2}}=2>0$. Hence PE is minimum for $x= \pm 1$

$\mathrm{V} _{\text {min }}=\frac{1}{4}-\frac{1}{2}=\frac{1}{2} \mathrm{~J}$

From law of conservation of energy.

$\mathrm{V} _{\text {min }}+\mathrm{K} _{\text {max }}=$ Total energy

$\left(\frac{1}{4}-\frac{1}{2}\right)+\mathrm{K} _{\max }=2 \mathrm{~J} \Rightarrow \mathrm{K} _{\max }=2+\frac{1}{4}=\frac{9}{4} \mathrm{~J}$

$\frac{1}{2} \mathrm{mv} _{\text {max }}^{2}=\frac{9}{4}$ or $\mathrm{V} _{\text {max }}=\frac{3}{\sqrt{2}} \mathrm{~m} / \mathrm{s} \quad$ (Given $\mathrm{m}=1 \mathrm{~kg}$ )

15. A body with kinetic energy $K$ moving in $+X$ direction splits up into two parts $A$ and $B$ of equal mass on its own. Part ’ $A$ ’ moves back in-X direction with a velocity equal in magnitude to the initial velocity of the body. The kinetic energy of part $B$ will be

(1) $\mathrm{K}$

(2) $4 \mathrm{~K}$

(3) $\frac{\mathrm{K}}{2}$

(4) $\frac{9}{2} \mathrm{~K}$

Show Answer

Correct answer: (4)

Solution:

Let $\mathrm{m}$ be the mass of the body and $\mathrm{K}$ its initial kinetic energy. We have

$$ \begin{equation*} \mathrm{K}=\frac{1}{2} \mathrm{mu}^{2} \tag{1} \end{equation*} $$

The velocity of one part $=-\mathrm{u}$.

Let $x$ be speed of second part along +ve $\mathrm{x}$-axis.

Applying momentum conservation principle.

$\mathrm{mu}=-\frac{\mathrm{m}}{2} \mathrm{u}+\frac{\mathrm{m}}{2} x \Rightarrow x=3 \mathrm{u}$

$\therefore$ K.E.of $\mathrm{B}=\frac{1}{2}\left(\frac{\mathrm{m}}{2}\right) x^{2}$

$$ \begin{aligned} & =\frac{1}{2} \frac{\mathrm{m}}{2}(3 \mathrm{u})^{2}=\frac{1}{2}\left(\frac{9}{2} \mathrm{mu}^{2}\right) \\ & =\frac{9}{2} \mathrm{~K} \end{aligned} $$

16. Two identical rail cars of mass $M$ each placed on a horizontal frictionless surface near each other are initially at rest. A cat $C$ of mass ’ $m$ ’ initially on $A$ jumps with velocity $u$ to $B$ and immediately jumps back to $A$ with same speed $v$ relative to the surface. The ratio of the final kinetic energy of car $A$ (with cat) to that of $B$ after the cat jumps out is

(1) $\frac{2 m}{m+M}$

(2) $\left(\frac{m}{m+M}\right)^{2}$

(3) $\frac{M}{m+M}$

(4) $\left(\frac{M}{m+M}\right)$

Show Answer

Correct answer: (2)

Solution:

Momentum imparted to $\mathrm{B}$ by the cat jumping on it $=\mathrm{mu}$

Momentum imparted to B as the cat jumps out $=\mathrm{mu}$

$\therefore$ Total momentum of $\mathrm{B}=2 \mathrm{mu}$

$\mathrm{KE}$ of $\mathrm{B}=\frac{\mathrm{p} _{\mathrm{B}}^{2}}{2 \mathrm{M}}=\frac{4 \mathrm{~m}^{2} \mathrm{u}^{2}}{2 \mathrm{M}}=\frac{2 \mathrm{~m}^{2} \mathrm{u}^{2}}{\mathrm{M}}$

Similarly,

Momentum imparted to $\mathrm{A}=2 \mathrm{mu}$

Total mass of A and cat $=\mathrm{m}+\mathrm{M}$

$K E$ of $A=\frac{4 m^{2} u^{2}}{2(m+M)}=\frac{2 m^{2} u^{2}}{m+M}$

$\therefore \frac{\mathrm{K} _{\mathrm{A}}}{\mathrm{K} _{\mathrm{B}}}=\frac{\mathrm{M}}{\mathrm{m}+\mathrm{M}}$

Option (2)

17. A constant power $P$ is applied to a particle of mass ’ $m$ ’ to increase its speed from $v _{1}$ to $v _{2}$. Assuming the surfaces to be frictionless; the distance traveled by the particle is given by

(1) $\frac{3 \mathrm{P}}{\mathrm{m}}\left(\mathrm{v} _{2}^{2}-\mathrm{v} _{1}^{2}\right)$

(2) $\frac{3 \mathrm{P}}{2 \mathrm{~m}}\left(\mathrm{v} _{2}^{2}-\mathrm{v} _{1}^{2}\right)$

(3) $\frac{\mathrm{m}}{3 \mathrm{P}}\left(\mathrm{v} _{2}^{2}-\mathrm{v} _{1}^{2}\right)$

(4) $\frac{\mathrm{m}}{3 \mathrm{P}}\left(\mathrm{v} _{2}^{3}-\mathrm{v} _{1}^{3}\right)$

Show Answer

Correct answer: (4)

Solution:

We have power $\mathrm{P}=\mathrm{F} . \mathrm{v}=$ mav

$$ \Rightarrow \mathrm{a}=\frac{\mathrm{P}}{\mathrm{mv}} $$

$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{P}}{\mathrm{mv}}$ or $\frac{\mathrm{vdv}}{\mathrm{vdt}}=\frac{\mathrm{P}}{\mathrm{mv}}$

or $\frac{\mathrm{vdv}}{\mathrm{ds}}=\frac{\mathrm{P}}{\mathrm{mv}}$

$\therefore \mathrm{v}^{2} \mathrm{dv}=\frac{\mathrm{P}}{\mathrm{m}} \mathrm{dS}$

Integrating $\int _{v _{1}}^{v _{2}} v^{2} d v=\frac{P}{m} \int _{0}^{s} d S$

$=\frac{1}{3}\left(\mathrm{v} _{2}^{3}-\mathrm{v} _{1}^{3}\right)=\frac{\mathrm{P}}{\mathrm{m}} \mathrm{S}$

or $\quad S=\frac{m}{3 P}\left(v _{2}^{3}-v _{1}^{3}\right)$

which is option (4).

18. A body is constrained to move along a straight path. It starts from rest and is moved by a machine delivering constant power. The variation of the ratio of its displacement to velocity $\left(\frac{S}{v}\right)$ with time ’ $t$ ’ is best represented by the graph.

Show Answer

Correct answer: (2)

Solution:

As work is done on the body by a machine delivering constant power; we have work

$$ \mathrm{W}=\mathrm{P} . \mathrm{t} $$

The work done on the body is stored in it as kinetic energy.

$\therefore \quad \frac{1}{2} \mathrm{mv}^{2}=$ P.t

or $\quad v^{2}=\frac{2 P}{m} t=\alpha t$ $\Rightarrow \mathrm{v} \alpha \mathrm{t}^{1 / 2}$ or $\mathrm{v}=\mathrm{kt}^{1 / 2}$

Where $\mathrm{k}^{2}=\frac{2 \mathrm{P}}{\mathrm{m}}$ and $\mathrm{k}$ is a constant.

Displacement dS in time interval $t$ to $t+d t$ is

$\mathrm{dS}=\mathrm{vdt}=\mathrm{kt}^{\frac{1}{2}} \mathrm{dt}$

$\therefore \mathrm{S}=\int \mathrm{d} \mathrm{S}=\int \mathrm{vdt}=\mathrm{k} \frac{\mathrm{t}^{3 / 2}}{3 / 2}$

or $\quad S \propto t^{3 / 2}$

Hence $\frac{S}{V} \alpha \frac{t^{3 / 2}}{t^{1 / 2}}$ or $\frac{S}{V} \alpha t$

$\therefore$ The graph $\frac{\mathrm{S}}{\mathrm{v}} \quad \mathrm{v} / \mathrm{s} \quad t$ should be a straight line through origin which is option (2).

19. An electric motor is used to deliver water through a given pipe at a certain rate (volume per second). To deliver $n$ times water using the same pipe; the power of the motor has to be increased by a factor.

(1) $\mathrm{n}^{4}$

(2) $\mathrm{n}^{3}$

(3) $\mathrm{n}^{2}$

(4) $\mathrm{n}$

Show Answer

Correct answer: (2)

Solution:

Let $A, v$ and $\rho$ respectively denote the area of the pipe, the speed of water and the density of water.

$\therefore$ Mass of water flowing out per sec. $=\frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{Av} \rho$

To get $n$ times water in same time

or $\quad \mathrm{A}^{\prime} \mathrm{v}^{\prime} \rho^{\prime}=\mathrm{n}(\operatorname{av} \rho)$

But $\mathrm{A}^{\prime}=\mathrm{A}$ and $\rho^{\prime}=\rho \quad$ (Same pipe is used)

$\therefore \mathrm{v}^{\prime}=\mathrm{nv}$

The force exerted by motor $=\mathrm{v}\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right)$.

Since power $(\mathrm{P})$ is $\mathbf{F . v}$, we have

$\frac{F^{\prime}}{F}=\frac{v^{\prime}\left(d m^{\prime} / \mathrm{dt}\right)}{v(d m / d t)}=\frac{n v(n d m / d t)}{v(d m / d t)}=n^{2}$

$\frac{\mathrm{P}^{\prime}}{\mathrm{P}}=\frac{\mathrm{F}^{\prime} \mathrm{v}^{\prime}}{\mathrm{Fv}}=\left(\frac{\mathrm{F}^{\prime}}{\mathrm{F}}\right) \cdot\left(\frac{\mathrm{v}^{\prime}}{\mathrm{v}}\right)$

$=\left(\frac{\mathrm{n}^{2} \mathrm{~F}}{\mathrm{~F}}\right)\left(\frac{\mathrm{nv}}{\mathrm{v}}\right)=\mathrm{n}^{3}$

$\therefore \mathrm{P}^{\prime}=\mathrm{n}^{3} \mathrm{P}$

Factor by which power is increased $\mathrm{n}^{3}$.

Option (2)

20. A man of mass $M$ can throw a stone of mass $m$ horizontally with a velocity $v _{1}$ relative to himself while standing on a firm ground generating a power $P _{1}$. He throws the same stone with velocity $v _{r}$ relative to himself standing on skates on smooth we delivering a power $P _{2}$. The above quantities are related as

(1) $\mathrm{v} _{\mathrm{r}}=\mathrm{v} _{1} ; \mathrm{P} _{2}=\mathrm{P} _{1}$

(2) $\mathrm{v} _{\mathrm{r}}>\mathrm{v} _{1} ; \mathrm{P} _{2}>\mathrm{P} _{1}$

(3) $\mathrm{v} _{\mathrm{r}}>\mathrm{v} _{1} ; \mathrm{P} _{2}=\mathrm{P} _{1}$

(4) $\mathrm{v} _{\mathrm{r}}<\mathrm{v} _{1} ; \mathrm{P} _{2}<\mathrm{P} _{1}$

Show Answer

Correct answer: (2)

Solution:

Case (1): The work done by the man is converted to KE of the stone.

$\therefore \mathrm{W}=\frac{1}{2} \mathrm{mv} _{1}^{2}$

Case (2): In applying the same force as in case (1), the work done gets converted partly into K.E. of the stone and partly into his own K.E.

$\therefore \frac{1}{2} \mathrm{mv} _{1}^{2}=\frac{1}{2} \mathrm{mv} _{2}^{2}+\frac{1}{2} \mathrm{MV}^{2} \hspace{50mm} . . . . . . . . (1)$

$\mathrm{V}=$ speed of man; $\mathrm{v} _{2}=$ speed of stone.

From law of conservation of linear momentum.

$$ \begin{align*} & \mathrm{mU} _{2}=\mathrm{MV} \\ & \mathrm{v} _{2}=\frac{\mathrm{M}}{\mathrm{m}} \mathrm{V} \tag{2} \end{align*} $$

From(1) $m v _{1}^{2}=m v _{2}^{2}+M\left[\frac{m}{M} \cdot v _{2}\right]^{2}$

$v _{1}^{2}=v _{2}^{2}\left[1+\frac{m}{M}\right]=v _{2}^{2}\left[\frac{M+m}{M}\right]$

$\therefore v _{2}=v _{1} \sqrt{\frac{M}{M+m}}=v _{1} \sqrt{\frac{M^{2}}{M(M+m)}}$

and $\quad V=\frac{m}{M} \quad v _{2} =\frac{m}{M} \quad v _{1} \sqrt{\frac{M^{2}}{M(M+m)}}=v _{1} \sqrt{\frac{m^{2}}{M(M+m)}}$

Velocity of the stone relative to the man

$$ \begin{aligned} =v _{r} & =v _{2}+v=\frac{v _{1}}{\sqrt{M(M+m)}}|M+m|=v _{1} \sqrt{\frac{M+m}{M}} \\ & \Rightarrow v _{r}>v _{1} \end{aligned} $$

Also Power $=$ Force $\times$ velocity

$\therefore \mathrm{P} _{2}=\mathrm{F} . \mathrm{v} _{\mathrm{r}} ; \mathrm{P} _{2}>\mathrm{P} _{1}$ and $\mathrm{P} _{1}=\mathrm{F} \cdot \mathrm{v} _{1}$

Hence option (2) is correct.

21. In the figure; $P _{1}$ and $P _{2}$ are two light, frictionless pulleys with a $50 \mathrm{~kg}$ mass connected to $P _{2}$ moving upwards with a uniform velocity of $1 \mathrm{~m} / \mathrm{s}$ due to a force $F$ applied at the free end of the string. The work done to move the mass up through $5 \mathrm{~cm}$ and the power delivered by the force are [Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ ]

(1) $24.5 \mathrm{~J} ; 490 \mathrm{~W}$

(2) $24.5 \mathrm{~J} ; 245 \mathrm{~W}$

(3) $49 \mathrm{~J} ; 245 \mathrm{~W}$

(4) $49 \mathrm{~J} ; 490 \mathrm{~W}$

Show Answer

Correct answer: (1)

Solution:

The free body diagrams of point A and pulley $\mathrm{P} _{2}$ are as shown in Fig. (a) & (b).

We have $2 \mathrm{~T}=\mathrm{Mg}=50 \times 9.8$

$\therefore \mathrm{T}=\frac{490}{2}=245 \mathrm{~N}$

$\therefore \mathrm{F}=\mathrm{T}=245 \mathrm{~N}$

To move block up through $5 \mathrm{~cm}$; work done is $\mathrm{W}=\mathrm{mgh}$

$=50 \times 9.8 \times \frac{5}{100}=24.5 \mathrm{~J}$

For an upward velocity of $1 \mathrm{~m} / \mathrm{s}$ of the block; the string at A must be pulled at $2 \mathrm{~m} / \mathrm{s}$ because each side of the chord at $\mathrm{P} _{2}$ must move up by $1 \mathrm{~m}$ in one see.

$\therefore$ Power at $\mathrm{A}=$ F.v

$$ =245 \times 2=490 \mathrm{~W} $$

22. A ball ’ $A$ ’ of mass ’ $m$ ’ collides with another ball ’ $B$ ’ of identical mass at rest. The collision is head on and the coefficient of restitution is $e$. The ratio of velocities $V _{A}$ and $V _{B}$ after collision is

(1) $\left(\frac{1+\mathrm{e}}{1-\mathrm{e}}\right)$

(2) $\frac{1-\mathrm{e}}{1+\mathrm{e}}$

(3) $\frac{1+\mathrm{e}^{2}}{1-\mathrm{e}^{2}}$

(4) $\mathrm{e}$

Show Answer

Correct answer: (2)

Solution:

By definition of coefficient of restitution, we have

$\mathrm{e}=\frac{\text { Relative velocity after collision }}{\text { Relative velocity before collision }}$

$\therefore \quad \frac{\mathrm{v} _{\mathrm{B}}-\mathrm{v} _{\mathrm{A}}}{\mathrm{u}-0}=\mathrm{e}$ or $\quad \mathrm{v} _{\mathrm{B}}-\mathrm{v} _{\mathrm{A}}=\mathrm{eu} \hspace{40mm}. . . . . . (1)$

$\mathrm{mv} _{\mathrm{A}}+\mathrm{mv} _{\mathrm{B}}=\mathrm{mu} \Rightarrow \mathrm{v} _{\mathrm{A}}+\mathrm{v} _{\mathrm{B}}=\mathrm{u} \hspace{40mm}. . . . . . (2)$

From (1) & (2) we have,

$$ \begin{aligned} \mathrm{v} _{\mathrm{B}} & =(1+\mathrm{e}) \frac{\mathrm{u}}{2} \\ \mathrm{v} _{\mathrm{A}} & =(1-\mathrm{e}) \frac{\mathrm{u}}{2} \\ \therefore \quad \frac{\mathrm{v} _{\mathrm{A}}}{\mathrm{v} _{\mathrm{B}}} & =\frac{1-\mathrm{e}}{1+\mathrm{e}} \end{aligned} $$

23. A block of mass $m$ moving with a velocity $v$ collides with another block of mass $M$ at rest. The two blocks stick together due to the collision. The loss of K.E. expressed as a fraction of total initial kinetic energy is

(1) $\frac{M}{m+M}$

(2) $\frac{m}{M+m}$

(3) $\frac{M^{2}}{m+M}$

(4) $\frac{M-m}{m+M}$

Show Answer

Correct answer: (1)

Solution:

$K=$ Initial $K E=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}$

Using principle of momentum conservation; the velocity of the composite block is given by

$\mathrm{mv}=(\mathrm{m}+\mathrm{M}) \mathrm{V}$

or $\quad V=\frac{m v}{m+M}$ $K^{\prime}=$ Final K.E. $=\frac{1}{2}(\mathrm{~m}+\mathrm{M}) \mathrm{V}^{2}=\frac{\mathrm{p}^{2}}{2(\mathrm{~m}+\mathrm{M})} \quad[\because$ The momentum remains the same $]$

$\Delta \mathrm{E}=\mathrm{KE}$ lost $=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}-\frac{\mathrm{p}^{2}}{2(\mathrm{~m}+\mathrm{M})}=\frac{\mathrm{p}^{2}}{2}\left[\frac{\mathrm{M}}{\mathrm{m}(\mathrm{m}+\mathrm{M})}\right]$

$\therefore \frac{\Delta K}{K}=\frac{\frac{p^{2}}{2}\left[\frac{M}{m(m+M)}\right]}{\frac{p^{2}}{2 m}}=\frac{M}{m+M}$

Correct option is (1).

24. A body $A$ of mass $m$ moving with a velocity $u$ undergoes an inelastic collision with another body B of mass $2 \mathrm{~m}$ at rest. After the collision the first ball moves with a velocity $\frac{\mathrm{u}}{\sqrt{3}}$ in a direction perpendicular to its initial direction of motion. The ratio of final kinetic energy of $B$ to that of $A$ after collision is

(1) $1: 2$

(2) $2: 1$

(3) $3: 1$

(4) $1: 4$

Show Answer

Correct answer: (2)

Solution:

Take velocity u (initial) of A as $+x$ direction.

Let $\mathrm{v} _{1}=\frac{\mathrm{u}}{\sqrt{3}}$ and $\mathrm{v} _{2}$ be velocity of $\mathrm{A}$ and $\mathrm{B}$ after collision as shown in Fig.

Applying principle of momentum conservation; Along $x$-direction, we have

$2 \mathrm{~mv} _{2 x}=\mathrm{mu} \quad\left[\mathrm{v} _{x}\right.$ is the $x$ component of $\mathrm{v} _{\mathrm{B}}$ after collision]

$$ \mathrm{v} _{x}=\frac{\mathrm{u}}{2} $$

Along y-direction $\mathrm{m} \frac{\mathrm{u}}{\sqrt{3}}+2 \mathrm{mv} _{2 \mathrm{y}}=0$

or $\quad v _{2 y}=\left|\frac{u}{2 \sqrt{3}}\right|$

$\therefore$ Velocity of $\mathrm{B}$ after collision is given by

$$ \mathrm{v} _{2}^{2}=\mathrm{v} _{2 \mathrm{y}}^{2}+\mathrm{v} _{2 x}^{2}=\frac{\mathrm{u}^{2}}{12}+\frac{\mathrm{u}^{2}}{4}=\frac{4 \mathrm{u}^{2}}{12}=\frac{\mathrm{u}^{2}}{3} $$

$\therefore \frac{\text { KE of } B}{\text { KE of } A}=\frac{\frac{1}{2}(2 m) \frac{u^{2}}{3}}{\frac{1}{2} m \frac{u^{2}}{3}}=2: 1$

25. Three objects $A, B$ and $C$ are kept in a straight line on a frictionless horizontal surface. The objects have masses $m, 2 m$ and $m$ respectively. A moves towards $B$ with a speed ’ $u$ ’ and makes an elastic collision with it. Thereafter B makes a completely inelastic collision with $\mathrm{C}$. The ratio of final kinetic energy of $C$ to initial kinetic energy of $A$ is

(1) $1: 4$

(2) $9: 16$

(3) $16: 81$

(4) $4: 9$

Show Answer

Correct answer: (3)

Solution:

For elastic collision between $\mathrm{A}$ and $\mathrm{B}$;

$\mathrm{m} _{1}=\mathrm{m} ; \mathrm{u} _{1}=\mathrm{u} ; \mathrm{m} _{2}=2 \mathrm{~m} ; \mathrm{u} _{2}=0$

The velocity $\mathrm{v} _{2}$ of mass $\mathrm{B}$ after collisions is

$$ =\mathrm{v} _{2}=\frac{\mathrm{m} _{2}}{\mathrm{~m} _{1}+\mathrm{m} _{2}} \mathrm{u} _{1}+\frac{\mathrm{m} _{2}-\mathrm{m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}} \mathrm{u} _{2}=\frac{2 \mathrm{~m}}{3 \mathrm{~m}} \mathrm{u}=\frac{2}{3} \mathrm{u} $$

For inelastic collision between B and C. Let V be the speed of combination of B and C after collision. Using principle of conservation of linear momentum.

$(m+2 m) V=(2 m)\left(\frac{2}{3} u\right)$

$\therefore \quad \mathrm{V}=\frac{4}{9} \mathrm{u}$

$\frac{\left(\mathrm{K} _{\mathrm{C}}\right) _{\text {final }}}{\left(\mathrm{K} _{\mathrm{A}}\right) _{\text {initial }}}=\frac{\frac{1}{2} \mathrm{~m}\left(\frac{4}{9} \mathrm{u}\right)^{2}}{\frac{1}{2} \mathrm{mu}^{2}}=16: 81$

Option (3)

26. Two small particles of equal mass start moving in opposite direction from a point $A$ on a frictionless circular track. Their initial tangential velocities are $\mathrm{v}$ and $2 \mathrm{v}$ respectively as shown in the figure. The particles move with constant speeds in between collision. After colliding repeatedly; they make their $n^{\text {th }}$ collision again at $A$ in the shortest time. The value of ’ $n$ ’ is

(1) 1

(2) 2

(3) 3

(4) 4

Show Answer

Correct answer: (3)

Solution:

As the two particles have equal mass; after every elastic collision, the particles interchange their velocities. As initially; particle 2 has a speed double that of particle 1; the first collision will be at B. Distance traveled by $\mathrm{B}$ is double of that traveled by 1 . At $\mathrm{B}$ they again exchange their speeds.

So the $2^{\text {nd }}$ collision will be at $\mathrm{C}$ and the $3^{\text {rd }}$ collision will be again at ’ $\mathrm{A}$ ‘.

$\therefore \mathrm{n}=3$

So option (3) is correct.

27. A body $B$ of mass $m$ is at rest on a smooth horizontal surface. Another body $A$ of equal mass moving with a velocity ’ $u$ ’ undergoes an oblique elastic collision with it. If $v _{1}$ and $v _{2}$; the velocities of $A$ and $B$ after collision make angle $\theta _{1}$ and $\theta _{2}$ with the original velocity $u$; then

(1) $\theta _{1}+\theta _{2}=180^{\circ}$

(2) $\theta _{1}+\theta _{2}=90^{\circ}$

(3) $\theta _{1}+\theta _{2}=120^{\circ}$

(4) $\theta _{1}+\theta _{2}=60^{\circ}$

Show Answer

Correct answer: (2)

Solution:

The bodies before and after collision are as shown in Fig. (a) & (b).

Total initial momentum of the system along $\mathrm{X}$-axis before collision $=\mathrm{mu}+0=\mathrm{mu}$

Total final momentum of the system along $\mathrm{X}$-axis after collision $=\mathrm{m} _{1} \mathrm{v} _{1} \cos \theta _{1}+\mathrm{m} _{2} \mathrm{v} _{2} \cos \theta _{2}$

$$ =m v _{1} \cos \theta _{1}+m v _{2} \cos \theta _{2} $$

By principle of momentum conservation.

$\mathrm{mu}=\mathrm{mv} _{1} \cos \theta _{1}+\mathrm{mv} _{2} \cos \theta _{2}$

or $\mathrm{u}=\mathrm{v} _{1} \cos \theta _{1}+\mathrm{v} _{2} \cos \theta _{2} \hspace{40mm}. . . . . . . .(1) $

Applying momentum conservation in y direction. We have

$0=m v _{1} \sin \theta _{1}-m _{2} \sin \theta _{2} \hspace{40mm}. . . . . . . .(2)$

or $\mathrm{v} _{1} \sin \theta _{1}-\mathrm{v} _{2} \sin \theta _{2}=0 $

As the collision is elastic; we have

$\frac{1}{2} m u^{2}=\frac{1}{2} m v _{1}^{2}+\frac{1}{2} m v _{2}^{2}$

or $\mathrm{u}^{2}=\mathrm{v} _{1}^{2}+\mathrm{v} _{2}^{2} \hspace{40mm}. . . . . . . .(3)$

$(1)^{2}+(2)^{2}$ gives

$u^{2}=v _{1}^{2}+v _{2}^{2}+2 v _{1} v _{2}\left(\cos \theta _{1} \cos \theta _{2}-\sin \theta _{1} \sin \theta _{2}\right)$

$=\mathrm{v} _{1}^{2}+\mathrm{v} _{2}^{2}-2 \mathrm{v} _{1} \mathrm{v} _{2} \cos \left(\theta _{1}+\theta _{2}\right) \hspace{40mm}. . . . . . . .(4)$

(4) - (3) gives

$2 \mathrm{v} _{1} \mathrm{v} _{2} \cos \left(\theta _{1}+\theta _{2}\right)=0$

or

$$ \cos \left(\theta _{1}+\theta _{2}\right)=0 \Rightarrow \theta _{1}+\theta _{2}=90^{\circ} $$

28. The graph of potential energy $V(r)$ vs distance $r$ ’ between the centres of two billiard balls have been plotted as (a); (b); (c) and (d) above. Which of the following statements is true about elastic collision between the balls. The variation of $V(r)$ vs $r$ is best represented by

(1) (b) and (c) only

(2) (a) only

(3) (b) only

(4) (a) and (d) only

Show Answer

Correct answer: (3)

Solution:

The potential energy $V(r)$ of the balls should be $\mathrm{V}(\mathrm{r}) \propto \frac{1}{\mathrm{r}}$ for $\mathrm{r}<2 \mathrm{R}$

and $V(r)=0$ for $r=2 R$

These condition are satisfied only in graph (b)

29. A particle of mass $m$ strikes on ground with a velocity $v$ at an angle of incidence $45^{\circ}$. If the coefficient of restitution; $\mathrm{e}=\frac{1}{\sqrt{2}}$; the velocity of reflection and the angle of reflection are

(1) $\frac{\sqrt{3}}{2} \mathrm{v} ; \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

(2) $\mathrm{v} ; 45^{\circ}$

(3) $\frac{\mathrm{v}}{\sqrt{2}} ; 45^{0}$

(4) $\frac{\sqrt{3}}{2} \mathrm{v} ; \tan ^{-1} \sqrt{2}$

Show Answer

Correct answer: (4)

Solution:

Let v’ and $\theta$ denote the velocity after reflection and the angle of reflection as shown in Fig.

Before reflection $\mathrm{v} _{x}=\mathrm{v} \cos 45^{\circ}=\frac{\mathrm{v}}{\sqrt{2}}$ and $\mathrm{v} _{\mathrm{y}}=\mathrm{v} \sin 45^{\circ}=\frac{\mathrm{v}}{\sqrt{2}}$

As there is no force along horizontal; $\mathrm{v} _{x}^{\prime}=\mathrm{v} _{x}=\frac{\mathrm{v}}{\sqrt{2}}$

The surface exerts a force along the vertical.

$$ \therefore \frac{\mathrm{v} _{\mathrm{y}}^{\prime}}{\mathrm{v} _{\mathrm{y}}}=\mathrm{e} $$

$\mathrm{v} _{\mathrm{y}}^{\prime}=\mathrm{ev} _{\mathrm{y}}=\frac{1}{\sqrt{2}} \cdot \frac{\mathrm{v}}{\sqrt{2}}=\frac{\mathrm{v}}{2}$

Velocity after impact $=\mathrm{v}^{\prime}=\sqrt{\mathrm{v} _{x}^{\prime 2}+\mathrm{v} _{\mathrm{y}}^{\prime 2}}=\sqrt{\frac{\mathrm{v}^{2}}{2}+\frac{\mathrm{v}^{2}}{4}}$

$$ \mathrm{v}^{\prime}=\frac{\sqrt{3}}{2} \mathrm{v} $$

Also $\tan \theta=\frac{\mathrm{v} _{x}^{\prime}}{\mathrm{v} _{\mathrm{y}}^{\prime}}=\frac{\frac{\mathrm{v}}{\sqrt{2}}}{\frac{\mathrm{v}}{2}}=\sqrt{2}$

or $\quad \theta=\tan ^{-1}(\sqrt{2})$

Option (4)

30. A heavy point mass $m$ is suspended by a light string of length ’ $\ell$ ’ from a point $O$. The particle in initial position $A$ is given an initial horizontal velocity $v _{0}$. The mass rises to a point $P$ where $O P$ makes an angle $\theta$ with vertical. The string slackens and the particle follows a parabolic path thereafter. The value $v _{0}$ for the projectile to pass through the point of suspension is

(1) $\sqrt{2 \mathrm{~g} \ell}$

(2) $[\mathrm{g} \ell(2+\sqrt{3})]^{1 / 2}$

(3) $[\mathrm{g} \ell(2-\sqrt{3})]^{1 / 2}$

(4) $\sqrt{\mathrm{g} \ell}$

Show Answer

Correct answer: (1)

Solution:

Fig. shows the initial position A and final position P of mass.

At $\mathrm{P}$; the centripetal force is only due to component of $\mathrm{mg}$ along PO. i.e. $\mathrm{mg} \cos \theta$.

Let $\mathrm{v}$ be speed of the mass $\mathrm{m}$ at $\mathrm{P}$.

Then $\mathrm{mg} \cos \theta=\frac{\mathrm{mv}^{2}}{\ell}$

or $\mathrm{v}^{2}=\mathrm{g} \ell \cos \theta \hspace{40mm}. . . . . . . .(1)$

By energy conservation principle;

Total initial energy $=$ Total energy at $P$.

$\frac{1}{2} \mathrm{mv} _{0}^{2}=\frac{1}{2} \mathrm{mv}^{2}+\mathrm{mg} \ell(1+\cos \theta) \hspace{40mm}. . . . . . . .(2) $

$\therefore \quad \frac{1}{2} \mathrm{mv} _{0}^{2}=\frac{1}{2} \mathrm{mg} \ell \cos \theta+\mathrm{mg} \ell(1+\cos \theta)$

[Use (1)]

$\mathrm{v} _{0}^{2}=\mathrm{g} \ell[2+3 \cos \theta] \hspace{40mm}. . . . . . . .(3) $

For the projectile to pass through $\mathrm{O}$; $\mathrm{t}$ second after it was at $\mathrm{P}$. We have form horizontal component of motion.

$\ell \sin \theta=(\mathrm{v} \cos \theta) \mathrm{t} \hspace{40mm}. . . . . . . .(4) $

From vertical component of motion

$-\ell \cos \theta=(\mathrm{v} \sin \theta) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}\hspace{40mm}. . . . . . . .(5) $

From (4) and (5), we get

$-\ell \cos \theta=(\mathrm{v} \sin \theta)\left[\frac{\ell \sin \theta}{v \cos \theta}\right]-\frac{1}{2} \mathrm{~g}\left[\frac{\ell \sin \theta}{\mathrm{v} \cos \theta}\right]^{2}$

Using $\mathrm{v}^{2}=\mathrm{g} \ell \cos \theta$ we get $\tan \theta=\sqrt{2}$

$\therefore \cos \theta=\frac{1}{\sqrt{3}}$ Substituting value of $\cos \theta$ in eqn(3), we have

$\mathrm{v}=[\mathrm{g} \ell(2+\sqrt{3})]^{1 / 2}$

31. A bullet of mass $M$ is fired at $50 \mathrm{~m} / \mathrm{s}$ at an angle $\theta$ with the horizontal. At the highest point of its trajectory, it collides head-on with a bob of mass $3 \mathrm{M}$ suspended by a $\frac{10}{3} \mathrm{~m}$ long massless string and gets embedded in the bob. After the collision; the string moves through an angle of $120^{\circ}$ in its vertical plane. The value of angle $\theta$ is nearly

(1) $30^{\circ}$

(2) $45^{\circ}$

(3) $60^{0}$

(4) $\tan ^{-1}(10)$

Show Answer

Correct answer: (1)

Solution:

Velocity of the bullet at the highest point $=u \cos \theta$

$$ =50 \cos \theta $$

Let $\mathrm{v}$ be the velocity acquired by bob when bullet gets embedded in to it. From the law of conservation of linear momentum, we get

$\mathrm{M}(50 \cos \theta)=(\mathrm{M}+3 \mathrm{M}) \mathrm{v}$

$$ \begin{equation*} \Rightarrow \mathrm{v}=\left(\frac{50}{4}\right) \cos \theta \tag{1} \end{equation*} $$

In Fig.; A is position of bob + bullet. The mass becomes $4 \mathrm{M}$ when bullet has got embedded. The bob moves in a vertical circle. $\mathrm{B}$ is position of bob + bullet when string has turned by $120^{\circ}$. Let $\mathrm{v} _{\mathrm{B}}$ of velocity of bob + bullet in position $B$.

From law of conservation of energy;

if $\mathrm{v} _{\mathrm{B}}$ is velocity at $\mathrm{B}$; we have

$$ \begin{equation*} \mathrm{v} _{\mathrm{B}}^{2}-\mathrm{v} _{\mathrm{A}}^{2}=2 \mathrm{~g}\left(\ell+\ell \cos 60^{\circ}\right) \tag{2} \end{equation*} $$

In position $B$ the centripetal force is due to component $4 \mathrm{mg} \cos 60^{\circ}$ of

weight in the radial direction. Therefore

$\frac{4 \mathrm{Mv} _{\mathrm{B}}^{2}}{\ell}=4 \mathrm{Mg} \cos 60^{\circ}$

$\frac{10}{3} \mathrm{M}, \mathrm{v} _{\mathrm{A}}=\frac{60}{4} \cos \theta$

$\therefore \quad \mathrm{v} _{\mathrm{B}}^{2}=\mathrm{g} \ell \cos 60=10 \times \frac{10}{3} \times \frac{1}{2}=\frac{50}{3} \mathrm{~m} / \mathrm{s} \hspace{40mm}. . . . . . . .(3)$

From eqns (2) and (3) we have

$\mathrm{v} _{\mathrm{A}}^{2}=\mathrm{v} _{\mathrm{B}}^{2}-2 \mathrm{~g}\left(\ell+\ell \cos 60^{\circ}\right)$

$$ \begin{align*} & =\frac{50}{3}+2 \times 10\left(\frac{10}{3}+\frac{10}{3} \times \frac{1}{2}\right) \quad\left[\mathrm{a}=-10 \mathrm{~m} / \mathrm{s}^{2}\right] \\ & =\frac{50}{3}+20 \times \frac{3}{2} \times \frac{10}{3} \\ & =\frac{50}{3}+100=\frac{350}{3} \tag{4} \end{align*} $$

Equating (1) and (4) we have,

$$ \begin{aligned} & \left(\frac{50}{4} \cos \theta\right)^{2}=\frac{350}{3} \\ & \cos ^{2} \theta=\frac{350}{3} \times \frac{16}{2500}=\frac{5600}{7500} \\ & \cos ^{2} \theta=\frac{56}{75} \end{aligned} $$

$$ \begin{aligned} \cos \theta & =\sqrt{\frac{56}{75}}=\sqrt{.7466} \\ & \simeq 0.86 \\ \therefore \theta & =30^{\circ} \end{aligned} $$

32. A small block of mass $m$ slides along a frictionless loop-to-loop track as shown. If the block starts from rest at $P$; the froce exerted by the track on the block at $Q$ is

(1) $8 \mathrm{mg}$

(2) $6 \mathrm{mg}$

(3) $4 \mathrm{mg}$

(4) $2 \mathrm{mg}$

Show Answer

Correct answer: (1)

Solution:

Height above $\mathrm{XY}$ at $\mathrm{P}=5 \mathrm{R}$

Height above $\mathrm{XY}$ at $\mathrm{Q}=\mathrm{R}$

$\therefore$ Height of $\mathrm{P}$ above $\mathrm{Q}=4 \mathrm{R}$

Let $\mathrm{v}$ be the velocity of the block at $\mathrm{Q}$, we have gain in K.E. = Loss in gravitational P.E.

$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mg}(4 \mathrm{R}) \quad[\mathrm{KE}$ gained $=\mathrm{PE}$ lost $]$

$\therefore \mathrm{v}^{2}=8 \mathrm{gR} \hspace{40mm}. . . . . . . .(1)$

For circular motion at $\mathrm{Q}$, we have

$\frac{\mathrm{mv}^{2}}{\mathrm{R}}=\mathrm{N} \Rightarrow \mathrm{N}=\frac{\mathrm{m}(8 \mathrm{gR})}{\mathrm{R}}=8 \mathrm{mg}$

$\therefore$ For exerted by the track on the block $=8 \mathrm{mg}$

33. A spherical ball of mass ’ $m$ ’ is kept at the highest point in the space between two concentric spheres $A$ and $B$ as shown. The radius of sphere ’ $A$ ’ is $R$ and the ball between the spheres has a diameter very slightly less than ’ $d$ ‘. All the surfaces are frictionless. At the highest point, the ball rests on the inner sphere $A$. The ball is given a gentle push towards right. The instantaneous position vector of the ball makes as angle $\theta$ with the upper vertical $O A$. The angle at which the ball leaves contact with the sphere ’ $A$ ’ is

(1) $\cos ^{-1}\left(\frac{2}{3}\right)$

(2) $\cos ^{-1}\left(\frac{3}{4}\right)$

(3) $\tan ^{-1}\left(\frac{2}{3}\right)$

(4) $\tan ^{-1}\left(\frac{3}{2}\right)$

Show Answer

Correct answer: (1)

Solution:

Let ‘h’ denote the vertical distance covered by the ball from the highest point to position $\mathrm{P}$ where $\angle \mathrm{HOP}=\theta$

We have $\mathrm{h}=\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)(1-\cos \theta)$

The velocity v of the ball at $P$ in given by

$$ \begin{equation*} \mathrm{v}^{2}=2 \mathrm{gh}=2 \mathrm{~g}\left(\mathrm{R}+\frac{\mathrm{d}}{2}\right)(1-\cos \theta) \tag{1} \end{equation*} $$

Let $\mathrm{N} _{\mathrm{A}}$ denote the normal reaction of A on the ball away from the centre at point $\mathrm{P}$. We have,

$$ \begin{align*} & m g \cos \theta-N _{A}=\frac{m^{2}}{\left(R+\frac{d}{2}\right)} \\ & \quad=\frac{m}{\left(R+\frac{d}{2}\right)}\left[2 g\left(R+\frac{d}{2}\right)(1-\cos \theta)\right] \tag{1} \\ & \quad=2 m g(1-\cos \theta) \\ & \therefore \quad N _{A}=-2 m g+2 m g \cos \theta+m g \cos \theta \\ & \quad=m g(3 \cos \theta-2) \end{align*} $$

The ball will lose contact with the sphere $A$ when $\mathrm{N} _{\mathrm{A}}=0$

or $ \quad 3 \cos \theta-2=0$

or $ \quad \cos \theta=\frac{2}{3}$

$\Rightarrow \theta=\cos ^{-1}\left(\frac{2}{3}\right)$

Option (1)

34. A smooth sphere of radius $R$ is moving along a straight path with a constant acceleration ’ $a$ ‘. A particle is released from the top of the sphere with zero velocity with respect to the sphere. As the particle slides down the sphere through an angle $\theta$ with respect to the sphere; the kinetic energy acquired by the particle is

(1) $\operatorname{mgR}(1-\cos \theta)$

(2) $\mathrm{mR}(g-a \sin \theta)$

(3) $\mathrm{mR}(\mathrm{a} \sin \theta-\mathrm{g} \cos \theta+\mathrm{g})$

(4) $2 \mathrm{mR}(\mathrm{a} \sin \theta-g \cos \theta)$

Show Answer

Correct answer: (3)

Solution:

Let the sphere move towards left with a uniform acceleration ’ $a$ ‘.

In Fig.; A is initial position of mass and $B$ its position when it has slided down by an angle $\theta$ on the sphere. The forces acting on $m$ are as shown in Fig. Note $F _{\text {fic }}=m a$ is the fictitious force on mass $m$. $R$ is the force of normal reaction between $m$ and the sphere.

Let ’ $\mathrm{v}$ ’ denote tangential velocity of mass $m$.

We have tangential acceleration.

$$ \mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}} $$

Equation of motion is

$\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{ma} \cos \theta+\mathrm{mg} \sin \theta$

Multiplying by v, we get

$\mathrm{mv} \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{ma}\left(\mathrm{R} \frac{\mathrm{d} \theta}{\mathrm{dt}}\right) \cos \theta+\mathrm{mg}\left(\mathrm{R} \frac{\mathrm{d} \theta}{\mathrm{dt}}\right) \sin \theta \quad\left[\mathrm{Use} \quad \mathrm{v}=\mathrm{R} \frac{\mathrm{d} \theta}{\mathrm{dt}}\right]$

Divide the equation by $\frac{\mathrm{m}}{\mathrm{dt}}$, we get

$\mathrm{vdv}=\mathrm{aR} \cos \theta \mathrm{d} \theta+\mathrm{gR} \sin \theta \mathrm{d} \theta$

Integrating both sides

$$ \begin{equation*} \frac{\mathrm{v}^{2}}{2}=\mathrm{aR} \sin \theta-\mathrm{gR} \cos \theta+\mathrm{K} \tag{1} \end{equation*} $$

Where $\mathrm{K}$ is constant of integration

At $\theta=0 ; \mathrm{v}=0$

$\therefore \mathrm{K}=\mathrm{gR}$ $\therefore \frac{\mathrm{v}^{2}}{2}=\mathrm{aR} \sin \theta-\mathrm{gR} \cos \theta+\mathrm{gR}$

[From(1)]

or $\quad \mathrm{v}^{2}=2 \mathrm{aR} \sin \theta-2 \mathrm{gR} \cos \theta+2 \mathrm{gR}$

$=2 \mathrm{R}(\mathrm{a} \sin \theta-\mathrm{g} \cos \theta+\mathrm{g})$

or

$$ \mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mR}(\mathrm{a} \sin \theta-\mathrm{g} \cos \theta+\mathrm{g}) $$

35. $A B$ and $C D$ are frictionless horizontal surfaces with a loop the loop track of radius ’ $r$ ’ on $C D$ as shown in Fig. A ball of mass $m$ at rest on $A B$ is given a gentle push. $h$ is height of $A B$ above the top $E$ of the loop The particle goes around the loop without falling off the track. The minimum value of ’ $h$ ’ for looping the loop is

(1) $\mathrm{r}$

(2) $2 \mathrm{r}$

(3) $\frac{r}{2}$

(4) $\mathrm{r}^{2}$

Show Answer

Correct answer: (3)

Solution:

Let $\mathrm{v}$ be the velocity of the ball at $\mathrm{E}$; the upper most point of the loop.

Then $\mathrm{KE}$ at $\mathrm{E}=\mathrm{PE}$ lost over a height $\mathrm{h}$

or $\quad \frac{1}{2} \mathrm{mv}^{2}=\mathrm{mgh} \quad$ or $\mathrm{mv}^{2}=2 \mathrm{mgh} \hspace{40mm}. . . . . . . .(1) $

The forces acting on $\mathrm{m}$; at $\mathrm{E}$ are as shown in Fig.2. $\mathrm{R}$ is the reaction force which $\mathrm{m}$ exerts on loop. For dynamic equilibrium.

$\mathrm{mg}+\mathrm{R}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \quad[\mathrm{R}=$ Normal reaction $]$

or $\mathrm{mg}+\mathrm{R}=\frac{2 \mathrm{mgh}}{\mathrm{r}} \quad$ [Using (1)]

For ’ $h$ ’ to be minimum; the normal reaction $\mathrm{R}$ at top of the track should be zero. Therefore

$$ \frac{2 \mathrm{mgh} _{\min }}{\mathrm{r}}=\mathrm{mg} $$

or $\mathrm{h} _{\text {min }}=\frac{\mathrm{r}}{2}$

Option(3)

36. A force $\mathbf{F}=2 x \mathbf{j}$ newton acts in XOY plane. A particle under the action of $\mathbf{F}$ moves anticlockwise along a square loop $\mathrm{ABCD}$ as shown in Fig. The nature of the force and the total amount of work done over a cycle can be expressed as

(1) Conservative; 4 J

(2) Conservative; $8 \mathrm{~J}$

(3) Non-conservative; 4J

(4) Non-conservative; $8 \mathrm{~J}$

Show Answer

Correct answer: (4)

Solution:

We have $\overrightarrow{\mathrm{F}}=2 x \hat{\mathrm{j}}$ newton

Total work done in moving the particle along the closed path is

$$ \begin{aligned} \mathrm{W}= & \int _{\mathrm{ABCDA}} \mathbf{F} \cdot \mathrm{d} \boldsymbol{x}=\int _{0}^{2}(2 x \mathbf{j}) \cdot(\mathrm{d} x \mathbf{i})+\int _{0}^{2}(2 x \mathbf{j}) \cdot \mathrm{d} x \mathbf{j}+\int _{0}^{2}(2 x \mathbf{j}) \cdot \mathrm{d} x(-\mathbf{i})+\int _{0}^{2}(2 x \mathbf{j}) \cdot \mathrm{d} x(-\mathbf{j}) \\ & =0+2\left|\frac{x^{2}}{2}\right| _{0}^{2}+0-2\left|\frac{x^{2}}{2}\right| _{2}^{0} \\ & =0+2\left(\frac{4}{2}\right)-2\left(-\frac{4}{2}\right) \\ & =4+4=8 \mathrm{~J} \end{aligned} $$

As the work done by the force along a closed path is non-zero; the force in non-conservative.

Option (4)

37. Fig. shows a spring of spring constant $k$, attached to block of mass $m$ is a massless, inextensible string passing over a massless, frictionless pulley. The mass $m$ is held at rest in position where spring has its natural length. The mass $m$ is let go, the maximum speed acquired by it is

(1) $\sqrt{\frac{k}{m}} g$

(2) $\frac{\mathrm{m}}{\mathrm{k}} \mathrm{g}$

(3) $\frac{1}{2} \sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \mathrm{g}$

(4) $\sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \mathrm{g}$

Show Answer

Correct answer: (1)

Solution:

Let $x$ be the instantaneous elongation in length of spring (equal to vertical distance moved down by mass $\mathrm{m}$ ) and $\mathrm{v}$ instantaneous speed acquired by $\mathrm{m}$. The loss in gravitational potential energy is converted into

(i) Kinetic energy of mass $m$ and

(ii) Energy stored in the spring

Therefore,

$\operatorname{mg} x=\frac{1}{2} \mathrm{k} x^{2}+\frac{1}{2} \mathrm{mv}^{2}$

or $\mathrm{mv}^{2}=2 \mathrm{mg} x-\mathrm{k} x^{2}$

Differentiating w.r.t. $x$, we get

$\mathrm{m} \cdot 2 \mathrm{v} \frac{\mathrm{dv}}{\mathrm{d} x}=2 \mathrm{mg}-2 \mathrm{k} x$

$\mathrm{v}$ is maximum when $\frac{\mathrm{dv}}{\mathrm{d} x}=0$

or $\mathrm{mg}=\mathrm{k} x$ or $x=\frac{\mathrm{mg}}{\mathrm{k}} \hspace{40mm}. . . . . . . .(2) $

From eqns (1) and (2) we have,

$\mathrm{mg}\left(\frac{\mathrm{mg}}{\mathrm{k}}\right)=\frac{1}{2} \mathrm{k}\left(\frac{\mathrm{mg}}{\mathrm{k}}\right)^{2}+\frac{1}{2} \mathrm{mv} _{\max }^{2}$

$\Rightarrow \frac{1}{2} \frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{\mathrm{k}}=\frac{1}{2} \mathrm{mv} _{\max }^{2}$

or $\quad \mathrm{v} _{\text {max }}=\sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \mathrm{g}$

38. A massless spring gets compressed by $20 \mathrm{~cm}$ due to a $20 \mathrm{~N}$ force applied to it. The spring is placed at the bottom of $30^{\circ}$ incline with one end attached to a rigid vertical support as shown in figure. A $10 \mathrm{~kg}$ mass at rest, is released from the top of the incline. The mass is momentarily at rest after compressing the spring through two meters. The distance through which the mass slides before Coming to rest is

(1) $4 \mathrm{~m}$

(2) $8 \mathrm{~m}$

(3) $2 \mathrm{~m}$

(4) $16 \mathrm{~m}$

Show Answer

Correct answer: (1)

Solution:

Let the mass be released a distance $\ell$ above $\mathrm{B}$ on the incline. $\mathrm{C}$ is position of mass when its is again momentarily at rest.

Then total distance covered by the block $=(\ell+2) \mathrm{m}$

Vertical distance covered by the block $=(\ell+2) \sin 30^{\circ}$

Work done by gravity on the block $=\mathrm{mg}(\ell+2) \sin 30$

or $\quad \mathrm{W}=\frac{1}{2} \mathrm{mg}(\ell+2)$

The spring constant of the spring $=\mathrm{k}=\frac{\mathrm{F}}{x}$

$$ =\frac{20 \mathrm{~N}}{\frac{20}{100} \mathrm{~m}}=100 \mathrm{Nm}^{-1} $$

$\mathrm{U}=$ The potential energy stored in the spring $=\frac{1}{2} \mathrm{k}(2)^{2}$

$$ =\frac{1}{2}(100)(2)^{2}=200 \mathrm{~J} $$

From law of conservation of energy; $\mathrm{U}=\mathrm{W}$

$\therefore \quad \frac{1}{2} \mathrm{mg}(\ell+2)=200 \mathrm{~J}$

$$ \begin{aligned} & (\ell+2)=\frac{200 \times 2}{\mathrm{mg}} \\ & =\frac{200 \times 2}{10 \times 10}=4 \mathrm{~m} \end{aligned} $$

39. A block of mass $M$ is pushed against a spring of stiffness $k$ fixed at one end with a rigid vertical wall $W$. The block can slide on a smooth horizontal surface. The spring is initially compressed through ’ $a$ ‘, half the natural length of the spring. The block is released. The velocity of the block as a function of $x$, the distance from the wall $W$ (for $\mathrm{x}$ less than the natural length of the spring) is

(1) $\sqrt{\frac{\mathrm{k}}{\mathrm{m}}\left[\mathrm{a}^{2}-(2 \mathrm{a}-x)^{2}\right]}$

(2) $\sqrt{\frac{k}{m}\left[a^{2}-(a-x)^{2}\right]}$

(3) $\sqrt{\frac{\mathrm{m}}{\mathrm{k}}\left[\mathrm{a}^{2}-(\mathrm{a}-x)^{2}\right]}$

(4) $\sqrt{\frac{k}{m} a}$

Show Answer

Correct answer: (1)

Solution:

When the block is released, the spring pushes the block towards right. The potential energy of the spring is converted to kinetic energy till it loses contact with the spring.

Initial $\mathrm{PE}$ in the spring $=\frac{1}{2} \mathrm{ka}^{2}$

At a distance $x$ from the wall; compression is reduced to $(2 \mathrm{a}-x)$ for values of $x$ less than the natural length $2 a$ of the spring. Let ’ $v$ ’ be the speed of the block at this instant.

By conservation of energy, we get

$(\mathrm{PE}) _{\text {initial }}=(\mathrm{PE}) _{\text {final }}+\mathrm{KE}$

or $\quad \frac{1}{2} \mathrm{ka}^{2}=\frac{1}{2} \mathrm{k}(2 \mathrm{a}-x)^{2}+\frac{1}{2} \mathrm{mv}^{2}$

$m v^{2}=k\left[a^{2}-(2 a-x)^{2}\right]$

$\mathrm{v}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}\left[\mathrm{a}^{2}-(2 \mathrm{a}-x)^{2}\right]}$

40. A particle with constant total energy $E$ moves in one dimension in a region where the potential energy is represented by $\mathrm{U}(x)$. The speed of the particle is zero where.

(1) $\frac{\mathrm{d}^{2} \mathrm{U}(x)}{\mathrm{d} x^{2}}=0$

(2) $\frac{\mathrm{dU}(x)}{\mathrm{d} x}=0$

(3) $\mathrm{U}(x)=\mathrm{E}$

(4) $\mathrm{U}(x)=0$

Show Answer

Correct answer: (3)

Solution:

We have total energy $=\mathrm{E}$

Also Total energy $\mathrm{E}=\mathrm{KE}+\mathrm{PE}$

When $\mathrm{PE}=\mathrm{E}$

$\mathrm{KE}=$ zero

and have $\mathrm{v}=0$

$\therefore$ Option (3) is correct.

41. A block of mass $M$ is resting on a rough horizontal surface with coefficient of friction $\mu$. The block is attached to an ideal spring of spring constant ’ $k$ ’ and the other end of the spring is fixed to a rigid wall 1 as shown. The block is imparted a sudden impulse resulting in a compression ’ $b$ ’ in the spring before coming to rest for the first time. The impulse imparts an initial velocity ’ $u$ ’ to the block. The co-efficient of friction $\mu$ between the block and the horizontal surface is

(1) $\frac{\mu^{2}}{2 g}$

(2) $\frac{\mathrm{M} \mu^{2}+\mathrm{kb}^{2}}{2 \mathrm{Mgb}}$

(3) $\frac{\mathrm{M} \mu^{2}-\mathrm{kb}^{2}}{\mathrm{Mgb}}$

(4) $\frac{\mathrm{M} \mu^{2}-\mathrm{kb}^{2}}{2 \mathrm{Mgb}}$

Show Answer

Correct answer: (4)

Solution:

The initial K.E. of the block in used to store elastic potential energy in the block and to perform work against friction.

$$ \begin{aligned} & \therefore \quad \frac{1}{2} \mathrm{Mu}^{2}=\frac{1}{2} \mathrm{~kb}^{2}+\mu(\mathrm{Mg}) \mathrm{b} \\ & \quad \mu \mathrm{Mgb}=\frac{1}{2} \mathrm{Mu}^{2}-\frac{1}{2} \mathrm{~kb}^{2} \\ & \text { or } \quad \mu=\frac{\mathrm{Mu}^{2}-\mathrm{kb}{ }^{2}}{2 \mathrm{Mgb}} \end{aligned} $$

42. A block $B$ is attached to two upstretched springs $S _{1}$ and $S _{2}$ of spring constants $K _{1}$ and $K _{2}$ respectively. The other ends of the springs are attached to two masses $M _{1}$ and $M _{2}$ not attached to the walls 1 and 2. The springs and the supports have negligible mass and there is no friction. The block $B$ is displaced towards wall 1 through a small distance ’ $a$ ’ and released. The block returns and moves a maximum distance $\frac{a}{2}$ towards wall 2 . The displacements ’ $a$ ’ and $\frac{a}{2}$ are measured with respect to the equilibrium position of block $B$. The ratio $\frac{\mathrm{K} _{2}}{\mathrm{~K} _{1}}$ is

(1) $\frac{1}{4}$

(2) 4

(3) 2

(4) $\frac{1}{2}$

Show Answer

Correct answer: (2)

Solution:

When mass M is moved a distance ’ $a$ ’ towards wall 1 ; spring $S _{1}$ gets compressed by ’ $a$ ‘. However spring $S _{2}$ has no change in its length because mass $M _{2}$ is free to move. The energy $U _{1}$ of system is due to compression of spring $S _{1}$ only.

$$ \begin{equation*} \therefore \quad \mathrm{U} _{1}=\frac{1}{2} \mathrm{k} _{1} \mathrm{a}^{2} \tag{1} \end{equation*} $$

On being released, block $\mathrm{B}$ moves towards equilibrium position, overshoots the position and compresses

$S _{2}$ by $\frac{a}{2}$ before coming to rest. Now mass $M _{1}$ detaches itself from wall and there is no change in length of $S _{1}$. The energy of system, $U _{2}$, is now due to compression of spring $S _{2}$ only.

Therefore $\mathrm{U} _{2}=\frac{1}{2} \mathrm{k} _{2}\left(\frac{\mathrm{a}}{2}\right)^{2} \hspace{40mm}. . . . . . . . . (2)$

From law of conservation of energy $U _{1}=U _{2}$ i.e.

$$ \begin{aligned} & \frac{1}{2} \mathrm{k} _{1} \mathrm{a}^{2}=\frac{1}{2} \mathrm{k} _{2}\left(\frac{\mathrm{a}}{2}\right)^{2} \\ \therefore \quad & \frac{\mathrm{k} _{2}}{\mathrm{k} _{1}}=4 \end{aligned} $$

43. An ideal spring with spring constant $100 \mathrm{Nm}^{-1}$ is suspended from a ceiling. A block of mass $0.1 \mathrm{~kg}$ is attached to its free end. The spring is initially upstretched. The mass is released from rest. The maximum extension produced in the spring is:

[Take $\mathrm{g}=\mathbf{1 0} \mathbf{~ m s}^{-2}$ ]

(1) $\frac{1}{100} \mathrm{~m}$

(2) $\frac{2}{100} \mathrm{~m}$

(3) $\frac{4}{100} \mathrm{~m}$

(4) $\frac{1}{200} \mathrm{~m}$

Show Answer

Correct answer: (2)

Solution:

For mass M suspended from the free lower end of the spring; if ’ $h$ ’ denotes the maximum extension; then the P.E. lost by the mass is stored as energy in the spring.

$\therefore \frac{1}{2} \mathrm{kh}^{2}=\mathrm{mgh}$

or $\mathrm{h}=\frac{2 \mathrm{mg}}{\mathrm{k}}$

$=\frac{2 \times 0.1 \times 10}{10}=\frac{2}{100} \mathrm{~m}$.

44. A simple pendulum has a bob of mass $m$. It is suspended by an elastic string of force constant $\mathrm{K}$. The extension $\Delta \ell$ produced in the string is very small as compared to ’ $\ell$ ‘. The pendulum bob is let go at rest from $90^{\circ}$ angular amplitude; the maximum extension and the maximum speed ’ $v$ ’ of bob are:

(1) $\Delta \ell=\frac{\mathrm{mg}}{\mathrm{k}} ; \mathrm{v}=\sqrt{2 \mathrm{~g}\left(\ell-\frac{3 \mathrm{mg}}{\mathrm{k}}\right)}$

(2) $\Delta \ell=\frac{2 \mathrm{mg}}{\mathrm{k}} ; \mathrm{v}=\sqrt{2 \mathrm{~g} \ell}$

(3) $\Delta \ell=\frac{3 \mathrm{mg}}{\mathrm{k}} ; \mathrm{v}=\sqrt{2 \mathrm{~g}\left(\ell-\frac{3 \mathrm{mg}}{2 \mathrm{k}}\right)}$

(4) $\Delta \ell=\frac{3 \mathrm{mg}}{\mathrm{k}} ; \mathrm{v}=\sqrt{2 \mathrm{~g}(\ell+\Delta \ell)}$

Show Answer

Correct answer: (3)

Solution:

The bob is let go from rest in position A.

For vertical motion of the bob, let $\mathrm{v}$ be speed of bob in position $\mathrm{B}$ and $\ell+\Delta \ell$, the instantaneous length of string.

$\mathrm{v}^{2}=2 \mathrm{~g}(\ell+\Delta \ell)$

or $\quad \mathrm{v}=\sqrt{2 \mathrm{~g}(\ell+\Delta \ell)}$

Stretching force at $\mathrm{B}=\mathrm{mg}+\mathrm{F} _{\text {centrifugal }}$

$$ \begin{aligned} & =\mathrm{mg}+\frac{\mathrm{mv}^{2}}{(\ell+\Delta \ell)}=\mathrm{mg}+\frac{\mathrm{m} 2 \mathrm{~g}(\ell+\Delta \ell)}{(\ell+\Delta \ell)} \\ & =3 \mathrm{mg} \end{aligned} $$

$\therefore \mathrm{k} \Delta \ell=3 \mathrm{mg}$

and $\quad \Delta \ell=\frac{3 \mathrm{mg}}{\mathrm{k}}$

By energy conservation $\mathrm{PE}$ lost $=\mathrm{KE}$ of the bob $+\mathrm{PE}$ in string

$$ \begin{array}{rl} \mathrm{mg}(\ell & +\Delta \ell)=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{k}(\Delta \ell)^{2} \\ \mathrm{mv}^{2} & =2 \mathrm{mg}(\ell+\Delta \ell)-\mathrm{k}(\Delta \ell)^{2} \\ & =2 \mathrm{mg}\left(\ell+\frac{3 \mathrm{mg}}{\mathrm{k}}\right)-\mathrm{k}(\Delta \ell)^{2} \\ & =2 \mathrm{mg}\left(\ell+\frac{3 \mathrm{mg}}{\mathrm{k}}\right)-\frac{(3 \mathrm{mg})^{2}}{\mathrm{k}} \\ \quad & v^2 =2 \mathrm{~g} \ell+\frac{6 \mathrm{mg}^{2}}{\mathrm{k}}-\frac{9 \mathrm{mg}^{2}}{\mathrm{k}} \\ = & 2 \mathrm{~g} \ell-\frac{3 \mathrm{mg}^{2}}{\mathrm{k}} \end{array} $$

$=2 \mathrm{~g}\left(\ell-\frac{3 \mathrm{mg}}{2 \mathrm{k}}\right)$

$\mathrm{v}=\sqrt{2 \mathrm{~g}\left(\ell-\frac{3 \mathrm{mg}}{2 \mathrm{k}}\right)}$

Option(3)

45. A uniform chain of linear mass density $\lambda$ has a length $L$ and mass M. A part $\left(\frac{1}{n}\right)$ of its length hangs down from the edge of the table (assumed frictionless). The chain is gradually pulled till the entire chain is on the table. The work done, in the process, is proportional to

(1) $\mathrm{n}$

(2) $\mathrm{n}^{2}$

(3) $\frac{1}{\mathrm{n}}$

(4) $\frac{1}{\mathrm{n}^{2}}$

Show Answer

Correct answer: (4)

Solution:

The linear mass density of the chain is $\lambda=\frac{\mathrm{M}}{\mathrm{L}}$

The chain is pulled without acceleration. The length hanging will continuously change. Let y be the length hanging at an instant of time.

The force required to pull the chain up the table $=\mathrm{F}=($ Mass $) \mathrm{g}=(\lambda \mathrm{y}) \mathrm{g}=\lambda \mathrm{gy}$

Work done to pull a small length dy up the table $=\mathrm{dW}=\lambda \mathrm{gy}(-\mathrm{dy})$

$\therefore$ Total work done to pull the entire

$$ \begin{aligned} \text { chain } & =\mathrm{W}=\int _{\mathrm{L} / \mathrm{n}}^{0} \lambda \mathrm{gy}(-\mathrm{dy})=-\lambda \mathrm{g}\left|\frac{\mathrm{y}^{2}}{2}\right| _{\mathrm{L} / \mathrm{n}}^{0} \\ & =-\lambda \mathrm{g}\left[0-\frac{\mathrm{L}^{2}}{2 \mathrm{n}^{2}}\right] \\ & =\frac{\lambda \mathrm{gL}^{2}}{2 \mathrm{n}^{2}}=\left(\frac{\mathrm{M}}{\mathrm{L}}\right) \frac{\mathrm{gL}^{2}}{2 \mathrm{n}^{2}}=\frac{1}{2} \frac{\mathrm{MgL}}{\mathrm{n}^{2}} \end{aligned} $$

$\therefore \mathrm{W} \alpha \frac{1}{\mathrm{n}^{2}}$

Option (4)

46. A massless rigid rod of length ’ $\ell$ ’ suspended vertically from a rigid support at one end has a mass ’ $m$ ’ at its mid-point and another identical mass at its free end. The velocity that must be imparted to the lower mass which may just make the rod horizontal is

(1) $\sqrt{\frac{12}{5} \mathrm{~g} \ell}$

(2) $\sqrt{2 \mathrm{~g} \ell}+\sqrt{\mathrm{g} \ell}$

(3) $\sqrt{2 \mathrm{~g} \ell}$

(4) $2 \sqrt{2 \mathrm{~g} \ell}$

Show Answer

Correct answer: (1)

Solution:

In Fig. shown; A and B are the two masses. The masses will have same angular velocity but different linear velocity.

$\therefore \quad \frac{\mathrm{v}}{\ell}=\frac{\mathrm{v}^{\prime}}{\ell^{\prime} / 2} \Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{v}}{2}$

Using energy conservation principle; Gain in gravitational P.E. $=$ Loss in Kinetic energy $\mathrm{mg} \ell+\mathrm{mg} \frac{\ell}{2}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{~m}\left(\frac{\mathrm{v}}{2}\right)^{2}$

or $\quad \frac{3}{2} \mathrm{~g} \ell=\frac{\mathrm{v}^{2}}{2}+\frac{\mathrm{v}^{2}}{8}=\frac{5}{8} \mathrm{v}^{2}$

or $\quad \mathrm{v}=\frac{3}{2} \times \frac{8}{5} \mathrm{~g} \ell=\sqrt{\frac{12}{5} \mathrm{~g} \ell}$

Option (1)

47. A particle constrained to move along $\mathbf{X}$-axis is subjected to a force in same direction varying with the distance $x$ of the particle from the origin as $\mathrm{F}(x)=-\mathrm{k} x+\mathrm{a} x^{3}$. $\mathbf{k}$ and ’ $\mathrm{a}$ ’ are positive constants. The functional form of the potential energy $\mathrm{U}(x)$ of the particle for $x<0$ is best represented is the graph.

Show Answer

Correct answer: (4)

Solution:

We have $\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{d} x}$

$\therefore \mathrm{dU}=-\mathrm{F} \mathrm{d} x$ or $\mathrm{U}(x)=-\int \mathrm{F} \mathrm{d} x$

or $\quad \mathrm{U}(x)=-\int _{0}^{x}\left(-\mathrm{k} x+\mathrm{a} x^{3}\right) \mathrm{d} x$

$$ =\frac{k x^{2}}{2}-\frac{a x^{4}}{4} $$

$\mathrm{U}(x)=0$ for $x=0$ and $x=\sqrt{\frac{2 \mathrm{k}}{\mathrm{a}}}$

$\mathrm{U}(x)$ is negative for $x>\sqrt{\frac{2 \mathrm{k}}{\mathrm{a}}}$

As $\mathrm{F}(x)=0$ at $x=0$; the slope of potential energy should be zero at $x=0$.

$\therefore$ The must appropriate option is (4).

48. In the figures (a) and (b); $A C, D G$ and GF are fixed inclined planes with $A B=D E=h$. $\mathrm{BC}=\mathrm{EF}=\boldsymbol{x}$ and $\mathrm{EL}=\mathrm{LF}=\frac{x}{2}$. A small block of mass $\mathrm{M}$ is released from $\mathrm{A}$ which slides down $A C$ and reaches $C$ with a velocity $v _{1}$. The same block is now released from $D$. It slides down along DGF reaching $F$ with a velocity $v _{2}$. The coefficients of friction between the block and surfaces AC; DG and GF are $\mu ; \frac{\mu}{2}$ and $\frac{\mu}{4}$ as shown. The ratio $\frac{\mathrm{v} _{2}}{\mathrm{v} _{1}}$ is

(1) $\left[\frac{8 \mathrm{~h}-3 \mu x}{8(\mathrm{~h}-\mu x)}\right]^{1 / 2}$

(2) $\left[\frac{3 \mathrm{~h}-8 \mu x}{3(\mathrm{~h}-\mu x)}\right]^{1 / 2}$

(3) $\sqrt{6 \frac{h}{x}}$

(4) $\sqrt{\frac{x}{6 h}}$

Show Answer

Correct answer: (1)

Solution:

For Fig. (a); the $\mathrm{KE}$ at $\mathrm{C}$ is the difference of PE lost and the work against friction.

$\therefore \quad \frac{1}{2} \mathrm{mv} _{1}^{2}=\operatorname{mgh}-\mu \mathrm{mg} x \hspace{40mm}. . . . . . . .(1)$

$$ =\operatorname{mg}(\mathrm{h}-\mu x) $$

Similarly at F;

$$ \begin{aligned} \frac{1}{2} \mathrm{mv} _{2}^{2} & =\mathrm{mgh}-\frac{\mu}{2} \mathrm{mg} \frac{x}{2}-\frac{\mu}{4} \mathrm{mg} \frac{x}{2} \\ & =\operatorname{mgh}-\frac{\mu \mathrm{mg} x}{4}\left(1+\frac{1}{2}\right) \end{aligned} $$

$$ \begin{equation*} =\operatorname{mg}\left[\mathrm{h}-\frac{3 \mu x}{8}\right] \tag{2} \end{equation*} $$

From eqns (1) and (2) we have

$\frac{\mathrm{v} _{2}^{2}}{\mathrm{v} _{1}^{2}}=\frac{8 \mathrm{~h}-3 \mu x}{8(\mathrm{~h}-\mu x)}$

$\frac{\mathrm{v} _{2}}{\mathrm{v} _{1}}=\left[\frac{8 \mathrm{~h}-3 \mu x}{8(\mathrm{~h}-\mu x)}\right]^{1 / 2}$

49. A particle in acted by a conservative force $\mathrm{F}=\mathrm{k} x$ where $\mathrm{k}$ is a positive constant. The potential energy of the particle is $\frac{1}{2} \mathrm{ka}^{2}$ at $x=0$. The curve correctly representing the variation of potential energy of the particle with respect to $x$ is

(1) (1)

(2) (2)

(3) (3)

(4) (4)

Show Answer

Correct answer: (4)

Solution:

For a conservative force $\mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{d} x}$

$\mathrm{U}(x)-\mathrm{U}(\mathrm{O})=-\int \mathrm{Fd} x=-\mathrm{k} \int _{0}^{x} x \mathrm{~d} x=-\mathrm{k} \frac{x^{2}}{2}$

Given $\mathrm{U}(\mathrm{O})=\frac{1}{2} \mathrm{ka}^{2}$

Therefore, $\mathrm{U}(x)=\frac{1}{2} \mathrm{ka}^{2}-\frac{1}{2} \mathrm{k} x^{2}=\frac{1}{2} \mathrm{k}\left(\mathrm{a}^{2}-x^{2}\right)$

The graph of $\mathrm{U}(x)$ vs $x$ is a parabola. However at $x=0, \mathrm{U} \neq 0$

$\mathrm{U}(x)=0$ at $x= \pm \mathrm{a}$, For $|x|>\mathrm{a} ; \mathrm{U}(x)$ is a-ve number.

The option is best represented in (4).

50. A rubber band stretched though a distance $x$ exerts a restoring force of magnitude $F=a x+b x^{2}$ where $a$ and $b$ are constants. The work done in stretching the unstretched band by $L$ is

(1) $a L^{2}+b L^{3}$

(2) $\frac{1}{2}\left(a L^{2}+b L^{3}\right)$

(3) $\frac{1}{2} a L^{2}+\frac{1}{3} b L^{3}$

(4) $\frac{1}{2}\left(a L^{2}+\frac{b L^{3}}{3}\right)$

Show Answer

Correct answer: (3)

Solution:

As the force is variable; the work done is calculated by integration.

Initially $x=0$

[Unstretched band]

and finally $x=\mathrm{L}$

[Given]

$\therefore$ Work done $\mathrm{W}=|\mathrm{dW}|=\int \mathrm{Fd} x$

$$ \begin{aligned} & =\int _{0}^{\mathrm{L}}\left(\mathrm{a} x+\mathrm{b} x^{2}\right) \mathrm{d} x \\ & =\left|\frac{\mathrm{a}{x^2 }^{2}}{2}\right| _{0}^{\mathrm{L}}+\left|\frac{\mathrm{b} x^{2}}{3}\right| _{0}^{\mathrm{L}} \\ & =\frac{\mathrm{aL^2}}{2}+\frac{\mathrm{bL^3}}{3} \end{aligned} $$

51. The potential energy of a gas molecule as a function of intermolecular separation ’ $r$ ’ is $\mathrm{U}=\frac{\mathrm{M}}{\mathrm{r}^{6}}-\frac{\mathrm{N}}{\mathrm{r}^{12}} ; \mathrm{M}$ and $\mathrm{N}$ being positive constants. Then the potential energy at equilibrium is given by

(1) $\frac{\mathrm{MN}^{2}}{4}$

(2) $\frac{\mathrm{N}^{2}}{4 \mathrm{M}}$

(3) $\frac{\mathrm{M}^{2}}{4 \mathrm{~N}}$

(4) $\frac{\mathrm{NM}^{2}}{4}$

Show Answer

Correct answer: (3)

Solution:

We have $\mathrm{U}=\frac{\mathrm{M}}{\mathrm{r}^{6}}-\frac{\mathrm{N}}{\mathrm{r}^{12}}$

$\therefore \quad \mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dr}}=-\frac{\mathrm{d}}{\mathrm{dr}}\left(\frac{\mathrm{M}}{\mathrm{r}^{6}}-\frac{\mathrm{N}}{\mathrm{r}^{12}}\right)$

$$ =-\frac{6 \mathrm{M}}{\mathrm{r}^{7}}+\frac{12 \mathrm{~N}}{\mathrm{r}^{13}} $$

In equilibrium; $\mathrm{F}=0$

$\therefore \quad \frac{12 \mathrm{~N}}{\mathrm{r}^{13}}=\frac{6 \mathrm{M}}{\mathrm{r}^{7}} \quad$ or $\quad \mathrm{r}^{6}=\frac{2 \mathrm{~N}}{\mathrm{M}}$

$\therefore \quad U(r)=\frac{M}{2 N / M}-\frac{N}{4 N^{2} / M^{2}}=\frac{M^{2}}{2 N}-\frac{M^{2}}{4 N}=\frac{M^{2}}{4 N}$

52. A woman pushes a truck on a railway platform which has a rough surface. She applies a force of $100 \mathrm{~N}$ over a distance of $10 \mathrm{~m}$. Thereafter she gets progressively tired and her applied force reduces linearly over distance to $50 \mathrm{~N}$. The total distance by which the truck has moved is $20 \mathrm{~m}$. The total work done by the woman is

(1) $1500 \mathrm{~J}$

(2) $3000 \mathrm{~J}$

(3) $1750 \mathrm{~J}$

(4) $1000 \mathrm{~J}$

Show Answer

Correct answer: (3)

Solution:

The force applied is variable. The work done can be calculated as area under F vs $\mathrm{S}$ graph as shown in Fig. The variation from $10 \mathrm{~m}$ to $20 \mathrm{~m}$ is linear decrease from $100 \mathrm{~N}$ to $50 \mathrm{~N}$ represented by BC.

Work done $=$ Area under F vs S graph

$$ \begin{aligned} & =\operatorname{Area} \mathrm{OABCD} \\ & =\operatorname{Ar}(\mathrm{OABE})+\operatorname{Ar} \operatorname{Trap}(\mathrm{BCDE}) \\ & =100 \times 10+\frac{1}{2}(100+50) \times 10 \\ & =1000+750 \\ & =1750 \mathrm{~J} \end{aligned} $$

Option(3)

53. A charge $q$ moving with a velocity $v$ in a uniform magnetic field of intensity $B$ experiences a force $F$ given by $F=q(v \times B)$. A charged particle of mass $m$ is allowed to move in a magnetic field for a time $t$ and work done $W _{1}$ by the field on the charged particle is measured. The intensity of the magnetic field is suddenly doubled to $2 \mathrm{~B}$ and the work done $\mathrm{W} _{2}$ on the same particle in same time is again measured. $W _{1}$ and $W _{2}$ are related as

(1) $\mathrm{W} _{2}=2 \mathrm{~W} _{1}$

(2) $\mathrm{W} _{2}=4 \mathrm{~W} _{1}$

(3) $\mathrm{W} _{2}=\mathrm{W} _{1}$

(4) $\mathrm{W} _{2}=\frac{\mathrm{W} _{1}}{2}$

Show Answer

Correct answer: (3)

Solution:

We have $\mathbf{F}=\mathrm{q}(\mathbf{v} \times \mathbf{B})$

$$ \Rightarrow \mathbf{F} \perp \mathbf{v} $$

Work done by the force $=\mathrm{W}=\mathbf{F} . \mathbf{s}$ $=\mathbf{F} \cdot \mathbf{v} \mathrm{dt}$

$=\mathrm{Fv} d \mathrm{t} \cos 90 \degree =0$

$\therefore \mathrm{W} _{1}=\mathrm{W} _{2}=0$

Option (3)

54. A force $\mathrm{F}=-\mathrm{k}(\mathrm{y} \mathbf{i}+x \mathbf{j})$ [where $\mathrm{k}$ is a positive constant] acts on a particle moving in the $\boldsymbol{x}$ -$y$ plane. Starting from the origin; the particle is taken along the positive $x$-axis to the point $(a, 0)$ and then parallel to the $y$-axis to the point $(a, a)$. The total work done by the force on the particle is

(1) $-2 \mathrm{ka}^{2}$

(2) $2 \mathrm{ka}^{2}$

(3) $-\mathrm{ka}^{2}$

(4) $\mathrm{ka}^{2}$

Show Answer

Correct answer: (1)

Solution:

We have $\mathrm{F}=-\mathrm{k}(\mathrm{yi}+x \mathbf{j})$

The particle undergoes two displacements

(i) $\mathbf{S} _{1} ;(0,0)$ to $(a, 0)$

(ii) $\mathbf{S} _{2} ;(\mathrm{a}, 0)$ to $(\mathrm{a}, \mathrm{a})$

For (i) $\mathbf{S} _{1}=(\mathrm{a} \mathbf{i}+\mathrm{o} \mathbf{j})-(\mathbf{o} \mathbf{i}+\mathrm{j})=\mathrm{a} \mathbf{i}$

$$ \begin{aligned} \therefore \mathrm{W} _{1} & =\mathbf{F} _{1} \cdot \mathrm{S} _{1}=-\mathrm{k}(\mathrm{ai}+x \mathbf{j}) \cdot(\mathrm{ai}) \quad[\mathrm{y}=0 \text { along } x-\mathrm{axis}] \\ & =-\mathrm{ka}^{2} \end{aligned} $$

(ii)

$\mathbf{S} _{2}=(\mathrm{a} \mathbf{i}+\mathrm{a} \mathbf{j})-(\mathrm{a} \mathbf{i}+\mathrm{o} \mathbf{j})=\mathrm{a} \mathbf{j}$

$$ \begin{aligned} & \mathbf{F} _{2}=-\mathrm{k}(\mathrm{yi}+\mathrm{a} \mathbf{j}) \quad[\because \mathrm{n}=\text { a parallel to y direction }] \\ & \begin{aligned} \therefore \mathrm{W} _{2} & =\mathbf{F} _{2} \cdot \mathbf{S} _{2} \\ & =-\mathrm{k}[\mathrm{yi}+\mathrm{a} \mathbf{j}] \cdot(\mathrm{a} \mathbf{j}) \\ & =-\mathrm{ka}^{2} \end{aligned} \end{aligned} $$

$\therefore$ Total work $=\mathrm{W} _{1}+\mathrm{W} _{2}=-2 \mathrm{ka}^{2}$

Option (1)

55. The work done on a particle of mass $m$ by a force $\mathrm{k}\left[\frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}} \mathbf{i}+\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \mathbf{j}\right]$ (k being a constant of appropriate dimensions), when the particle is taken from a point $(a, 0)$ to a point $(0$, a) along a circular path of radius ’ $a$ ’ about the origin in the $x-y$ plane is

(1) $\frac{2 \mathrm{k} \pi}{\mathrm{a}}$

(2) $\frac{\mathrm{k} \pi}{\mathrm{a}}$

(3) $\frac{\mathrm{k} \pi}{2 \mathrm{a}}$

(4) 0

Show Answer

Correct answer: (4)

Solution:

In the figure;

$$ \mathbf{r}=x \mathbf{i}+y \mathbf{j} $$

$$ \begin{gathered} \mathbf{F}=\frac{\mathrm{k}}{\left(x^{2}+\mathrm{y}^{2}\right)^{3 / 2}}[x \mathbf{i}+\mathrm{y} \mathbf{j}] \\ =\frac{\mathrm{k}}{\left(x^{2}+\mathrm{y}^{2}\right)^{3 / 2}} \mathbf{r} \end{gathered} $$

$\therefore \mathbf{F}$ is along $\mathbf{r}$ or the force is radial and the particle is moved along the circular path.

$\therefore \mathbf{F} \perp \mathbf{S}$

$\therefore$ Work done $=$ zero

Option (4)

56. A force, $\mathrm{F} _{x}=\mathrm{kF}(x)$, varies with the distance, $\boldsymbol{x}$, in the manner shown in the graph. The work done by this force, in moving a particle, of mass $m$, from the point $(7,0,0)$ to the point $(17,0,0)$, would be

(1) (5760 k) Joule

(2) (2880 k) Joule

(3) $\left[(5760 \mathrm{k}) \cdot \ln \left(\frac{17}{7}\right)\right]$ Joule

(4) $\left[\frac{5760}{119} \mathrm{k}\right]$ Joule

Show Answer

Correct answer: (4)

Solution:

We observe that $\mathrm{F} _{x}=\mathrm{k} \times 576$ for $x=1$

$\mathrm{F} _{x}=\mathrm{k} \times 144\left(=\mathrm{k} \cdot\left(\frac{576}{4}\right)=\mathrm{k} \cdot\left(\frac{576}{2^{2}}\right)\right)$ for $x=2$

$\mathrm{F} _{x}=\mathrm{k} \times 64\left(=\mathrm{k} \cdot\left(\frac{576}{9}\right)=\mathrm{k} \cdot\left(\frac{576}{3^{2}}\right)\right)$ for $x=3$

$\mathrm{F} _{x}=\mathrm{k} \times 36\left(=\mathrm{k} \cdot\left(\frac{576}{10}\right)=\mathrm{k} \cdot\left(\frac{576}{4^{2}}\right)\right)$ for $x=4$

It follows that $\mathrm{F} _{x}=\frac{576 \mathrm{k}}{x^{2}}$

$\therefore$ Required work done =$\int_{x_{1}}^{x _{2}} F _{x} d x$

$$ \begin{aligned} & =(576 \mathrm{k})\left|-\frac{1}{x}\right| \\ & =(576)\left[\frac{1}{x _{1}}-\frac{1}{x _{2}}\right]=576 \mathrm{k}\left[\frac{1}{7}-\frac{1}{17}\right] \\ & =\left(\frac{576 \mathrm{k}}{119}\right) \times 10=\left[\frac{5760 \mathrm{k}}{119}\right] \text { Joule } \end{aligned} $$

57. If the gravitational force, between two masses, were to vary as $\frac{1}{\mathrm{r}^{3}}$, the work done in taking an object of mass $m$ from the surface of the earth, to a height $h$ ( $h$ is of the order of $R$ ), above the surface of the earth (radius of earth $=R$ ), would then be

(1) $\frac{\mathrm{GMm}}{2}\left[\frac{\mathrm{h}(\mathrm{h}+2 \mathrm{R})}{\mathrm{R}^{2}(\mathrm{R}+\mathrm{h})^{2}}\right]$

(2) $\frac{\mathrm{GMm}}{2}\left[\frac{\mathrm{R}(\mathrm{h}+2 \mathrm{R})}{\mathrm{R}^{2}(\mathrm{R}+\mathrm{h})^{2}}\right]$

(3) $\mathrm{GMm}\left[\frac{\mathrm{R}(\mathrm{h}+2 \mathrm{R})}{\mathrm{R}^{2}(\mathrm{R}+\mathrm{h})^{2}}\right]$

(4) $\mathrm{GMm}\left[\frac{\mathrm{h}(\mathrm{h}+2 \mathrm{R})}{\mathrm{R}^{2}(\mathrm{R}+\mathrm{h})^{2}}\right]$

Show Answer

Correct answer: (1)

Solution:

The gravitational force, between the mass $m$ and the earth (Mass $=M$ ), when the mass $m$ is at a height $x$ above the surface of the earth, would be

$$ \mathrm{F}(x)=\frac{\mathrm{GMm}}{(\mathrm{R}+x)^{3}} $$

$\therefore$ The work done, in moving the object (against the gravitational force) from the surface of the earth to a height $h$ above the surface, is

$$ \begin{aligned} \mathrm{W} & =\int _{x=0}^{x=\mathrm{h}}-\mathrm{F}(x) \mathrm{d} x=-\mathrm{GMm} \int _{x=0}^{x=\mathrm{h}}(\mathrm{R}+x)^{-3} \mathrm{~d} x \\ & =-(\mathrm{GMm})\left|\frac{-(\mathrm{R}+x)^{-2}}{2}\right| _{x=0}^{x=\mathrm{h}} \\ & =\left(\frac{\mathrm{GMm}}{2}\right)\left[\frac{\mathrm{h}(\mathrm{h}+2 \mathrm{R})}{\mathrm{R}^{2}(\mathrm{R}+\mathrm{h})^{2}}\right] \end{aligned} $$

58. An object, of mass $M$ rests on an inclined plane (of length $L)$, inclined at an angle $\theta$ to be horizontal. The coefficient of friction $\mu(x)$, between the object and the inclined plane, varies in direct proportion $\left[\mu(x)=\mu _{0} x\right]$ to the distance $(x)$ of the object from the bottom of the plane. The work done by an external force $\mathrm{F}=\mathrm{F}(x)$, in just taking the object (i.e., w" width=“300px”>without imparting it any velocity) from the bottom of the plane, to its top, would be

(1) $\operatorname{mg} L\left[2 \sin \theta+\left(\mu _{0} \cos \theta\right) L\right]$

(2) $\frac{\mathrm{mgL}}{2}\left[2 \sin \theta+\left(\mu _{0} \cos \theta\right) \mathrm{L}\right]$

(3) $\frac{\mathrm{mgL}}{2}\left[2 \cos \theta+\left(\mu _{0} \sin \theta\right) \mathrm{L}\right]$

(4) $\operatorname{mg} L\left[2 \cos \theta+\left(\mu _{0} \sin \theta\right) \mathrm{L}\right]$

Show Answer

Correct answer: (2)

Solution:

Consider the object at a distance $x$ from the bottom of the plane. The forces, acting on it are as shown. The force of friction, $\mathrm{F} _{\mathrm{R}}$, at this position, would be

The external force $\mathrm{F}(x)$, has to be infinitesimally greater than $\left(\mathrm{mg} \sin \theta+\mu _{0} x \mathrm{mg} \cos \theta\right)$. Hence the work done in taking the object from the bottom of the plane, to its top, is

$$ \begin{aligned} & \mathrm{W}=\int _{x=0}^{x=\mathrm{L}} \mathrm{F}(x) \mathrm{dx} \\ & \therefore \quad \mathrm{W}=\int _{x=0}^{x=\mathrm{L}}\left[\mathrm{mg} \sin \theta+\left(\mu _{0} \mathrm{mg} \cos \theta\right) x\right] \mathrm{d} x \\ & \quad=\mathrm{mg} \sin \theta|x| _{0}^{\mathrm{L}}+\mu _{0} \mathrm{mg} \cos \theta\left|\frac{x^{2}}{2}\right| _{0}^{\mathrm{L}} \end{aligned} $$

$$ =\frac{\mathrm{mgL}}{2}\left[2 \sin \theta+\left(\mu _{0} \mathrm{mg} \cos \theta\right) \mathrm{L}\right] $$

[Note: A quick way of finding the correct option, in the problem, can be as follows: The gain in P.E. of the object, when it moves up the plane, equals $\mathrm{Mgh}=\mathrm{MgL} \sin \theta$. The work done, by the force, (when the object is moved up without imparting it any velocity) would equal this gain in P.E. if the plane were a smooth surface. We should, therefore, get $\mathrm{W}=\mathrm{MgL} \sin \theta$ when $\mu _{0}=0$. It is early to check that only option (2) satisfies this requirement].

59. An object, of mass $M$ is resting on a smooth horizontal surface. A horizontal force $F(=F(x))$, acts on it such that the acceleration imparted by it to the object, keeps on increasing in direct proportion to the square of the distance $(x)$, moved by the object, from its starting position. The speed of the object, after moving through a distance $L$, would be

(1) $\mathrm{kL} \sqrt{\frac{1}{2} \mathrm{~L}}(\mathrm{k}=$ constant of proportionality $)$

(2) $\mathrm{kL} \sqrt{\frac{3}{4} \mathrm{~L}}(\mathrm{k}=$ constant of proportionality)

(3) $\mathrm{kL} \sqrt{\frac{2}{3} \mathrm{~L}}(\mathrm{k}=$ constant of proportionality)

(4) $\mathrm{kL} \sqrt{\frac{1}{6} \mathrm{~L}}(\mathrm{k}=$ constant of proportionality)

Show Answer

Correct answer: (3)

Solution:

The acceleration, a ( $x$ ), imparted to the object, at a distance $x$ from its starting position, is

$$ \mathrm{a}(x)=\mathrm{k} x^{2}(\mathrm{k}=\text { constant of proportionality }) $$

The force, $\mathrm{F}(x)$, acting on the object, at this position, is

$$ \mathrm{F}(x)=\mathrm{Ma}(x)=\operatorname{Mk} x^{2} $$

$\therefore$ Work done in moving a distance $\mathrm{d} x=\mathrm{dW}=\mathrm{F}(x) \mathrm{d} x$

$\therefore$ Total work done $=\mathrm{W}=\int _{x=0}^{x=\mathrm{L}} \mathrm{F}(x) \mathrm{d} x=\frac{\mathrm{MkL}^{3}}{3}$

This work increases only the K.E. of the object. Hence if $\mathrm{v}$ is the speed of the object, at the position $x=\mathrm{L}$, we have

$$ \begin{aligned} & \quad \frac{1}{2} \mathrm{Mv}^{2}=\frac{\mathrm{MkL}^{3}}{3} \\ & \therefore \quad \mathrm{v}=\mathrm{kL} \sqrt{\frac{2}{3} \mathrm{~L}} \end{aligned} $$

60. An object, of mass $M$, rests on a rough horizontal surface, such that the coefficient of friction, $\mu(x)$, between the object and the surface, varies as $\mu(x)=\mu _{0}(x)$.

Where $x$ is the distance, measured from the initial position of the object. An external (horizontal) force $\mathrm{F}(=\mathrm{F}(x))$, acting on the object, imparts it a constant acceleration, $a$. The speed, $V$, of the object, after moving through a distance $L$, is given by

(1) $\mathrm{V}=\sqrt{\mathrm{L}\left(1+\mu _{0} \mathrm{gL}\right)}$

(2) $\quad V=\sqrt{L\left(1+\frac{\mu _{0} g L^{2}}{2}\right)}$

(3) $\quad \mathrm{V}=\sqrt{\mathrm{L}\left(1-\mu _{0} \mathrm{gL}\right)}$

(4) $\quad V=\sqrt{L\left(1-\frac{\mu _{0} g L^{2}}{2}\right)}$

Show Answer

Correct answer: (1)

Solution:

We have, $\mathrm{F}(x)-\left(\mu _{0} x \mathrm{Mg}\right)=\mathrm{Ma}$

The work done, by the force $\mathrm{F}(x)$, in moving a distance $\mathrm{d} x$, is $\mathrm{F}(x) \mathrm{d} x$. The total work done, in moving a distance, $\mathrm{L}$, is then

$$ \begin{aligned} \mathrm{W}= & \int _{x=0}^{x=\mathrm{L}} \mathrm{M}\left(\mathrm{a}+\mu _{0} \mathrm{~g} x\right) \mathrm{d} x=\mathrm{M}\left(\mathrm{L}+\frac{\mu _{0} \mathrm{gL^2}}{2}\right) \\ = & \frac{\mathrm{ML}}{2}\left(1+\mu _{0} \mathrm{gL}\right) \end{aligned} $$

This equals the increase in K.E. of the object. Hence the velocity v, after covering a distance L, is given by

$$ \begin{aligned} & \frac{1}{2} M v^{2}=\frac{M L}{2}\left(1+\mu _{0} g L\right) \\ & \therefore \quad v=\sqrt{L\left(1+\mu _{0} g L\right)} \end{aligned} $$

61. An object, of mass $M$, resting at the mid point of a smooth inclined plane, (of inclination ’ $h$ ’ in ’ 1 ’ and of length $2 \mathrm{~L}$ ), is acted upon by a horizontal force $F$ that just moves it up the plane (without imparting it any velocity). The magnitude of the normal reaction, $\mathrm{N}$, and the work (W) done by the force $\mathrm{F}$, are given by

(1) $\mathrm{N}=\frac{\left[(\mathrm{Mg}+\mathrm{F})\left(\sqrt{\mathrm{L} _{2}-\mathrm{h}^{2}}\right)\right]}{\mathrm{L}}$ and $\mathrm{W}=\mathrm{Fh}$

(2) $\mathrm{N}=\frac{[(\mathrm{Mg}+\mathrm{F}) \mathrm{h} / \mathrm{L}]}{\mathrm{L}}$ and $\mathrm{W}=\mathrm{F} \sqrt{\mathrm{L}^{2}-\mathrm{h}^{2}}$

(3) $\mathrm{N}=\frac{\left[\mathrm{Mg} \sqrt{\mathrm{L}^{2}-\mathrm{h}^{2}}+\mathrm{Fh}\right]}{\mathrm{L}}$ and $\mathrm{W}=\mathrm{F} \sqrt{\mathrm{L}^{2}-\mathrm{h}^{2}}$

(4) $\mathrm{N}=\frac{\left[\mathrm{Mgh}+\mathrm{F} \sqrt{\mathrm{L}^{2}-\mathrm{h}^{2}}\right]}{\mathrm{L}}$ and $\mathrm{W}=\left[\mathrm{F} \sqrt{\left(\mathrm{L}^{2}-\mathrm{h}^{2}\right)}\right]$

Show Answer

Correct answer: (3)

Solution:

The free body diagram, for the forces acting on the object, is as shown. We, therefore, have

$$ \mathrm{N}=\mathrm{mg} \cos \theta+\mathrm{F} \sin \theta $$

Also, it is the component $\mathrm{F} \cos \theta$, of the force $\mathrm{F}$, that does work in moving the object through a distance L. The work done is, therefore

$$ \mathrm{W}=\mathrm{F} \cos \theta . \mathrm{L} $$

We are given that $\sin \theta=\frac{\mathrm{h}}{\mathrm{L}}$.

Hence $\mathrm{N}=\mathrm{mg}\left(\sqrt{1-\frac{\mathrm{h}^{2}}{\mathrm{~L}^{2}}}\right)+\mathrm{F} \frac{\mathrm{h}}{\mathrm{L}}=\frac{1}{\mathrm{~L}}\left[\mathrm{mg} \sqrt{\mathrm{L}^{2}-\mathrm{h}^{2}}+\mathrm{Fh}\right]$

and $\mathrm{W}=\left\{\mathrm{F} \sqrt{1-\frac{\mathrm{h}^{2}}{\mathrm{~L}^{2}}}\right\} \mathrm{L}=\left(\mathrm{F} \sqrt{\mathrm{L}^{2}-\mathrm{h}^{2}}\right)$

62. A straight horizontal track, lying along the $x$-axis, has a length $3 \ell$. The first segment of the track, of length $2 \ell$, is perfectly smooth, while the second segment, of length $\ell$, has a coefficient of friction, $\mu$, with respect to a given object of mass $M$.

This object, initially at rest, at the ‘starting point’ of the track, is acted upon by a force, $\mathrm{F} x$, which adjusts its value so that it maintains the object’s (along the axis) acceleration at a constant value, a $\left(=2 \mathrm{~m} / \mathrm{s}^{2}\right)$, over the whole length $(=3)$ of the straight track. The work done, by this force, over the two segments of the track, would be (nearly) equal if $\mu$ equals

(1) 0.05

(2) 0.10

(3) 0.15

(4) 0.20

Show Answer

Correct answer: (4)

Solution:

The force, needed over the first segment $=$ Ma.

Hence $\mathrm{W} _{1}=$ work done over the first segment $=\operatorname{Ma}(2 \ell)$

Over the second segment, if $F$ ’ is the force needed, we have

$\mathrm{F}^{\prime}-\mu \mathrm{Mg}=\mathrm{Ma}$

$\therefore \mathrm{F}^{\prime}=[\mathrm{Ma}+\mu \mathrm{Mg}]$

Hence, $\mathrm{W} _{2}=$ Work done over the second segment.

$$ =\mathrm{F}^{\prime}(\ell)=\mathrm{M}(\mathrm{a}+\mu \mathrm{g}) \ell $$

$\therefore \mathrm{W} _{1}=\mathrm{W} _{2}$ if $2 \mathrm{Ma} \ell=\mathrm{Ma} \ell+\mu \mathrm{Mg} \ell$

$\therefore \mu=\frac{\mathrm{a}}{\mathrm{g}} \simeq \frac{2}{10}=0.2$

63. The coefficient of friction, between a given object and a straight horizontal track, increases uniformly from a value $\mu _{1}$ to a value $\mu _{2}\left(<\mu _{1}\right)$, from the ‘starting point’ to the ’end-point’, of a length $L$, of the track.

A force $F(x)$, of varying magnitude, acting parallel to the track, maintains the acceleration of the object (of mass M) at a constant value a. The work done, by the force, in moving the object, over the length $L$ of the track, would equal.

(1) $\frac{1}{2} \mathrm{M} \ell\left[\mathrm{a}+2\left(\mu _{1}+\mu _{2}\right) \mathrm{g}\right]$

(2) $\mathrm{M} \ell\left[2 \mathrm{a}+\left(\mu _{1}+\mu _{2}\right) \mathrm{g}\right]$

(3) $\frac{1}{2} \mathbf{M} \ell\left[2 \mathrm{a}+\left(\mu _{1}+\mu _{2}\right) \mathrm{g}\right]$

(4) $\mathrm{M} \ell\left[\mathrm{a}+2\left(\mu _{1}+\mu _{2}\right) \mathrm{g}\right]$

Show Answer

Correct answer: (3)

Solution:

The coefficient of friction, at a point distant $x$ from the starting point, is

$$ \mu _{x}=\mu _{1}+\alpha x $$

Where $\alpha=\left(\frac{\mu _{2}-\mu _{1}}{\ell}\right)=$ constant rate of increase of $\mu$.

$\therefore$ If $\mathrm{F} _{x}$ is the force needed here, we would have

$\mathrm{F} _{x}-\mu _{x} \mathrm{Mg}=\mathrm{Ma} \quad $ or $\quad \mathrm{F} _{x}=\mathrm{M}\left(\mathrm{a}+\mu _{x} \mathrm{~g}\right)$

$\therefore$ Work done $=\int _{0}^{\ell} \mathrm{F} _{x} \mathrm{~d} x$

$$ \begin{aligned} & =(\mathrm{Ma}) \ell+\mathrm{M} \mu _{1} \mathrm{~g} \ell+\mathrm{Mag} \frac{\ell^{2}}{2} \\ & =(\mathrm{Ma}) \ell+\operatorname{Mg} \ell\left(\frac{\mu _{2}+\mu _{1}}{2}\right) \\ & =\frac{1}{2} \mathrm{M} \ell\left[2 \mathrm{a}+\left(\mu _{1}+\mu _{2}\right) \mathrm{g}\right] \end{aligned} $$

64. When a force $F(=F(t))$, acts on a particle, initially at rest, the distance, $S(t)$, moved by the object in time $t$, is given by

$S(t)=k t^{4} ; k$ is a constant

The ratio, of the instantaneous powers, of this force, at times $t _{s}=16$ and $t=8 \mathrm{~s}$, would then be

(1) $32: 1$

(2) $16: 1$

(3) $8: 1$

(4) $4: 1$

Show Answer

Correct answer: (1)

Solution:

We have $\mathrm{S}(\mathrm{t})=\mathrm{kt}^{4}$

$\therefore \mathrm{v}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{S}(\mathrm{t})]=4 \mathrm{kt}^{3}$

$\therefore \quad \mathrm{a}(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{v}(\mathrm{t})]=12 \mathrm{kt}^{2}$

The force, $F(t)$, is, therefore, given by

$F(t)=m a(t)=12 k m t^{2}$

The instantaneous power, $\mathrm{P}(\mathrm{t})$, is given by

$\mathrm{P}(\mathrm{t})=[\mathrm{F}(\mathrm{t})][\mathrm{v}(\mathrm{t})]$

$\therefore \mathrm{P}(\mathrm{t})=\left(48 \mathrm{k}^{2} \mathrm{~m}\right) \mathrm{t}^{5}$

The ratio, of the instantaneous powers, at $\mathrm{t}=16 \mathrm{~s}$ and $\mathrm{t}=8(\mathrm{~s})$ is

$\frac{\mathrm{P}(16)}{\mathrm{P}(8)}=\frac{48 \mathrm{k}^{2} \mathrm{~m}(16)^{5}}{48 \mathrm{k}^{2} \mathrm{~m}(8)^{5}}=\left(\frac{16}{8}\right)^{5}$

$=2^{5}=32$

$\therefore$ The required ratio is $(32: 1)$

65. An object, of mass $m$, is initially at rest on an inclined plane of inclination ’ $h$ ’ in ’ $\ell$ ‘. The coefficient of friction, between the object and the inclined plane, has a value $\mu$.

A horizontally directed force, $F$, acts on the object and just moves it a distance $S$ up along the plane. The work done, by the force $\mathrm{F}$, is

(1) $\frac{\mathrm{S}}{\ell}\left[(\mathrm{mg}+\mu \mathrm{F}) \sqrt{\ell^{2}-\mathrm{h}^{2}}+\mu \quad \mathrm{mgh}\right]$

(2) $\frac{\mathrm{S}}{\ell}\left[\mu \sqrt{\ell^{2}-\mathrm{h}^{2}}(\mathrm{~F}+\mathrm{mg})+\mathrm{mgh}\right]$

(3) $\frac{\mathrm{S}}{\ell}\left[(\mathrm{mg}+\mu \mathrm{F}) \mathrm{h}+\mu \mathrm{mg} \sqrt{\ell^{2}-\mathrm{h}^{2}}\right]$

(4) $\frac{\mathrm{S}}{\ell}\left[\mathrm{mg} \sqrt{\ell^{2}-\mathrm{h}^{2}}(1+\mu)+\mu \mathrm{Fh}\right]$

Show Answer

Correct answer: (3)

Solution:

For the inclined plane, $\sin \theta=\frac{h}{\ell}$

The various forces acting on the object, are as shown. We have

$$ \mathrm{N}=(\mathrm{mg} \cos \theta+\mathrm{F} \sin \theta) $$

Since the force $F$ just moves the object up the plane, we have $(F \sin \theta)$ as just infinitesimally greater than the sum of $(m g \sin \theta+\mu \mathrm{N})$.

The work done, $\mathrm{W}$, is given by

$$ \begin{aligned} \mathrm{W}= & (\mathrm{F} \cos \theta) \mathrm{S} \\ & =[\mathrm{mg} \sin \theta+\mu(\mathrm{mg} \cos \theta+\mathrm{F} \sin \theta)] \mathrm{S} \\ & =[\mathrm{mg}(\sin \theta+\mu \cos \theta)+\mu \mathrm{F} \sin \theta] \mathrm{S} \\ & =\left[\mathrm{mg}\left(\frac{\mathrm{h}}{\ell}+\mu\left(\frac{\sqrt{\ell^{2}-\mathrm{h}^{2}}}{\ell}\right)\right)+\mu \mathrm{F} \frac{\mathrm{h}}{\ell}\right] \mathrm{S} \\ & =\frac{\mathrm{S}}{\ell}\left[\mathrm{mgh}+\mu\left[\mathrm{mg} \sqrt{\ell^{2}-\mathrm{h}^{2}}+\mathrm{Fh}\right]\right] \end{aligned} $$

66. An inclined plane, of inclination ’ $h$ ’ in ’ $\ell$ ‘, has a length $2 L$. An object of mass $M$ is initially at rest on the mid-point of this plane. The coefficient of friction, between the object and the inclined plane, increase uniformly from a value $\mu _{1}$, at the bottom of the plane, to a value $\mu _{2}$, at the top of the plane.

A force, F, acting on the object, (along the plane) just moves it up the plane to the top of the plane. The work done, by the force, is then

(1) $\frac{\mathrm{mgL}}{\ell} \sqrt{\ell^{2}-\mathrm{h}^{2}}+\frac{\mathrm{h}}{4}\left(\mu _{1}+3 \mu _{2}\right) $

(2) $\frac{\operatorname{mgL}}{\ell}\left[\mathrm{h}+\frac{\sqrt{\ell^{2}-\mathrm{h}^{2}}}{4}+\left(\mu _{1}+3 \mu _{2}\right)\right]$

(3) $\frac{\operatorname{mgL}}{\ell}\left[\mathrm{h}+\frac{\sqrt{\ell^{2}-\mathrm{h}^{2}}}{4}+\left(3 \mu _{1}+\mu _{2}\right)\right]$

(4) $\frac{\operatorname{mgL}}{\ell}\left[\sqrt{\ell^{2}-\mathrm{h}^{2}}+\frac{\mathrm{h}}{4}\left(3 \mu _{1}+\mu _{2}\right)\right]$

Show Answer

Correct answer: (2)

Solution:

For the inclined plane, we have

$$ \sin \theta=\frac{h}{\ell} $$

and $\cos \theta=\frac{\sqrt{\ell^{2}-\mathrm{h}^{2}}}{\ell}$

Further $\mathrm{N}=\mathrm{mg} \quad \cos \theta$

and $F=m g \sin \theta+\mu \quad m g \quad \cos \theta$

$=m g(\sin \theta+\mu \cos \theta)$

$$ =\frac{\mathrm{mg}}{\ell}\left[\mathrm{h}+\mu \cdot \sqrt{\ell^{2}-\mathrm{h}^{2}}\right] $$

The rate of increase of $\mu$, along the plane, is

$$ \alpha=\left(\frac{\mu _{2}-\mu _{1}}{2 L}\right) $$

Hence value of $\mu$ at the initial position

$$ \begin{aligned} \mu(L) & =\mu _{1}+\left(\frac{\mu _{2}-\mu _{1}}{2 L}\right) \cdot L \\ & =\left(\frac{\mu _{1}+\mu _{2}}{2}\right) \end{aligned} $$

The value of $\mu$ at the final position is $\mu _{2}$.

Hence average value of $\mu$, over the movement from $x=\mathrm{L}$ to $x=2 \mathrm{~L}$, is

$$ \begin{aligned} \mu _{\mathrm{AV}}= & \frac{1}{2}\left[\frac{\mu _{1}+\mu _{2}}{2}+\mu _{2}\right] \\ & =\left(\frac{\mu _{1}}{4}+\frac{3 \mu _{2}}{4}\right)=\left(\frac{\mu _{1}+3 \mu _{2}}{4}\right) \end{aligned} $$

The work done is, therefore,

$$ \begin{aligned} \mathrm{W}= & \mathrm{F} _{\mathrm{AV}} \times \mathrm{L} \\ & =\frac{\mathrm{mg}}{\ell}\left[\mathrm{h}+\left(\sqrt{\ell^{2}-\mathrm{h}^{2}}\right) \mu _{\mathrm{AV}}\right] \cdot \mathrm{L} \\ & =\frac{\mathrm{mgL}}{\ell}\left[\mathrm{h}+\left(\frac{1}{4}\right)\left(\mu _{1}+3 \mu _{2}\right) \sqrt{\ell^{2}-\mathrm{h}^{2}}\right] \end{aligned} $$

[Note: The same result is obtained by integrating $(\mathrm{F}(x) \mathrm{d} x)$ from $x=\mathrm{L}$ to $x=2 \mathrm{~L}$. Here we would take $\mu(x)=\mu _{1}+\left(\frac{\mu _{2}-\mu _{1}}{2 \mathrm{~L}}\right) x$ and $\mathrm{F}(x)=\frac{\mathrm{mg}}{\ell}\left[\mathrm{h}+\sqrt{\ell^{2}-\mathrm{h}^{2}} \mu(x)\right]$

67. A source, supplying energy has a constant power. When this source, exerts force on a particle of mass $\mathrm{m}$, and moves it along a straight path, the ‘acceleration - time’ graph for its motion, would be the graph labelled as graph

(1) $\mathrm{A}$

(2) $\mathrm{B}$

(3) $\mathrm{C}$

(4) $\mathrm{D}$

Show Answer

Correct answer: (1)

Solution:

Let us assume that the displacement, $s$, of the particle, varies as $t^{n}$. Hence

$$ \begin{gathered} \mathrm{s}=\mathrm{kt}^{\mathrm{n}} \\ \therefore \quad \mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=n k t^{\mathrm{n}-1} \\ \text { and } \mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{n}(\mathrm{n}-1) \mathrm{kt}^{\mathrm{n}-2} \end{gathered} $$

$\therefore$ Force, $\mathrm{F}$, acting on the particle, equals $\mathrm{n}(\mathrm{n}-1) \mathrm{mkt}^{\mathrm{n}-2}$

$\therefore$ Power $(=$ force $\times$ velocity $)=\mathrm{n}^{2}(\mathrm{n}-1) \mathrm{mk}^{2} \mathrm{t}^{(\mathrm{n}-2)+(\mathrm{n}-1)}$

Since power is constant, we have,

$2 \mathrm{n}-3=0 \quad$ or $\mathrm{n}=\frac{3}{2}$

$\therefore \quad \mathrm{a}=\mathrm{n}(\mathrm{n}-1) \mathrm{kt}^{\mathrm{n}-2}=-\frac{3}{4} \mathrm{kt}^{-1 / 2}$

It is graph (A) only that can correspond to this dependence of ’ $a$ ’ on ’ $t$ ‘.

68. The power of a source, supplying energy, varies with time in the manner shown. When this ‘source’ exerts force on a particle of mass $m$ and moves it along a straight path, the variation, of the velocity of the particle, with time, would be represented by the graph, labelled as graph

(1) A

(2) $\mathrm{B}$

(3) $\mathrm{C}$

(4) D

Show Answer

Correct answer: (4)

Solution:

Let us assume that the displacement, $\mathrm{s}$, of the particle, varies as $\mathrm{t}^{\mathrm{n}}$. We then have

$$ \begin{gathered} \mathrm{s}=\mathrm{kt}^{\mathrm{n}} \\ \therefore \quad \mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{knt}^{\mathrm{n}-1} \end{gathered} $$

and acceleration $=\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{kn}(\mathrm{n}-1) \mathrm{t}^{\mathrm{n}-2}$

$\therefore$ Force $=\mathrm{mkn}(\mathrm{n}-1) \mathrm{t}^{\mathrm{n}-2}$

$\mathrm{P}=$ Power $=$ Force $\times$ Velocity

$=\mathrm{mk}^{2} \mathrm{n}^{2}(\mathrm{n}-1) \mathrm{t}^{(\mathrm{n}-1)+(\mathrm{n}-2)}$

$=\mathrm{mk}^{2} \mathrm{n}^{2}(\mathrm{n}-1) \mathrm{t}^{2 \mathrm{n}-3}$

The given graph shows that $\mathrm{P} \alpha \mathrm{t}$. Hence

$$ 2 n-3=1 \text { or } n=2 $$

$\therefore \mathrm{v}=2 \mathrm{kt}^{2-1}=2 \mathrm{kt}$

Thus $v \alpha t$. This is shown in the graph or labelled as graph D.

69. Two identical metal cubes, each of mass $M$ and length $L$, moving with identical speeds $V$ each, collide ‘head-on’ face-to-face, and compress each other. As a result their lengths can change by a maximum amount $\Delta \mathrm{L}$; we assume that there is no other dissipation of energy. Assuming the sides of the cubes, and their initial kinetic energies to remain constant, the dependence, of the maximum (length) change, $\Delta \mathrm{L}$, on Y, (the Young’s modulus for the material of the cube) would be represented by the graph labelled as graph.

(1) A

(2) $\mathrm{B}$

(3) $\mathrm{C}$

(4) D

Show Answer

Correct answer: (3)

Solution:

Maximum compression takes place when the final K.E. of the system is zero; the initial K.E. has been ‘completely’ used to provide P.E. to the compressed cubes. The force (F), needed to change the lengths by an amount $\Delta \mathrm{L}$, can be written as.

$\mathrm{F}=\mathrm{k} \Delta \mathrm{L} \quad(\mathrm{k}=$ ‘compressional’ constant for the metal)

Using Hooke’s law, we can write

$\mathrm{Y}=\frac{(\mathrm{F} / \mathrm{A})}{(\Delta \mathrm{L} / \mathrm{L})}=\frac{\mathrm{F}}{\mathrm{L}^{2}} \times \frac{\mathrm{L}}{\Delta \mathrm{L}}=\frac{\mathrm{F}}{\mathrm{L} \Delta \mathrm{L}}$

$\therefore \mathrm{F}=\mathrm{YL}(\Delta \mathrm{L})=\mathrm{k} \Delta \mathrm{L}$

$\therefore \mathrm{k}=\mathrm{YL}$

Now initial K.E. of the system

$$ \begin{aligned} & =2 \times\left(\frac{1}{2} \mathrm{MV}^{2}\right)=\mathrm{a} \text { constant } \\ & =\mathrm{E} _{\mathrm{K}} \text { (say) } \end{aligned} $$

For maximum compression, this K.E gets completely converted into the P.E. of the two ‘compressed’ cubes. As $\Delta \mathrm{L}$ denotes the ‘maximum compression’ we have

Final P.E. of the system $=2 \times \frac{1}{2} k(\Delta L)^{2}=E _{k}$

$\therefore \mathrm{k}(\Delta \mathrm{L})^{2}=\mathrm{E} _{\mathrm{k}}$

or

$$ \begin{aligned} & \Delta \mathrm{L}=\sqrt{\frac{\mathrm{E} _{\mathrm{k}}}{\mathrm{k}}}=\sqrt{\frac{\mathrm{E} _{\mathrm{k}}}{\mathrm{YL}}} \quad(\because \mathrm{k}=\mathrm{YL}) \\ & =\text { Constant. } \frac{1}{\sqrt{\mathrm{Y}}} \end{aligned} $$

Thus $\Delta \mathrm{L} \alpha \mathrm{Y}^{-1 / 2}$

It is the graph, labelled as graph C, that shows this kind of dependence of $\Delta \mathrm{L}$ on Y. Hence option (3) is the correct choice.

70. A smooth ‘cylinder-piston’ assembly of cross section $A$, holds a volume $V _{0}$ of an ideal gas at a pressure $\mathrm{P} _{0}\left(\mathrm{P} _{0}>\right.$ surrounding (atmospheric pressure). The piston is ’let-go’ and it moves through a distance $\Delta x$ in a time $\Delta t$, under isothermal conditions. The ‘power’, $\mathbf{P}$, of the ideal gas, would then be related to $\Delta x$, as per the relation.

(1) $\mathrm{P}=\frac{\mathrm{nRT}}{\Delta \mathrm{t}} \ln \left(1-\frac{\Delta x}{x _{0}}\right)$

(2) $\mathrm{P}=\frac{\mathrm{nRT}}{\Delta \mathrm{t}} \ln \left(1+\frac{\Delta x}{x _{0}}\right)$

(3) $\mathrm{P}=\frac{\mathrm{nRT}}{\Delta \mathrm{t}} \mathrm{A}(\Delta x)$

(4) $\mathrm{P}=\frac{\mathrm{nRT}}{\Delta \mathrm{t}} \ln \left(\frac{\Delta x}{x _{0}}\right)$

Show Answer

Correct answer: (2)

Solution:

Under isothermal conditions ( $\mathrm{Temp}=\mathrm{T}=$ constant , we have,

$\therefore \mathrm{PV}=\mathrm{nRT}=\mathrm{a}$ constant

The force, $\mathrm{F}$, on the piston, at any instant, is PA where $\mathrm{A}=$ area of cross section of the piston. If the piston gets displaced by an amount $\mathrm{d} x$, the work done is

$\mathrm{dW}=\mathrm{Fd} x=\mathrm{PAd} x=\mathrm{PdV}$

$(\because \mathrm{Ad} x=\mathrm{dV}=$ change in volume of the gas).

$\text { Hence, } \mathrm{W}$=$\int_{\mathrm{V}_0}^{\mathrm{V}_0^{\prime}} \mathrm{PdV}$

=$nRT \int^{V_0^’}_ {V _0} \frac{dv}{v}=nRT |ln| _{V _0}^{V _0^’}$

$=\mathrm{nRT} \ell \mathrm{n}\left(\frac{\mathrm{V} _{0}^{\prime}}{\mathrm{V} _{0}}\right)=\mathrm{nRT} \operatorname{n}\left[\frac{\mathrm{A}\left(x _{0}+\Delta x\right)}{\mathrm{A} x _{0}}\right]$

$=\operatorname{nRT} \ln \left(1+\frac{\Delta x}{x _{0}}\right)$

$\therefore$ Power $=\frac{\mathrm{W}}{\Delta \mathrm{t}}=\frac{\mathrm{nRT}}{\Delta \mathrm{t}} \ln \left(1+\frac{\Delta x}{x _{0}}\right)$

71. Three spheres (1), (2), (3) of masses $M _{1}(=20$ $\mathrm{m}), M _{2}$ and $M _{3}(=5 \mathrm{~m})$, all lie at rest on a straights line. Sphere (1) starts moving with a (given) speed $\mathrm{v}$ towards right, collides elastically with sphere which, in turn then collides elastically with sphere (3). For a given value of $v$ (and for the given values of masses $M _{1}$ and $M _{2}$ ), the maximum speed acquired by sphere (3), would be

(1) $\frac{16}{9} \mathrm{v}$

(2) $\frac{18}{11} \mathrm{v}$

(3) $\frac{20}{13} \mathrm{v}$

(4) $\frac{22}{15} \mathrm{v}$

Show Answer

Correct answer: (1)

Solution:

For an elastic collision between spheres (1) or (2), the speed acquired by sphere (2) is given by

$\mathrm{v} _{2}=\left[\frac{2 \mathrm{M} _{1}}{\mathrm{M} _{1}+\mathrm{M} _{2}}\right] \mathrm{v}$

For this value of speed of sphere (2), the speed, acquired by sphere (3), after sphere (2) collides elastically with it, is

$v _{3}=\frac{2 M _{2}}{\left(M _{2}+M _{3}\right)} v _{2}=\frac{4 M _{1} M _{2}}{\left(M _{1}+M _{2}\right)\left(M _{2}+M _{3}\right)} v$

All other factors, except $M _{2}$ are constants. Hence, for maximum value of $v _{3}$, we need to have $\frac{d _{3}}{d M _{2}}=0$

Now $\frac{d v _{3}}{d M _{2}}=4 M _{1}\left[\frac{\left(M _{1}+M _{2}\right)\left(M _{2}+M _{3}\right) \times 1-M _{2}\left(M _{1}+M _{2}\right) \times 1+\left(M _{2}+M _{3}\right) \times 1}{\left(M _{1}+M _{2}\right)^{2}\left(M _{2}+M _{3}\right)^{2}}\right]$

$$ =\frac{4 M _{1}\left[M _{3} M _{1}-M _{2}^{2}\right]}{\left(M _{1}+M _{2}\right)^{2}\left(M _{2}+M _{3}\right)^{2}} $$

$\therefore \frac{\mathrm{dv} _{3}}{\mathrm{dM} _{2}}=0$ if $\mathrm{M} _{1} \mathrm{M} _{3}=\mathrm{M} _{2}^{2}$

$\therefore \mathrm{M} _{2}=\sqrt{\mathrm{M} _{1} \mathrm{M} _{3}}$

$=\sqrt{20 \mathrm{~m} \times 5 \mathrm{~m}}=10 \mathrm{~m}$

The maximum value of $\mathrm{v} _{3}$ corresponds to this value of $\mathrm{M} _{2}$.

Hence, $\left(v _{3}\right) _{\max }=\frac{4 \times(20 m) \times(10 m)}{(20 m+10 m)(10 m+5 m)} v$

$=4 \times \frac{200}{450} \mathrm{v}=\frac{16}{9} \mathrm{v}$

72. A ball of mass $m$, moving with a speed ( $4 u)$, collides inelasticity with an identical ball initially at rest. If the collision is a ‘head-on’ collision, and the coefficient of restitution, for the collision is e $(=0.5)$, the fraction expressing the loss in K.E., in terms of the original K.E. of the system, equals

(1) $\frac{1}{6}$

(2) $\frac{3}{8}$

(3) $\frac{5}{12}$

(4) $\frac{7}{16}$

Show Answer

Correct answer: (2)

Solution:

Let $v _{1}$ and $v _{2}$ be the speeds of the two balls after the collision. Since momentum is conserved, we have

$$ \mathrm{m} \cdot 4 \mathrm{u}=\mathrm{m} \cdot \mathrm{v} _{1}+\mathrm{m} \cdot \mathrm{v} _{2} \text { or } \mathrm{v} _{1}+\mathrm{v} _{2}=4 \mathrm{u} $$

Also e $=$ coefficient of restitution $=\frac{\mid \text { Relative velocity after collision } \mid}{\mid \text { Relative velocity before collision } \mid}$

$\therefore \quad 0.5=\frac{\mathrm{v} _{2}-\mathrm{v} _{1}}{4 \mathrm{u}-0}$ or $\quad \mathrm{v} _{2}-\mathrm{v} _{1}=2 \mathrm{u}$

Therefore give $\mathrm{v} _{2}=3 \mathrm{u}$ and $\mathrm{v} _{1}=\mathrm{u}$

$\therefore$ Total K.E. after collision $=\frac{1}{2} \mathrm{~m}(\mathrm{u})^{2}+\frac{1}{2} \mathrm{~m}(3 \mathrm{u})^{2}=\frac{1}{2} \mathrm{~m}\left(10 \mathrm{u}^{2}\right)$

Also total K.E. before collision $=\frac{1}{2} \mathrm{~m}(4 \mathrm{u})^{2}=\frac{1}{2} \mathrm{~m}\left(16 \mathrm{u}^{2}\right)$

$\therefore \frac{\text { Loss in K.E.of the system }}{\text { Original K.E.of the system }}=\frac{\frac{1}{2} \mathrm{~m}\left(6 \mathrm{u}^{2}\right)}{\frac{1}{2} \mathrm{~m}\left(16 \mathrm{u}^{2}\right)}=\frac{3}{8}$

73. A system of three masses, $\mathbf{m} _{1}, \mathbf{m} _{2}$ and $\mathbf{m} _{3}$ and a spring (of spring constant $k$ ) is set up, as shown, an a straight narrow and smooth track.

The mass, $m _{1}$, starts moving with a velocity $u(\mathrm{~m} / \mathrm{s})$ and collides elastically with the mass $m _{2}$; A little later, when the spring has been compressed by an amount $x _{0}$ (metre), the

masses $m _{2}$ and $m _{3}$ are moving with the same velocity, say, $v$. The velocity $v$, and the spring constant, $k$, of the spring, are then given respectively by

(1) $\mathrm{v}=\left(\frac{\mathrm{u}}{2}\right) \mathrm{ms}^{-1}, \mathrm{k}=\left(\frac{\mathrm{u} _{0}^{2}}{30 x _{0}^{2}}\right) \mathrm{N} / \mathrm{m} $

(2) $\mathrm{v}=\left(\frac{\mathrm{u}}{3}\right) \mathrm{ms}^{-1}, \mathrm{k}=\left(\frac{1}{80} \frac{\mathrm{u} _{0}^{2}}{x _{0}^{2}}\right) \mathrm{N} / \mathrm{m}$

(3) $\mathrm{v}=\left(\frac{\mathrm{u}}{2}\right) \mathrm{ms}^{-1}, \mathrm{k}=\left(\frac{1}{80} \frac{\mathrm{u} _{0}^{2}}{x _{0}^{2}}\right) \mathrm{N} / \mathrm{m} $

(4) $\quad \mathrm{v}=\left(\frac{\mathrm{u}}{3}\right) \mathrm{ms}^{-1}, \mathrm{k}=\left(\frac{1}{30} \frac{\mathrm{u} _{0}^{2}}{x _{0}^{2}}\right) \mathrm{N} / \mathrm{m}$

Show Answer

Correct answer: (4)

Solution:

The masses $\mathrm{m} _{1}$ and $\mathrm{m} _{2}$ being equal, their velocities, after $\mathrm{m} _{1}$ collides elastically with $\mathrm{m} _{2}$, are zero and $\mathrm{u}$, respectively.

A little later, when $\mathrm{m} _{2}$ and $\mathrm{m} _{3}$ have the same velocity, $\mathrm{v}$, and the spring has been compressed by an amount $x _{0}$, we have, by the laws of conservation of momentum and energy.

$\mathrm{m} _{2} \times \mathrm{u}=\mathrm{m} _{2} \mathrm{v}+\mathrm{m} _{3} \mathrm{v} ; \mathrm{v}=\frac{\mathrm{u}}{3}$

and $\frac{1}{2} m _{2} u^{2}=\frac{1}{2} m _{2}\left(\frac{u}{3}\right)^{3}+\frac{1}{2} m _{3}\left(\frac{u}{3}\right)^{2}+\frac{1}{2} k x _{0}^{2}$

or $\quad \mathrm{u}^{2}=\frac{\mathrm{u}^{2}}{9}+\frac{2 \mathrm{u}^{2}}{9}+\mathrm{k}^{x _{0}^{2}} /\left(\mathrm{m} _{2}\right)$

$\therefore \mathrm{k}=\frac{\mathrm{m} _{2}}{x _{0}^{2}} \cdot \frac{2}{3} \mathrm{u}^{2}=\frac{2}{3} \times \frac{50 \times 10^{-3} \mathrm{u}^{2}}{x _{0}^{2}}=\frac{1}{30} \frac{\mathrm{u}^{2}}{x _{0}^{2}}$

74. A particle is constrained to move in the $y-z$ plane under the action of a force.

$$ \overrightarrow{\mathrm{F}}=\mathrm{yz}(\hat{\mathrm{j}}+\hat{\mathrm{k}}) $$

The particle, initially at the origin, is moved from $\mathrm{O}$ to $\mathrm{L}$, via three paths (i) OKL, (ii) OML and (iii) OL. By calculating

he work done along the three paths, we can say that the force $F$ is a

(1) Conservative force as $\mathrm{W} _{1}=\mathrm{W} _{2}=\mathrm{W} _{3}$

(2) Conservative force as $\mathrm{W} _{1}=\mathrm{W} _{2} \neq \mathrm{W} _{3}$

(3) Conservative force as $\mathrm{W} _{2}=\mathrm{W} _{3} \neq \mathrm{W} _{1}$

(4) Conservative force as $\mathrm{W} _{3}=\mathrm{W} _{1} \neq \mathrm{W} _{2}$

Show Answer

Correct answer: (2)

Solution:

The force being a variable one, we have to calculate the work through

$$ \begin{aligned} & \mathrm{W}=\int \mathbf{F} \cdot \mathbf{d s}=\int \mathbf{F} \cdot(\mathrm{dy} \mathbf{j}+\mathrm{dz} \mathbf{k}) \\ & =\int[(\mathrm{yz}) \mathrm{dy}+(\mathrm{yz}) \mathrm{dz}] \end{aligned} $$

For path (1)

$$ \begin{aligned} \mathrm{W} _{1}= & \left(\mathrm{W} _{1}^{\prime}\right) \text { along } \mathrm{OK}+\left(\mathrm{W} _{2}^{\prime}\right)(\text { along } \mathrm{KL}) \\ & =(\mathrm{O})+\int[(2 \mathrm{z})(0)+(2 \mathrm{z}) \mathrm{dz}]=\left|\mathrm{z}^{2}\right| _{0}^{2}=4 \mathrm{~J} \end{aligned} $$

For path (2)

$\mathrm{W} _{2}=\left(\mathrm{W} _{2}^{\prime}\right)$ along $\mathrm{OM}+\left(\mathrm{W} _{2}^{\prime \prime}\right)($ along $\mathrm{ML})$

$$ =(\mathrm{O})+\int[(2 \mathrm{y}) \mathrm{dy}+(2 \mathrm{y})(0)]=\left|\mathrm{y}^{2}\right| _{0}^{2}=4 \mathrm{~J} $$

For path (3).

Here $\mathrm{y}=\mathrm{z}$ and $\mathrm{dy}=\mathrm{dz}$ for all segments on the path OL

$\therefore \quad \mathrm{W} _{3}=\int _{0}^{2} 2 \mathrm{y}^{2} \mathrm{dy}=\left|\frac{2}{3} \mathrm{y}^{3}\right| _{0}^{2}=\frac{16}{3} \mathrm{~J}$

We thus find that the force $\mathbf{F}$ is non-conservative as $\mathrm{W} _{1}=\mathrm{W} _{2} \neq \mathrm{W} _{3}$

(The work done, in going from $\mathrm{O}$ to $\mathrm{L}$, is seen to be path dependent)

75. A sharp dart, moving with a speed $V$, pierces through the first of the two plates, shown here, but gets embedded in the second plate. If the two ‘plates’ move with equal speeds, because of these actions of the dart on them, this common speed, $v$, would equal. $4.98 \mathrm{~m}$

(1) $\left(\frac{\mathrm{V}}{100}\right)$

(2) $\left(\frac{\mathrm{V}}{200}\right)$

(3) $\left(\frac{\mathrm{V}}{300}\right)$

(4) $\left(\frac{V}{400}\right)$

Show Answer

Correct answer: (3)

Solution:

Let the dart emerge with a speed $v _{1}$ after its passage through the first plate. Since this plate has acquired a velocity v, we have

$$ [0.02 \mathrm{~m}] \mathrm{V}=(0.02 \mathrm{~m}) \mathrm{v} _{1}+\mathrm{mv} $$

The dart, now moving with a speed $\mathrm{v} _{1}$, gets embedded in the second plate and their combined mass, again moves with a speed $v$. By the law of conservation of momentum, we now get

$$ (0.02 \mathrm{~m}) \mathrm{v} _{1}=(0.02 \mathrm{~m}+4.98 \mathrm{~m}) \mathrm{v}=5 \mathrm{mv} $$

$\therefore$ From the first equation, we get

$$ \begin{aligned} \quad[0.02 \mathrm{~m}] \mathrm{V} & =5 \mathrm{mv}+\mathrm{mv}=6 \mathrm{mv} \\ \therefore \mathrm{v}=\left(\frac{0.02 \mathrm{~m}}{60}\right) \mathrm{V} & =\left(\frac{\mathrm{V}}{300}\right) \end{aligned} $$

76. A ball, of mass $m$, is pushed down the wall of a frictionless hemispherical bowl from a point $A$. The speed, $v$, with which the ball is pushed down, from this point at a height $h$, is just sufficient to make the ball rise to the point $B$. The graph, showing the dependence of $v^{2}$ on $h$, is the graph labelled as graph

(1) $\mathrm{K}$

(2) $\mathrm{L}$

(3) $\mathrm{M}$

(4) $\mathrm{N}$

Show Answer

Correct answer: (3)

Solution:

At point A, the total energy of the ball

$$ =\frac{1}{2} \mathrm{mv}^{2}+\mathrm{mgh} $$

At point B, since the velocity of the ball becomes (momently) zero, its total energy is just its potential energy, i.e. $\mathrm{mgR}$.

$\therefore \quad \frac{1}{2} \mathrm{mv}^{2}+\mathrm{mgh}=\mathrm{mgR}$

$\therefore \mathrm{v}^{2}=2 \mathrm{~g}(\mathrm{R}-\mathrm{h})$

$$ =(-2 g) h+2 g R $$

$\therefore$ The graph of $\mathrm{v}^{2}$, against $\mathrm{h}$, is a straight line of slope $(-2 \mathrm{~g})$ and having an intercept $2 \mathrm{gR}$ on the $\mathrm{v}^{2}$ axis. This corresponds to graph $\mathrm{M}$.

Hence option (3) is the correct choice.

77. A body, of mass $m _{1}$, moving with a velocity $v _{1}$ along the $y$-axis, collides with another body of mass $m _{2}$, moving, along the $z$-axis, with a velocity $v _{2}$. If the two bodies ‘coalesce into one’, after the collision, the loss in K.E., of the system, would equal

(1) $\frac{1}{2}\left(\frac{m _{1}^{2}+m _{2}^{2}}{m _{1} m _{2}}\right)\left(v _{1}^{2}+v _{2}^{2}\right)$

(2) $\frac{1}{2}\left(\frac{m _{1} m _{2}}{m _{1}+m _{2}}\right)\left(v _{1}^{2}+v _{2}^{2}\right)$

(3) $\frac{1}{2}\left(\frac{1}{m _{1}+m _{2}}\right)\left(m _{1}^{2} v _{1}^{2}+m _{2}^{2} v _{2}^{2}\right)$

(4) $\frac{1}{2}\left(\frac{1}{m _{1}+m _{2}}\right)\left(m _{2}^{2} v _{1}^{2}+m _{1}^{2} v _{2}^{2}\right)$

Show Answer

Correct answer: (2)

Solution:

Let the combined mass $\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right)$ move with a velocity $\mathrm{v}$ along a direction inclined at an angle $\theta$ to the $\mathrm{y}-$ axis. By the law of conservation of momentum, we than have

$\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right) \mathrm{v} \cos \alpha=\mathrm{m} _{1} \mathrm{v} _{1}$ and $\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right) \mathrm{v} \sin \alpha=\mathrm{m} _{2} \mathrm{v} _{2}$

$\therefore\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right)^{2} \mathrm{v}^{2}=\mathrm{m} _{1}^{2} \mathrm{v} _{1}^{2}+\mathrm{m} _{2}^{2} \mathrm{v} _{2}^{2}$

$\therefore \mathrm{v}^{2}=\frac{\mathrm{m} _{1}^{2} \mathrm{v} _{1}^{2}+\mathrm{m} _{2}^{2} \mathrm{v} _{2}^{2}}{\left(\mathrm{~m} _{1}+\mathrm{m} _{2}\right)^{2}}$

Loss in K.E.

$$ \begin{aligned} & =\frac{1}{2} \mathrm{~m} _{1} \mathrm{v} _{1}^{2}+\frac{1}{2} \mathrm{~m} _{2} \mathrm{v} _{2}^{2}-\left[\frac{1}{2}\left(\mathrm{~m} _{1}+\mathrm{m} _{2}\right) \frac{\left(\mathrm{m} _{1}^{2} \mathrm{v} _{1}^{2}+\mathrm{m} _{2}^{2} \mathrm{v} _{2}^{2}\right)}{\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right)^{2}}\right] \\ & =\frac{1}{2} \frac{\left[\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right)\left(\mathrm{m} _{1} \mathrm{v} _{1}^{2}+\mathrm{m} _{2} \mathrm{v} _{2}^{2}\right)-\left(\mathrm{m} _{1}^{2} \mathrm{v} _{1}^{2}+\mathrm{m} _{2}^{2} \mathrm{v} _{2}^{2}\right)\right]}{\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right)^{2}} \\ & =\frac{1}{2} \frac{\mathrm{m} _{1} \mathrm{~m} _{2}}{\left(\mathrm{~m} _{1}+\mathrm{m} _{2}\right)}\left[\mathrm{v} _{1}^{2}+\mathrm{v} _{2}^{2}\right] \end{aligned} $$

78. A thin cart, of mass $M$, is lying at rest, at the origin of a narrow straight horizontal track. A force $\mathbf{F}(=\mathbf{F}(x))$, is applied on it, at an angle $\theta$ to the horizontal. The acceleration, produced in the cart, increases in direct proportion to the distance, $x$, moved by the cart. If the coefficient of friction, between the cart and the road, is $\mu$, the work done, by the force $\mathrm{F}$, in moving the cart through a distance $L$, would equal.

(1) $\frac{\mathrm{ML} \cos \theta}{2(\cos \theta+\mu \sin \theta)}\left[\mathrm{a} _{0} \mathrm{~L}+2 \mu \mathrm{g}\right]$

(2) $\frac{\mathrm{ML} \cos \theta}{(\cos \theta+\mu \sin \theta)}\left[2 \mathrm{a} _{0} \mathrm{~L}+\mu \mathrm{g}\right]$

(3) $\frac{\mathrm{ML} \cos \theta}{(\cos \theta-\mu \sin \theta)}\left[2 \mathrm{a} _{0} \mathrm{~L}+\mu \mathrm{g}\right]$

(4) $\frac{\mathrm{ML} \cos \theta}{(\cos \theta-\mu \sin \theta)}\left[\mathrm{a} _{0} \mathrm{~L}+2 \mu \mathrm{g}\right]$

Show Answer

Correct answer: (1)

Solution:

The free body diagram for the cart is as shown. When the cart has moved a distance, $x$, the acceleration produced in it, equals $\mathrm{a} _{0} x$. Hence we have

$\mathrm{F} \cos \theta=\mathrm{M}\left(\mathrm{a} _{0} x\right)+\mu \mathrm{N}$

and $\mathrm{N}=\mathrm{Mg}-\mathrm{F} \sin \theta$

We, therefore, get $\mathrm{F}(\cos \theta+\mu \sin \theta)=\mathrm{Ma} _{0} x+\mu \mathrm{Mg}$

$\therefore \mathrm{F}=\mathrm{F}(x)=\frac{\mathrm{M}\left[\mathrm{a} _{0} x+\mu \mathrm{g}\right]}{(\cos \theta+\mu \sin \theta)}$

$\therefore \mathrm{dW}=\frac{\mathrm{M}\left[\mathrm{a} _{0} x+\mu \mathrm{g}\right]}{(\cos \theta+\mu \sin \theta)}(\cos \theta)(\mathrm{d} x)$

$\therefore \mathrm{W}=\frac{\mathrm{M} \cos \theta}{\cos \theta+\mu \sin \theta}\left[\mathrm{a} _{0} \frac{\mathrm{L}^{2}}{2}+\mu \mathrm{gL}\right]$

$$ =\frac{\mathrm{ML} \cos \theta}{2(\cos \theta+\mu \sin \theta)}\left[\mathrm{a} _{0} \mathrm{~L}+2 \mu \mathrm{g}\right] $$

79. Two balls, of masses $m _{1}$ and $m _{2}$, are suspended side by side from strings of equal lengths. The ball $m _{1}$ is pulled to the left to a height ’ $h$ ’ and ’let go’. When it strikes the second ball, it gets stuck to it and the ‘combination’ now rises to the right through a height $\left(\frac{h}{n}\right)$. The ratio $\left(\frac{m _{2}}{m _{1}}\right)$, of the masses of the two balls, equals

(1) $(\sqrt{\mathrm{n}}-1)$

(2) $\sqrt{\mathrm{n}}$

(3) $(\mathrm{n}-1)$

(4) $\mathrm{n}$

Show Answer

Correct answer: (1)

Solution:

The velocity, of the ball $\mathrm{m} _{1}$, just before it strikes the ball $\mathrm{m} _{2}$ (initially at rest) is $\sqrt{2 \mathrm{gh}}$.

The law of conservation of momentum yields.

$\left(\mathrm{m} _{1} \sqrt{2 \mathrm{gh}}\right)+\mathrm{m} _{2} \times 0=\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right) \mathrm{v}$

Where $v$ is the velocity of the ‘combination’ just after the ‘collision’. Hence

$$ \mathrm{v}=\frac{\mathrm{m} _{1} \sqrt{2 \mathrm{gh}}}{\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right)} $$

The K.E. of the ‘combination’, just after the collision, makes it rise to a height $\frac{\mathrm{h}}{\mathrm{n}}$. We, therefore, have

$$ \frac{1}{2}\left(\mathrm{~m} _{1}+\mathrm{m} _{2}\right) \mathrm{v}^{2}=\left(\mathrm{m} _{1}+\mathrm{m} _{2}\right) \mathrm{g}\left(\frac{\mathrm{h}}{\mathrm{n}}\right) $$

$\therefore \mathrm{v}^{2}=\frac{2 \mathrm{gh}}{\mathrm{n}}$

$\therefore\left(\frac{\mathrm{m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}\right)^{2}(2 \mathrm{gh})=\frac{2 \mathrm{gh}}{\mathrm{n}}$

$\therefore \frac{\mathrm{m} _{1}}{\mathrm{~m} _{1}+\mathrm{m} _{2}}=\frac{1}{\sqrt{\mathrm{n}}}$

or $\quad\left(\frac{m _{1}+m _{2}}{m _{1}}\right)=\sqrt{n}$

$\therefore \frac{\mathrm{m} _{2}}{\mathrm{~m} _{1}}=(\sqrt{\mathrm{n}}-1)$

80. A ball, of mass $m$, moving with a velocity, $v$, of $10 \mathrm{~m} / \mathrm{s}$, ‘collides’, at an angle of ‘incidence’ of $45^{\circ}$, with a smooth (frictionless) surface having a coefficient of restitution (e) of $\frac{1}{\sqrt{3}}$. The difference between the angle of ‘reflection’ and ‘incidence’ of the ball, and the change in the velocity of the ball, are equal, respectively, to

(1) $\left(-15^{0}\right)$ and $(7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$

(2) $\left(+15^{0}\right)$ and $(7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$

(3) $\left(-15^{0}\right)$ and $(11.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$

(4) $\left(+15^{0}\right)$ and $(11.3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$

Show Answer

Correct answer: (4)

Solution:

The initial horizontal (or $x$ ) and vertical (or y) component, of the velocity of the ball, are $\mathrm{v} \cos 45^{\circ}$ and $\mathrm{v} \sin$ $45^{\circ}$ respectively.

The surface being smooth, the final (i.e. after ‘reflection’) horizontal component, of the velocity of the ball, would still be $\mathrm{v} \cos 45^{\circ}$. The vertical component, however, would be (ev $\sin 45^{\circ}$ ). The vertical component, however, would be ( $\mathrm{v} \sin 45^{\circ}$ ). If therefore, the final velocity (v) of the ball makes an angle $\theta$ with the horizontal, we have

$\mathrm{v} \cos \theta=\mathrm{v} \cos 45^{\circ}$

and $\mathrm{v} \sin \theta=\mathrm{e} v \sin 45^{\circ}$

$\therefore \tan \theta=\mathrm{e} \tan 45^{\circ}=\frac{1}{\sqrt{3}} \times 1=\frac{1}{\sqrt{3}}$

$\therefore \theta=30^{\circ}$

The angle of ‘reflection’ is, therefore, $\left(90^{\circ}-30^{\circ}\right)=60^{\circ}$. Hence the difference, between the angle of ‘reflection’ and the angle of incidence, is $\left(60^{\circ}-45^{\circ}\right)=+15^{\circ}$.

The final velocity, $\mathbf{V}$ is given by

$$ \mathbf{V}=\left(\mathrm{v} \cos 45^{\circ}\right) \mathbf{i}+\left(\mathrm{ev} \sin 45^{\circ}\right) \mathbf{j} $$

The initial velocity, $\mathbf{V}$, is given by

$\mathbf{V}=\left(v \cos 45^{\circ}\right) \mathbf{i}+\left(v \sin 45^{\circ}\right)(-\mathbf{j})$

$\therefore$ Change in velocity

$$ \begin{aligned} & =\mathbf{V}-\mathbf{v}=\mathrm{v} \sin 45^{\circ}(\mathrm{e}+1) \mathbf{j} \\ & =\mathrm{v} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{3}}+1\right) \mathbf{j} \\ & =\frac{\mathrm{v}}{\sqrt{6}}(1+\sqrt{3}) \mathbf{j} \\ & =\left(\frac{2.732}{\sqrt{6}} \mathrm{v}\right) \mathbf{j} \simeq(1.13 \mathrm{v}) \mathbf{j} \\ & =11.3 \mathrm{~m} / \mathrm{s} \mathbf{j} \end{aligned} $$



Table of Contents