Trigonometric - Trigonometric Functions (Lecture-02)
1. Values of trigonometrical ratios of some particular angles
(i) $\sin 7 \dfrac{1}{2}^{\circ}=\dfrac{\sqrt{4-\sqrt{2}-\sqrt{6}}}{2 \sqrt{2}}$
$\cos 7 \dfrac{1}{2}^{\circ}=\dfrac{\sqrt{4+\sqrt{2}+\sqrt{6}}}{2 \sqrt{2}}$
$\tan 7 \dfrac{1}{2}^{\circ}=(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)$
$\cot 7 \dfrac{1}{2}^{\circ}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)$
(ii) $\sin 15^{\circ}=\cos 75^{\circ}=\dfrac{\sqrt{3}-1}{2 \sqrt{2}}$
$\cos 15^{\circ}=\sin 75^{\circ}=\dfrac{\sqrt{3}+1}{2 \sqrt{2}}$
$\tan 15^{\circ}=\cot 75^{\circ}=2-\sqrt{3}$
$\cot 15^{\circ}=\tan 75^{\circ}=2+\sqrt{3}$
(iii) $\sin 22 \dfrac{1}{2}^{\circ}=\dfrac{1}{2} \sqrt{2-\sqrt{2}}$
$\cos 22 \dfrac{1}{2}^{\circ}=\dfrac{1}{2} \sqrt{2+\sqrt{2}}$
$\tan 22 \dfrac{1}{2}^{\circ}=\sqrt{2}-1$
$\cot 22 \dfrac{1}{2}^{\circ}=\sqrt{2}+1$
(iv) $\sin 18^{\circ}=\cos 72^{\circ}=\dfrac{\sqrt{5}-1}{4}$
$\cos 18^{\circ}=\sin 72^{\circ}=\dfrac{\sqrt{10+2 \sqrt{5}}}{4}$
$\sin 36^{\circ}=\cos 54^{\circ}=\dfrac{\sqrt{10-2 \sqrt{5}}}{4}$
$\cos 36^{\circ}=\sin 54^{\circ}=\dfrac{\sqrt{5}+1}{4}$
(v) $\cos 9^{\circ}=\frac{1}{2}\left(\sqrt{1+\sin 18^{\circ}}+\sqrt{1-\sin 18^{\circ}}\right)$
(vi) $\cos 27^{\circ}=\dfrac{1}{2}\left(\sqrt{1+\cos 36^{\circ}}+\sqrt{1-\cos 36^{\circ}}\right)$
2. Conditional identities
If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles of a triangle (i.e. $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ ) then
- $\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \tan B \tan \mathrm{C}$
- $\cot \mathrm{A} \cot \mathrm{B}+\cot \mathrm{B} \cot \mathrm{C}+\cot \mathrm{C} \cot \mathrm{A}=1$
- $\tan \dfrac{A}{2} \tan \dfrac{B}{2}+\tan \dfrac{B}{2} \tan \dfrac{C}{2}+\tan \dfrac{C}{2} \tan \dfrac{A}{2}=1$
- $\cot \dfrac{\mathrm{A}}{2}+\cot \dfrac{\mathrm{B}}{2}+\cot \dfrac{\mathrm{C}}{2}=\cot \dfrac{\mathrm{A}}{2} \cot \dfrac{\mathrm{B}}{2} \cot \dfrac{\mathrm{C}}{2}$
- $\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{A} \sin B \sin \mathrm{C}$
- $\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1-4 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$
- $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=4 \cos \dfrac{\mathrm{A}}{2} \cos \dfrac{\mathrm{B}}{2} \cos \dfrac{\mathrm{C}}{2}$
- $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+4 \sin \dfrac{\mathrm{A}}{2} \sin \dfrac{\mathrm{B}}{2} \sin \dfrac{\mathrm{C}}{2}$
3. Trigonometric ratios of sum of more than three angles.
-
$\sin \left(\mathrm{A} _{1}+\mathrm{A} _{2}\right.$ ………………..$\left.+\mathrm{A} _{\mathrm{n}}\right) \quad=\cos \mathrm{A} _{1} \cos \mathrm{A}$…………………$\cos \mathrm{A} _{\mathrm{n}}\left(\mathrm{S} _{1}-\mathrm{S} _{3}+\mathrm{S} _{5}-\ldots \ldots \ldots \ldots \ldots .\right.)$
-
$\cos \left(\mathrm{A} _{1}+\mathrm{A} _{2}\right.$…………………..$\left.+\mathrm{A} _{\mathrm{n}}\right) \quad=\cos \mathrm{A} _{1} \cos \mathrm{A}$………………$\cos \mathrm{A} _{\mathrm{n}}\left(1-\mathrm{S} _{2}+\mathrm{S} _{4}-\mathrm{S} _{6}+……………..\right.)$
-
$\tan \left(\mathrm{A} _{1}+\mathrm{A}\right.$………………..$\left.+A _{n}\right)=\dfrac{S _{1}-S _{3}+S _{5}-\ldots \ldots}{1-S _{2}+S _{4}-S _{6}+\ldots . .}$
where $S _{1}=\sum \tan A _{1} \quad=$ sum of tangents of angles
$\hspace {1 cm}\mathrm{S} _{2}=\sum \tan \mathrm{A} _{1} \tan \mathrm{A} _{2}=$ sum of tangents taken two at a time etc.
In particular, if $\mathrm{A} _{1}=\mathrm{A} _{2}=$………………..$A _{n}=A$, then
$\mathrm{S} _{1}=\mathrm{n} \tan \mathrm{A} ; \mathrm{S} _{2}={ }^{n} \mathrm{C} _{2} \tan ^{2} \mathrm{~A} ; \mathrm{S} _{3}={ }^{n} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}$ etc.
$\sin \mathrm{nA}=\cos ^{\mathrm{n}} \mathrm{A}\left({ }^{\mathrm{n}} \mathrm{C} _{1} \tan \mathrm{A}-{ }^{\mathrm{n}} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}+{ }^{+} \mathrm{C} _{5} \tan ^{5} \mathrm{~A}-\right.$………………..)
$\cos \mathrm{n} A=\cos ^{\mathrm{n}} \mathrm{A}\left(1-{ }^{\mathrm{n}} \mathrm{C} _2 \tan ^2 \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _4 \tan ^4 \mathrm{~A}-\ldots \ldots \ldots \ldots \ldots \ldots\right)$
$\tan \mathrm{n} \mathrm{A}=\dfrac{{ }^{\mathrm{n}} \mathrm{C} _1 \tan \mathrm{A}-{ }^{\mathrm{n}} \mathrm{C} _3 \tan ^3 \mathrm{~A}+{ }^n \mathrm{C} _5 \tan ^5 \mathrm{~A}-\ldots \ldots \ldots .}{1-{ }^{\mathrm{n}} \mathrm{C} _2 \tan ^2 \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _4 \tan ^4 \mathrm{~A}-\ldots \ldots \ldots \ldots \ldots \ldots .}$
Solved Examples
1. If $f(\mathrm{x})=\dfrac{\cot \mathrm{x}}{1+\cot \mathrm{x}}$ and $\alpha+\beta=\dfrac{5 \pi}{4}$, then the value of $f(\alpha) \cdot f(\beta)$ is
(a) 2
(b) $-\dfrac{1}{2}$
(c) $\dfrac{1}{2}$
(d) None of these
Show Answer
Solution:
$f(\alpha) \cdot f(\beta)=\dfrac{\cot \alpha}{1+\cot \alpha} \cdot \dfrac{\cot \beta}{1+\cot \beta}=\dfrac{1}{1+\tan \alpha} \cdot \dfrac{1}{1+\tan \beta}$
$=\dfrac{1}{1+\tan \alpha} \cdot \dfrac{1}{1+\tan \left(\pi+\dfrac{\pi}{4}-\alpha\right)}=\dfrac{1}{1+\tan \alpha} \times \dfrac{1}{1+\dfrac{1-\tan \alpha}{1+\tan \alpha}}$
$=\dfrac{1}{1+\tan \alpha} \dfrac{1+\tan \alpha}{2}=\dfrac{1}{2}$
Answer: (c)
2. The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ equals
(a) 1
(b) 2
(c) 3
(d) 4
Show Answer
Solution:
$\left(\tan 81^{\circ}+\tan 9^{\circ}\right)-\left(\tan 63^{\circ}+\tan 27^{\circ}\right)$
$=\left(\cot 9^{\circ}+\tan 9^{\circ}\right)-\left(\cot 27^{\circ}+\tan 27^{\circ}\right)$
$=\dfrac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\dfrac{1}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\dfrac{2}{\sin 18^{\circ}}-\dfrac{2}{\sin 54^{\circ}}=\dfrac{2 \times 4}{\sqrt{5}-1}-\dfrac{2 \times 4}{\sqrt{5}+1}$
$=\dfrac{8\{\sqrt{5}+1-\sqrt{5}+1\}}{5-1}=\dfrac{8 \times 2}{4}=4$
Answer: (d).
3. The number of integral values of $k$ for which the equation $7 \cos x+5 \sin x=2 k+1$ has a unique solution is
(a) 4
(b) 8
(c) 10
(d) 12
Show Answer
Solution:
$\begin{array}{ll} & \dfrac{7}{\sqrt{74}} \cdot \cos x+\dfrac{5}{\sqrt{74}} \sin x=\dfrac{2 k+1}{\sqrt{74}} \\ \Rightarrow \quad & \sin (\mathrm{x}+\alpha)=\dfrac{2 \mathrm{k}+1}{\sqrt{74}} \\ \text { Now } \quad & -1 \leq \dfrac{2 \mathrm{k}+1}{\sqrt{74}} \leq 1 \end{array}$
$\begin{array}{ll} \Rightarrow & \dfrac{-\sqrt{74}-1}{2} \leq \mathrm{k} \leq \dfrac{\sqrt{74}-1}{2} \\ \Rightarrow & -4.8 \leq \mathrm{k} \leq 3.8 \\ \Rightarrow \quad & \mathrm{k}=-4,-3,-2,-1,-0,1,2,3 \\ & \text { i.e. } 8 \text { values. } \end{array}$
Answer: (b)
4. If $\dfrac{\sin x}{\sin y}=\dfrac{1}{2}$ and $\dfrac{\cos x}{\cos y}=\dfrac{3}{2}$ where $x, y \in\left(0, \dfrac{\pi}{2}\right)$ then $\tan (x+y)=$
(a) $\sqrt{13}$
(b) $\sqrt{14}$
(c) $\sqrt{17}$
(d) $\sqrt{15}$
Show Answer
Solution:
$\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \quad \dfrac{1}{4} \sin ^{2} \mathrm{y}+\dfrac{9}{4} \cos ^{2} \mathrm{y}=1$
$\Rightarrow \quad \cos y=\dfrac{\sqrt{3}}{2 \sqrt{2}}$ and tany $=\sqrt{\dfrac{5}{3}}$
Also $\sin x=\dfrac{\sqrt{5}}{4 \sqrt{2}}$ and $\tan x=\dfrac{\sqrt{5}}{3 \sqrt{3}}$
$\therefore \tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x \cdot \tan y}=\dfrac{\dfrac{\sqrt{5}}{3 \sqrt{3}}+\dfrac{\sqrt{5}}{\sqrt{3}}}{1-\dfrac{\sqrt{5}}{3 \sqrt{3}} \cdot \dfrac{\sqrt{5}}{\sqrt{3}}}$
$=\dfrac{\sqrt{5}+3 \sqrt{5}}{\dfrac{9-5}{\sqrt{3}}}$
$=\dfrac{4 \sqrt{5}}{4} \times \sqrt{3}=\sqrt{15}$
Answer: (d)
5. If $\alpha+\beta=\dfrac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ is equal to
(a) $2(\tan \beta+\tan \gamma)$
(b) $\tan \beta+\tan \gamma$
(c) $\tan \beta+2 \tan \gamma$
(d) $2 \tan \beta+\tan \gamma$
Show Answer
Solution:
$\gamma=\alpha-\beta$
$\Rightarrow \quad \tan \gamma=\tan (\alpha-\beta)=\dfrac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}$
$\begin{array}{ll} \Rightarrow \quad \tan \gamma=\dfrac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \left(\dfrac{\pi}{2}-\alpha\right)} \\ \Rightarrow \quad \tan \gamma=\dfrac{\tan \alpha-\tan \beta}{1+1} \\ \Rightarrow \quad 2 \tan \gamma=\tan \alpha-\tan \beta \\ \Rightarrow \quad \tan \alpha=\tan \beta+2 \tan \gamma \end{array}$
Answer: (c)
6. $\sum\limits _{\mathrm{r}=1}^{7} \tan ^{2} \dfrac{\mathrm{r} \pi}{16}=$
(a) 34
(b) 35
(c) 37
(d) None of these
Show Answer
Solution: Given series can be simplified to
$\left(\tan ^{2} \dfrac{\pi}{16}+\cot ^{2} \dfrac{\pi}{16}\right)+\left(\tan ^{2} \dfrac{2 \pi}{16}+\cot ^{2} \dfrac{2 \pi}{16}\right)+\left(\tan ^{2} \dfrac{3 \pi}{16}+\cot ^{2} \dfrac{3 \pi}{16}\right)+1$
$\Rightarrow \quad$ General pattern is $\tan ^{2} \theta+\cot ^{2} \theta$
$=\dfrac{\sin ^{4} \theta+\cos ^{4} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\dfrac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\dfrac{4}{\sin ^{2} 2 \theta}-2$
$=\dfrac{4 \times 2}{1-\cos 4 \theta}-2=\dfrac{8}{1-\cos 4 \theta}-2$
$\therefore\left(\dfrac{8}{1-\cos \dfrac{\pi}{4}}-2\right)+\left(\dfrac{8}{1-\cos \dfrac{\pi}{2}}-2\right)+\left(\dfrac{8}{1-\cos \dfrac{3 \pi}{4}}-2\right)+1$
$=\dfrac{8 \sqrt{2}}{\sqrt{2}-1}-2+8-2+\dfrac{8 \sqrt{2}}{\sqrt{2}+1}-2+1$
$=\dfrac{8 \sqrt{2}}{\sqrt{2}-1}+\dfrac{8 \sqrt{2}}{\sqrt{2}+1}-6+8+1$
$=\dfrac{16+8 \sqrt{2}+16-8 \sqrt{2}}{2-1}+3=32+3=35$
Answer: (b)
Exercise
1. If $\mathrm{p} _{\mathrm{n}+1}=\sqrt{\dfrac{1}{2}\left(1+\mathrm{p} _{\mathrm{n}}\right)}$, then $\cos \left(\dfrac{\sqrt{1-\mathrm{p} _{0}{ }^{2}}}{\mathrm{p} _{1} \mathrm{p} _{2} \mathrm{p} _{3} \ldots \ldots \infty}\right)$ is equal to
(a) 1
(b) -1
(c) $\mathrm{p} _{0}$
(d) $\dfrac{1}{\mathrm{p} _{0}}$
Show Answer
Answer: c2. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are acute positive angles such that $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ and $\cot \mathrm{A} \cot \mathrm{B} \cot \mathrm{C}=\mathrm{k}$, then
(a) $\mathrm{k} \leq \dfrac{1}{3 \sqrt{3}}$
(b) $\mathrm{k} \geq \dfrac{1}{3 \sqrt{3}}$
(c) $\mathrm{k}<\dfrac{1}{9}$
(d) $\mathrm{k}>\dfrac{1}{3}$
Show Answer
Answer: a3. If $\sum x y=1$, then $\sum \dfrac{x+y}{1-x y}=$
(a) $\dfrac{1}{x y z}$
(b) $\dfrac{4}{x y z}$
(c) $x y z$
(d) None of these
Show Answer
Answer: a4. The value of $\cot 16^{\circ} \cot 44^{\circ}+\cot 44^{\circ} \cot 76^{\circ}-\cot 76^{\circ} \cot 16^{\circ}$ is
(a) 3
(b) $\dfrac{1}{3}$
(c) $\dfrac{-1}{3}$
(d) -3
Show Answer
Answer: a5. The number of solutions of $\tan (5 \pi \cos \theta)=\cot (5 \pi \sin \theta)$ for $\theta$ in $(0,2 \pi)$ is
(a) 28
(b) 14
(c) 4
(d) 2
Show Answer
Answer: a6. If $\cos x=\tan y, \cos y=\tan z$ and $\cos z=\tan x$, then a value of $\sin x$ is equal to
(a) $2 \cos 18^{\circ}$
(c) $\sin 18^{\circ}$
(b) $\cos 18^{\circ}$
(d) $2 \sin 18^{\circ}$
Show Answer
Answer: d7. Let $n$ be an odd integer. If $\operatorname{sinn} \theta=\sum\limits _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{b} _{\mathrm{r}} \sin ^{\mathrm{r}} \theta, \forall \theta$, then
(a) $\mathrm{b} _{0}=1, \mathrm{~b} _{1}=3$
(c) $\mathrm{b} _{0}=-1 \mathrm{~b} _{1}=\mathrm{n}$
(b) $\mathrm{b} _{0}=0, \mathrm{~b} _{1}=\mathrm{n}$
(d) $\mathrm{b} _{0}=0, \mathrm{~b} _{1}=\mathrm{n}^{2}-3 \mathrm{n}+3$
Show Answer
Answer: b8. If $\mathrm{e}^{-\pi / 2}<\theta<\dfrac{\pi}{2}$, which is larger, $\cos \left(\log _{\mathrm{e}} \theta\right)$ or $\log _{\mathrm{e}}(\cos \theta)$
(a) $\cos \left(\log _{\mathrm{e}} \theta\right)$
(b) $\log _{\mathrm{e}}(\cos \theta)$
(c) both are equal
(d) None of these
Show Answer
Answer: a9. $\quad \sum\limits _{r=1}^{n-1}(n-r) \cos \dfrac{2 r \pi}{n}$ for $n \geq 3$ is
(a) $\dfrac{n}{2}$
(b) $\mathrm{n}$
(c) $(\mathrm{n}-3)$
(d) None of these
Show Answer
Answer: a10.* Match the following :-
Column I | Column II | ||
---|---|---|---|
(a) | In an acute angled $\triangle \mathrm{ABC}$, the least values of $\sum \sec A \& \sum \tan ^2 A$ are $\lambda$ and $\mu$ respectively, then | (p) | $\lambda-\mu=2$ |
(b) | In $\triangle \mathrm{ABC}$, the least values of $\sum \operatorname{cosec}(\mathrm{A} / 2)$ $\& \sum \sec ^2(\mathrm{~A} / 2)$ and $\lambda \& \mu$ respectively then | (q) | $\mu-\lambda=3$ |
(c) | In $\triangle \mathrm{ABC}$, the least values of $\operatorname{cosec}\left(\frac{\mathrm{A}}{2}\right) \operatorname{cosec}\left(\frac{\mathrm{B}}{2}\right) \operatorname{cosec}\left(\frac{\mathrm{C}}{2}\right)$ $\& \sum \operatorname{cosec}^2 \mathrm{~A}$ are $\lambda \& \mu$ respectively, then | (r) | $\lambda-\mu=4$ |
(d) | (s) | $3 \lambda-2 \mu=0$ | |
(t) | $2 \lambda-3 \mu=0$ |
Show Answer
Answer: $\mathrm{a} \rightarrow \mathrm{q}, \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{p}, \mathrm{t} ; \mathrm{c} \rightarrow \mathrm{r}$11. In any $\triangle A B C$, the minimum value of $\sum \dfrac{\sqrt{\sin A}}{\sqrt{\sin B}+\sqrt{\sin C}-\sqrt{\sin A}}$ is
(a) 3
(b) 0
(c) 4
(d) None of these
Show Answer
Answer: a12. If $\cos \dfrac{\pi}{7}, \cos \dfrac{3 \pi}{7}, \cos \dfrac{5 \pi}{7}$, are the roots of the equation $8 x^{3}-4 x^{2}-4 x+1=0$.
On the basis of above information, answer the following questions :-
(i) The value of $\sec \dfrac{\pi}{7}+\sec \dfrac{3 \pi}{7}+\sec \dfrac{5 \pi}{7}$ is
these
(a) 2
(b) 4
(c) 8
(d) None of
(ii) The value of $\sin \dfrac{\pi}{14} \sin \dfrac{3 \pi}{14} \sin \dfrac{5 \pi}{14}$ is
(a) $\dfrac{1}{4}$
(b) $\dfrac{1}{8}$
(c) $\dfrac{\sqrt{7}}{4}$
(d) $\dfrac{\sqrt{7}}{8}$
(iii) The value of $\cos \dfrac{\pi}{14} \cos \dfrac{3 \pi}{14} \cos \dfrac{5 \pi}{14}$ is
(a) $\dfrac{1}{4}$
(b) $\dfrac{1}{8}$
(c) $\dfrac{\sqrt{7}}{4}$
(d) $\dfrac{\sqrt{7}}{8}$
(iv) The equation whose roots $\operatorname{arc}^{2} \tan ^{2} \dfrac{\pi}{7}, \tan ^{2} \dfrac{3 \pi}{7}, \& \tan ^{2} \dfrac{5 \pi}{7}$, is
(a) $x^{3}-35 x^{2}+7 x-21=0$
(b) $x^{3}-35 x^{2}+21 x-7=0$
(c) $x^{3}-21 x^{2}+35 x-7=0$
(d) $x^{3}-21 x^{2}+7 x-35=0$
(v) the value of $\sum\limits _{\mathrm{r}=1}^{3} \tan ^{2}\left(\dfrac{2 \mathrm{r}-1}{7}\right) \sum\limits _{\mathrm{r}=1}^{3} \cot ^{2}\left(\dfrac{2 \mathrm{r}-1}{7}\right)$ is
(a) 15
(b) 105
(c) 21
(d) 147
Show Answer
Answer: (i) b (ii) b (iii) d (iv) c (v) b13. If $a=\sin \dfrac{\pi}{18} \sin \dfrac{5 \pi}{18} \sin \dfrac{7 \pi}{18}$, and $x$ is the solution of the equation $y=2[x]+2$ and $y=3[x-2]$, then $\mathrm{a}=$
(a) $[\mathrm{x}]$
(b) $\dfrac{1}{[\mathrm{x}]}$
(c) $2[x]$
(d) $[x]^{2}$
Show Answer
Answer: b14. If $\tan \alpha, \tan \beta, \tan \gamma$ are the roots of $x^{3}-p^{2}-r=0$, then the value of $\left(1+\tan ^{2} \alpha\right)\left(1+\tan ^{2} \beta\right)\left(1+\tan ^{2} \gamma\right)$ is equal to
(a) $(\mathrm{p}-\mathrm{r})^{2}$
(b) $1+(\mathrm{p}-\mathrm{r})^{2}$
(c) $1-(\mathrm{p}-\mathrm{r})^{2}$
(d) None of these
Show Answer
Answer: b15. If $\tan \alpha$ is an integral solution of $4 x^{2}-16 x+15<0$ and $\cos \beta$ is the slope of the bisector of the angle in the first quadrant between the $x \& y$ axes, then the value of $\sin (\alpha+\beta): \sin (\alpha-\beta)$ is equal to
(a) -1
(b) 0
(c) 1
(d) 2