Trigonometric - Trigonometric Functions (Lecture-01)

Trigonometrical ratios and Identities

1. An angle is positive, if it is measured in anti clockwise direction and is negative if it is measured in clock wise direction

2. Angle in radian $=\dfrac{\text { length of the arc }}{\text { Radius of the circle }}$

$\text { i.e; } \theta=\dfrac{\ell}{\mathrm{r}}$

3.

System of Measurement of Angles
Sexagesimal system $(\mathrm{D})$ Centesimal system $(\mathrm{G})$ Circular system $(\mathrm{C})$
1 right angle $=90^{\circ}(90$ degrees $)$ 1 right angle $=100^{\circ}(100$ grades $)$ 1 right angle $=\frac{\pi}{2}$ radians
$1^{\circ}=60^1(60$ minutes $)$ $1^8=100^1(100$ minutes $)$ $180^{\circ}=\pi$
$1^1=60^{11}(60$ seconds $)$ $1^1=100^{11}(100$ seconds $)$

Note: $\dfrac{\mathrm{D}}{90}=\dfrac{\mathrm{G}}{100}=\dfrac{2 \mathrm{C}}{\pi}$ OR (see the graph below)

4. Basic trigonometrical identities

(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$

$\begin{aligned} & \Rightarrow \quad|\sin \theta| \leq 1 \text { and }|\cos \theta| \leq 1 \\ & \Rightarrow \quad-1 \leq \sin \theta \leq 1 \text { and }-1 \leq \cos \theta \leq 1 \end{aligned}$

(ii) $\sec ^{2} \theta-\tan ^{2} \theta=1$

$\begin{array}{ll} \Rightarrow & |\sec \theta| \geq 1 \\ \Rightarrow & \sec \theta \leq-1 \quad \text { or } \sec \theta \geq 1 \end{array}$

$\tan \theta$ may take any real value

(iii) $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$

$\Rightarrow|\operatorname{cosec} \theta| \geq 1$

$\Rightarrow \operatorname{cosec} \theta \leq-1 \quad$ or $\operatorname{cosec} \theta \geq 1$

$\cot \theta$ may take any real value.

5. Sign of Trigonometrical Ratio : To find the sign of a trigonometrical ratio, remember the sentence

Add Sugar To Coffee
A S T C
1stuadrant 2nd quadrant 3rd quadrant 4th quadrant.

Where A stands for all ratios are positive in 1 st quadrant

$\mathrm{S}$ stands for $\sin \&$ its reciprocal are positive in $2^{\text {nd }}$ quadrant

$T$ stands for tan & its reciprocal are positive in $3^{\text {rd }}$ quadrant

C stands for $\cos \&$ its reciprocal are positive in $4^{\text {rd }}$ quadrant

6. Domain & Range

Function Domain Range
$\sin \theta$ $R$ $[-1,1]$
$\cos \theta$ $R$ $[-1,1]$
$\tan \theta$ $R-\left\{(2 n+1) \dfrac{\pi}{2}, \mathrm{n} \in \mathrm{Z}\right\}$ $\mathrm{R}$
$\cot \theta$ $\mathrm{R}-\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}\}$ $\mathrm{R}$
$\operatorname{cosec} \theta$ $\mathrm{R}-\{\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}\}$ $\mathrm{R}-(-1,1)$
$\sec \theta$ $\mathrm{R}-\left\{(2 \mathrm{n}+1) \dfrac{\pi}{2}, \mathrm{n} \in \mathrm{Z}\right\}$ $\mathrm{R}-(-1,1)$

7. Trigonometric ratios in terms of each of the other

$\sin \theta$ $\cos \theta$ $\tan \theta$
$\sin \theta$ $\sin \theta$ $\sqrt{1-\sin ^{2} \theta}$ $\dfrac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$
$\cos \theta$ $\sqrt{1-\sin ^{2} \theta}$ $\cos \theta$ $\dfrac{\sqrt{1-\cos ^{2} \theta}}{\cos \theta}$
$\tan \theta$ $\dfrac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}}$ $\dfrac{1}{\sqrt{1+\tan ^{2} \theta}}$ $\tan \theta$
$\operatorname{cosec} \theta$ $\dfrac{1}{\operatorname{cosec} \theta}$ $\dfrac{\sqrt{\operatorname{cosec}^{2} \theta-1}}{\operatorname{cosec}^{2}}$ $\dfrac{1}{\sqrt{\operatorname{cosec}^{2} \theta-1}}$
$\sec \theta$ $\dfrac{\sqrt{\sec ^{2} \theta-1}}{\sec \theta}$ $\dfrac{1}{\sec \theta}$
$\cot \theta$ $\dfrac{1}{\sqrt{1+\cot ^{2} \theta}}$ $\dfrac{\cot \theta}{\sqrt{1+\cot ^{2} \theta}}$ $\dfrac{1}{\cot ^{2} \theta-1}$

8. Sum and Difference formula.

(i) $\quad \sin (\mathrm{A} \pm \mathrm{B})=\sin \mathrm{A} \cos \mathrm{B} \pm \cos \mathrm{A} \sin \mathrm{B}$

(ii) $\quad \cos (\mathrm{A} \pm \mathrm{B})=\cos \mathrm{A} \cos \mathrm{B} \bar{\mp} \sin \mathrm{A} \sin \mathrm{B}$

(iii) $\tan (\mathrm{A} \pm \mathrm{B})=\dfrac{\tan \mathrm{A} \pm \tan \mathrm{B}}{1 \mp \tan \mathrm{A} \tan \mathrm{B}}$

(iv) $\tan \left(\dfrac{\pi}{4} \pm \mathrm{A}\right)=\dfrac{1 \pm \tan \mathrm{A}}{1 \mp \tan \mathrm{A}}$

(v) $\quad \cot (\mathrm{A} \pm \mathrm{B})=\dfrac{\cot \mathrm{A} \cot \mathrm{B} \mp 1}{\cot \mathrm{B} \pm \cot \mathrm{A}}$

(vi) $\sin (\mathrm{A}+\mathrm{B}) \sin (\mathrm{A}-\mathrm{B})=\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}=\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{~A}$

(vii) $\quad \cos (\mathrm{A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}=\cos ^{2} \mathrm{~B}-\sin ^{2} \mathrm{~A}$

9. Multiple and half angles

(i) $\sin 2 \theta=\left\{\begin{array}{l}2 \sin \theta \cos \theta \\ \dfrac{2 \tan \theta}{1+\tan ^{2} \theta}\end{array}\right.$

Also, $\sqrt{1 \pm \sin 2 \theta}=|\cos \theta \pm \sin \theta|$

(ii) $\cos 2 \theta=\left\{\begin{array}{l}\cos ^{2} \theta-\sin ^{2} \theta \\ 2 \cos ^{2} \theta-1 \\ 1-2 \sin ^{2} \theta \\ \dfrac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\end{array}\right.$

Also $1+\cos 2 \theta=2 \cos ^{2} \theta$

$1-\cos 2 \theta=2 \sin ^{2} \theta$

(iii) $\tan 2 \theta=\dfrac{2 \tan \theta}{1-\tan ^{2} \theta}$

Also $\dfrac{1-\cos 2 \theta}{\sin 2 \theta}=\tan \theta$

$\dfrac{1-\cos 2 \theta}{1+\cos 2 \theta}=\tan ^{2} \theta$

(iv) $\sin 3 \theta=\left\{\begin{array}{l}3 \sin \theta-4 \sin ^{3} \theta \\ 4 \sin \left(\dfrac{\pi}{3}-\theta\right) \sin \theta \sin \left(\dfrac{\pi}{3}+\theta\right)\end{array}\right.$

or $\sin ^{3} \theta=\dfrac{3 \sin \theta-\sin 3 \theta}{4}$

(v) $\quad \cos 3 \theta=\left\{\begin{array}{l}4 \cos ^{3} \theta-3 \cos \theta \\ 4 \cos \left(\dfrac{\pi}{3}-\theta\right) \cos \theta \cos \left(\dfrac{\pi}{3}+\theta\right)\end{array}\right.$

or $\cos ^{3} \theta=\dfrac{\cos 3 \theta+3 \cos \theta}{4}$

(vi) $\tan 3 \theta=\left\{\begin{array}{l}\dfrac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \\ \tan \left(\dfrac{\pi}{3}-\theta\right) \tan \theta \tan \left(\dfrac{\pi}{3}+\theta\right)\end{array}\right.$

10. Transformation formulae

(i) $\quad \sin \mathrm{C}+\sin \mathrm{D}=2 \sin \left(\dfrac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\dfrac{\mathrm{C}-\mathrm{D}}{2}\right)$

$\sin \mathrm{C}-\sin \mathrm{D}=2 \cos \left(\dfrac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\dfrac{\mathrm{C}-\mathrm{D}}{2}\right)$

$\cos \mathrm{C}+\cos \mathrm{D}=2 \cos \left(\dfrac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\dfrac{\mathrm{C}-\mathrm{D}}{2}\right)$

$\cos \mathrm{C}-\cos \mathrm{D}=-2 \sin \left(\dfrac{\mathrm{C}+\mathrm{D}}{2}\right) \sin \left(\dfrac{\mathrm{C}-\mathrm{D}}{2}\right)$

(ii) $\quad 2 \sin \mathrm{A} \cos \mathrm{B}=\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$

$2 \cos A \sin B=\sin (A+B)-\sin (A-B)$

$2 \cos \mathrm{A} \cos \mathrm{B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$

$2 \sin A \sin B=\cos (A-B)-\cos (A+B)$

(ii) $\quad \tan \mathrm{A} _{ \pm} \tan \mathrm{B}=\dfrac{\sin (\mathrm{A} \pm \mathrm{B})}{\cos \mathrm{A} \cos \mathrm{B}}$

$\cot \mathrm{A} \pm \cot \mathrm{B}=\dfrac{\sin (\mathrm{B} \pm \mathrm{A})}{\sin \mathrm{A} \sin \mathrm{B}}$

(iv) $\quad \cot A-\tan A=2 \cot 2 \mathrm{~A}$

$\cot A+\tan A=2 \operatorname{cosec} 2 A=\dfrac{1}{\sin A \cos A}$

(v) $\quad 1 \pm \tan \mathrm{A} \tan \mathrm{B}=\dfrac{\cos (\mathrm{A} \mp \mathrm{B})}{\cos \mathrm{A} \cos \mathrm{B}}$

(vi) $\quad \cos \mathrm{A} \pm \sin \mathrm{A}=\sqrt{2} \sin \left(\dfrac{\pi}{4} \pm \mathrm{A}\right)=\sqrt{2} \cos \left(\dfrac{\pi}{4} \mp \mathrm{A}\right)$

11. Three angles

$\sin (A+B+C)=\cos A \cos B \cos C(\tan A+\tan B+\tan C-\tan A \tan B \tan C)$

$\cos (\mathrm{A}+\mathrm{B}+\mathrm{C})=\cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}(1-\tan \mathrm{A} \tan \mathrm{B}-\tan B \tan \mathrm{C}-\tan C \tan \mathrm{A})$

$\tan (A+B+C)=\dfrac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}$

12. Trigonometrical series

(i) $\quad \sin \mathrm{A}+\sin (\mathrm{A}+\mathrm{d})+\sin (\mathrm{A}+2 \mathrm{~d})+$ $+\sin (\mathrm{A}+(\mathrm{n}-1) \mathrm{d})=\dfrac{\sin \left(\mathrm{A}+\dfrac{(\mathrm{n}-1) \mathrm{d}}{2}\right) \sin \left(\dfrac{\mathrm{nd}}{2}\right)}{\sin \left(\dfrac{\mathrm{d}}{2}\right)}$

(ii) $\cos \mathrm{A}+\cos (\mathrm{A}+\mathrm{d})+\cos (\mathrm{A}+2 \mathrm{~d})+\ldots \ldots \ldots+\cos (\mathrm{A}+(\mathrm{n}-1) \mathrm{d})=\dfrac{\cos \left(\mathrm{A}+\dfrac{(\mathrm{n}-1) \mathrm{d}}{2}\right) \sin \left(\dfrac{\mathrm{nd}}{2}\right)}{\sin \left(\dfrac{\mathrm{d}}{2}\right)}$

(iii) $\cos \mathrm{A} \cdot \cos 2 \mathrm{~A} \cdot \cos 2^2 \mathrm{~A}$ ……………… $\cos 2^{\mathrm{n}-1} \mathrm{~A}=\dfrac{\sin \left(2^{\mathrm{n}} \mathrm{A}\right)}{2^{\mathrm{n}} \sin \mathrm{A}}$

(iv) $\quad(2 \cos \theta-1)(2 \cos 2 \theta-1)\left(2 \cos 2^{2} \theta-1\right) \ldots \ldots \ldots . .\left(2 \cos 2^{\mathrm{n}-1} \theta-1\right)=\dfrac{2 \cos 2^{\mathrm{n}} \theta+1}{2 \cos \theta+1} ; \mathrm{n} \in \mathrm{N}$

(v) $\tan \theta+2 \tan 2 \theta+2^{2} \tan 2^{2} \theta+2^{3} \tan 2^{3} \theta+\ldots \ldots \ldots . .+2^{\mathrm{n}} \tan 2^{\mathrm{n}} \theta+2^{\mathrm{n}+1} \cot 2^{\mathrm{n}+1} \theta=\cot \theta ; \forall \mathrm{n} \in \mathrm{N}$

(vi) $\sqrt{2+\sqrt{2+\sqrt{2+\ldots \ldots .+\sqrt{2+2 \cos 2^{\mathrm{n}} \theta}}}}=2 \cos \theta, \mathrm{n} \in \mathrm{N}$ where there are $\mathrm{n}$ square root signs on left hand side.

13. Greatest and least value of $\operatorname{asin} \theta \pm b \cos \theta$ is $\sqrt{a^{2}+b^{2}}$ and $-\sqrt{a^{2}+b^{2}}$ respectively

i.e. $-\sqrt{a^{2}+b^{2}} \leq \operatorname{asin} \theta \pm b \cos \theta \leq \sqrt{a^{2}+b^{2}}$

Also $\sin ^{2} \theta+\operatorname{cosec}^{2} \theta \geq 2$

$\cos ^{2} \theta+\sec ^{2} \theta \geq 2$

$\tan ^{2} \theta+\cot ^{2} \theta \geq 2$

14. Method of componendo and dividendo.

If $\dfrac{p}{q}=\dfrac{a}{b}$ then by componendo and dividendo we can write $\dfrac{p-q}{p+q}=\dfrac{a-b}{a+b}$ or $\dfrac{p+q}{p-q}=\dfrac{a+b}{a-b}$

Periodicity

All the six trigonometric functions are periodic $\sin \theta, \cos \theta, \operatorname{cosec} \theta, \sec \theta$ are periodic with period $2 \pi$ where $\tan \theta$ and $\cot \theta$ are period $\mathrm{c}$ with period $\pi$

Solved Examples

1. If $f(\theta)=\sin ^{4} \theta+\cos ^{4} \theta+1$, then the range of $f(\theta)$ is

(a) $\left[\dfrac{3}{2}, 2\right]$

(b) $\left[1, \dfrac{3}{2}\right]$

(c) $[1,2]$

(d) None of these

Show Answer

Solution:

$\begin{aligned} f(\theta) & =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta+1 \\ & =2-\dfrac{\sin ^{2} 2 \theta}{2} \end{aligned}$

$\therefore f(\theta) \min =2-\dfrac{1}{2}(1)=\dfrac{3}{2}$ and $f(\theta) \max =2-\dfrac{1}{2}(0)=2$

Answer: (a)

2. If $4 \mathrm{n} \alpha=\pi$, then the value of $\cot \alpha \cdot \cot 2 \alpha \cdot \cot 3 \alpha$ . $\cot (2 \mathrm{n}-1) \alpha$ is

(a) 1

(b) -1

(c) $\infty$

(d) None of these

Show Answer

Solution:

$\cot \alpha \cdot \cot (2 n-1) \alpha=\cot \alpha \cdot \cot (2 n \alpha-\alpha)=\cot \alpha \cdot \cot \left(\dfrac{\pi}{2}-\alpha\right)=\cot \alpha \cdot \tan \alpha=1$

Product of terms equidistant from the beginning and end is 1

The middle term is $\operatorname{cotn} \alpha=\cot \dfrac{\pi}{4}=1$

Given expression $=1.1 .1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . n$ times $=1$

Answer: (a)

3. If $\tan \dfrac{\alpha}{2}$ and $\tan \dfrac{\beta}{2}$ are roots of the equation $8 x^{2}-26 x+15=0$ then $\cos (\alpha+\beta)=$

(a) $-\dfrac{627}{725}$

(b) $\dfrac{627}{725}$

(c) 1

(d) None of these

Show Answer

Solution:

$\tan \left(\dfrac{\alpha}{2}+\dfrac{\beta}{2}\right)=\dfrac{\tan \dfrac{\alpha}{2}+\tan \dfrac{\beta}{2}}{1-\tan \dfrac{\alpha}{2} \tan \dfrac{\beta}{2}}=\dfrac{\dfrac{26}{8}}{1-\dfrac{15}{8}}=\dfrac{-26}{7}$

$\therefore \cos (\alpha+\beta)=\dfrac{1-\tan ^{2}\left(\dfrac{\alpha+\beta}{2}\right)}{1+\tan ^{2}\left(\dfrac{\alpha+\beta}{2}\right)}=\dfrac{1-\left(\dfrac{676}{49}\right)}{1+\left(\dfrac{676}{49}\right)}=\dfrac{-627}{725}$

Answer: (a)

4. If $\cos (x-y), \cos x, \cos (x+y)$ are in H.P, then $\left|\cos x \cdot \sec \dfrac{y}{2}\right|$ equals

(a) 1

(b) 2

(c) $\sqrt{2}$

(d) None of these

Show Answer

Solution:

$\begin{aligned} & \cos x=\dfrac{2 \cos (x-y) \cos (x+y)}{\cos (x+y)+\cos (x-y)} \\ & \Rightarrow \quad \cos x=\dfrac{2\left(\cos ^{2} x-\sin ^{2} y\right)}{2 \cos x \cos y} \\ & 2 \cos ^{2} x \cos y=2 \cos ^{2} x-2 \sin ^{2} y \\ & 2 \sin ^{2} y=2 \cos ^{2} x(1-\cos y) \\ & 2\left(4 \sin ^{2} \dfrac{y}{2} \cos ^{2} \dfrac{y}{2}\right)=2 \cos ^{2} x \cdot\left(2 \sin ^{2} \dfrac{y}{2}\right) \\ & \Rightarrow \quad \dfrac{\cos ^{2} x}{\cos ^{2} \dfrac{y}{2}}=2 \Rightarrow \cos x \cdot \sec \dfrac{y}{2}= \pm \sqrt{2} \end{aligned}$

Answer: (c)

5. If $\tan \dfrac{\pi}{9}, x, \tan \dfrac{15 \pi}{18}$ are in A.P and $\tan \dfrac{\pi}{9}, y, \tan \dfrac{7 \pi}{18}$ are in A.P, then

(a) $2 x=y$

(b) $x=y$

(c) $x=2 y$

(d) None of these

Show Answer

Solution:

$2 \mathrm{x}=\tan 20^{\circ}+\tan 50^{\circ} \hspace {5 cm} 2 \mathrm{y}=\tan 20^{\circ}+\tan 70^{\circ}$

$2 \mathrm{x}=\dfrac{\sin 20^{\circ} \cdot \cos 50^{\circ}+\cos 20^{\circ} \cdot \sin 50^{\circ}}{\cos 20^{\circ} \cdot \cos 50^{\circ}}$ $\hspace {2.4 cm}$ $2 \mathrm{y}=\dfrac{\sin 20^{\circ} \cdot \cos 70^{\circ}+\cos 20^{\circ} \cdot \sin 70^{\circ}}{\cos 20^{\circ} \cdot \cos 70^{\circ}}$

$2 \mathrm{x}=\dfrac{\sin 70^{\circ}}{\cos 50^{\circ} \cdot \cos 20^{\circ}}$ $\hspace {5 cm}$ $2 \mathrm{y}=\dfrac{\sin 90^{\circ}}{\sin 20^{\circ} \cdot \cos 20^{\circ}}$

$2 \mathrm{x}=\dfrac{\cos 20^{\circ}}{\cos 50^{\circ} \cdot \cos 20^{\circ}}$

$\Rightarrow 2 \mathrm{x}=\dfrac{1}{\cos 50^{\circ}}=\dfrac{1}{\sin 40^{\circ}} \ldots \ldots \ldots \ldots \ldots …..(1) \hspace {1.3 cm} 2 \mathrm{y}=\dfrac{2}{\sin 40^{\circ}}$ …………………..(2)

From (1) and (2)

$2 \mathrm{x}=\mathrm{y}$

Answer: (a)

6. The value of $\sin \dfrac{\pi}{n}+\sin \dfrac{3 \pi}{n}+\sin \dfrac{5 \pi}{n}+$. $\mathrm{n}$ terms is

(a) 1

(b) 0

(c) $\dfrac{\pi}{2}$

(d) None of these

Show Answer

Solution:

Given Series $=\dfrac{\sin \dfrac{n \pi}{2 n} \sin \left\{\dfrac{\dfrac{2 \cdot \pi}{n}+(n-1) \dfrac{.2 \pi}{n}}{2}\right\}}{\sin \dfrac{\pi}{2 n}}=\dfrac{\sin \dfrac{\pi}{n} \sin \left(\dfrac{\pi}{n}+\pi-\dfrac{\pi}{n}\right)}{\sin \dfrac{\pi}{2 n}}$

$=\dfrac{\sin \dfrac{\pi}{n} \cdot \sin \pi}{\sin \dfrac{\pi}{2 n}}=0$

Answer: (b)

7. $\sum\limits _{\mathrm{r}=1}^{\mathrm{n}-1} \cos ^{2} \dfrac{\mathrm{r} \pi}{\mathrm{n}}=$

(a) $\dfrac{\mathrm{n}}{2}$

(b) $\dfrac{\mathrm{n}}{2}-\dfrac{1}{2}$

(c) $\dfrac{\mathrm{n}}{2}-1$

(d) None of these

Show Answer

Solution:

$\sum\limits _{\mathrm{r}=1}^{\mathrm{n}-1} \cos ^{2} \dfrac{\mathrm{r} \pi}{\mathrm{n}}=\sum\limits _{\mathrm{r}=1}^{\mathrm{n}-1} \dfrac{1+\cos 2 \mathrm{r} \pi}{2}=\dfrac{1}{2} \sum\limits _{\mathrm{r}=1}^{\mathrm{n}-1} 1+\dfrac{1}{2} \sum\limits _{\mathrm{r}=1}^{\mathrm{n}-1} \dfrac{\cos 2 \mathrm{r} \pi}{\mathrm{n}}$

$=\dfrac{\mathrm{n}-1}{2}+\dfrac{1}{2}\left(\cos \dfrac{2 \pi}{\mathrm{n}}+\cos \dfrac{4 \pi}{\mathrm{n}}+\ldots \ldots \ldots+\cos 2 \dfrac{(\mathrm{n}-1) \pi}{\mathrm{n}}\right)$

$=\dfrac{n-1}{2}+\dfrac{1}{2} \cdot \dfrac{\sin \dfrac{2 \pi}{2 n} \cos \left\{\dfrac{\dfrac{2 \pi}{n}+\dfrac{2(n-1) \pi}{n}}{2}\right\}}{\sin \dfrac{\pi}{n}}$

$=\dfrac{\mathrm{n}-1}{2}+\dfrac{1}{2} \cdot \dfrac{\sin \dfrac{\pi}{\mathrm{n}} \cdot \cos \pi}{\sin \dfrac{\pi}{\mathrm{n}}}=\dfrac{\mathrm{n}-1}{2}-\dfrac{1}{2}=\dfrac{\mathrm{n}}{2}-1$

Answer: (c)

Exercise

1. Let $\theta \in\left(0, \dfrac{\pi}{4}\right)$ and $\mathrm{t} _{1}=(\tan \theta)^{\tan \theta}, \mathrm{t} _{2}=(\tan \theta)^{\cot \theta}, \mathrm{t} _{3}=(\cot \theta)^{\tan \theta} \theta$ and $\mathrm{t} _{4}=(\cot \theta)^{\cot \theta}$, then

(a) $\mathrm{t} _{1}>\mathrm{t} _{2}>\mathrm{t} _{3}>\mathrm{t} _{4}$

(b) $\mathrm{t} _{4}>\mathrm{t} _{3}>\mathrm{t} _{1}>\mathrm{t} _{2}$

(c) $\mathrm{t} _{3}>\mathrm{t} _{1}>\mathrm{t} _{2}>\mathrm{t} _{4}$

(d) $t _{2}>t _{3}>t _{1}>t _{4}$

Show Answer Answer: b

2.* For a positive integer n, let $f _{\mathrm{n}}(\theta)=\left(\tan \dfrac{\theta}{2}\right)$

$(1+\sec \theta)(1+\sec 2 \theta)\left(1+\sec ^{2} \theta\right)$ $\left(1+\sec 2^{n} \theta\right)$, then

(a) $f _{2}\left(\dfrac{\pi}{16}\right)=1$

(b) $f _{3}\left(\dfrac{\pi}{32}\right)=1$

(c) $f _{4}\left(\dfrac{\pi}{64}\right)=1$

(d) $f _{5}\left(\dfrac{\pi}{128}\right)=1$

Show Answer Answer: a, b, c

3. Two rays are drawn through a point $\mathrm{A}$ at an angle $30^{\circ}$. A point $\mathrm{B}$ is taken on one of them at a distance ’ $\mathrm{a}$ ’ from the point $\mathrm{A}$. A perpendicular is drawn from the point $\mathrm{B}$ to the other ray, and another perpendicular is drawn from its foot to $\mathrm{AB}$ to meet $\mathrm{AB}$ at another point from where the similar process is repeated indefinitely. The length of the resulting infinite polygonal line is

(a) $\mathrm{a}(2+\sqrt{3})$

(b) $\mathrm{a}(2-\sqrt{3})$

(c) a

(d) None of these

Show Answer Answer: a

4. If $\cos ^{6} \alpha+\sin ^{6} \alpha+\operatorname{ksin}^{2} 2 \alpha=1(0<\alpha<\pi / 2)$, then $k$ is

(a) $3 / 4$

(b) $1 / 4$

(c) $1 / 3$

(d) $1 / 8$

Show Answer Answer: a

5. In an acute angled triangle $A B C$, the least value of $\sec A+\sec B+\sec C$ is

(a) 6

(b) 8

(c) 3

(d) none of these

Show Answer Answer: a

6. The sum to infinite tems of the series $\cos \dfrac{\pi}{3}+\dfrac{1}{2} \cos \dfrac{2 \pi}{3}+\dfrac{1}{3} \cos \dfrac{3 \pi}{3}+\ldots \ldots \ldots \ldots .$. is

(a) 0

(b) 2

(c) 1

(d) 6

Show Answer Answer: a

7. If $\alpha=\dfrac{2 \pi}{7}$, then the value of $\tan \alpha \tan 2 \alpha+\tan 2 \alpha \tan 4 \alpha+\tan 4 \alpha \tan \alpha$ is

(a) 0

(b) -7

(c) $\dfrac{13}{4}$

(d) 2

Show Answer Answer: b

8. If $\sin (y+z-x), \sin (z+x-y) \sin (x+y-z)$ be is A.P., then $\tan x, \tan y, \tan z$ are in

(a) A.P.

(b) G.P

(c) H.P.

(d) None of these

Show Answer Answer: a

9.* $\dfrac{3+\cot 76^{\circ} \cot 16^{\circ}}{\cot 76^{\circ}+\cot 16^{\circ}}=$

(a) $\tan 16^{\circ}$

(b) $\cot 76^{\circ}$

(c) $\tan 46^{\circ}$

(d) $\cot 44^{\circ}$

Show Answer Answer: c, d

10. If $x \cos \alpha+y \sin \alpha=2 a, x \cos \beta+y \sin \beta=2 a$ and $2 \sin \dfrac{\alpha}{2} \sin \dfrac{\beta}{2}=1$, then

(a) $\cos \alpha+\cos \beta=\dfrac{2 a x}{x^{2}+y^{2}}$

(b) $\cos \alpha \cos \beta=\dfrac{2 \mathrm{a}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$

(c) $y^{2}=4 a(a-x)$

(d) $\cos \alpha+\cos \beta=2 \cos \alpha \cos \beta$

Show Answer Answer: c

11. Match the following:-

Column I Column II
(a) The maximum value of $\mathrm{y}=\cos (2 \mathrm{~A}+\theta)+\cos (2 \mathrm{~B}+\theta)$ where $\mathrm{A} \& \mathrm{~B}$ are constants is (p) $2 \sin (A+B)$
(b) The maximum value of $\mathrm{y}=\cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}$ where $\mathrm{A}+\mathrm{B}$ is a constant $\& \mathrm{~A}, \mathrm{~B} \in\left(0, \dfrac{\pi}{2}\right)$ is (q) $2 \sec (A+B)$
(c) The minimum value of $\mathrm{y}=\sec 2 \mathrm{~A}+\sec 2 \mathrm{~B}$ where $\mathrm{A}+\mathrm{Bis}$ a constant \& $\mathrm{A}, \mathrm{B} \in\left(0, \dfrac{\pi}{4}\right)$ is (r) $2 \cos (A+B)$
(d) The minimum value of $y=\sqrt{\tan \theta+\cot \theta-2 \cos 2(A+B)}$ where $A, B$ are constants and $\theta \in\left(0, \dfrac{\pi}{2}\right)$ is (s) $2 \cos (A-B)$
Show Answer Answer: $\mathrm{a} \rightarrow \mathrm{s} ; \mathrm{b} \rightarrow \mathrm{r} ; \mathrm{c} \rightarrow \mathrm{q} ; \mathrm{d} \rightarrow \mathrm{p}$

12. Let $\mathrm{A} _{0} \mathrm{~A} _{1} \mathrm{~A} _{2} \mathrm{~A} _{3} \mathrm{~A} _{4} \mathrm{~A} _{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $\mathrm{A} _{0} \mathrm{~A} _{1}, \mathrm{~A} _{0} \mathrm{~A} _{2}$ and $\mathrm{A} _{0} \mathrm{~A} _{4}$ is

(a) $\dfrac{3}{4}$

(b) $3 \sqrt{3}$

(c) 3

(d) $\dfrac{3 \sqrt{3}}{2}$

Show Answer Answer: c

13. If A, B, C, D are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $\mathrm{k}$, then the value of

$4 \sin \dfrac{\mathrm{A}}{2}+3 \sin \dfrac{\mathrm{B}}{2}+2 \sin \dfrac{\mathrm{C}}{2}+\sin \dfrac{\mathrm{D}}{2}$ is

(a) $2 \sqrt{1-\mathrm{k}}$

(b) $2 \sqrt{1+\mathrm{k}}$

(c) $2 \sqrt{\mathrm{k}}$

(d) None of these

Show Answer Answer: b

14. Read the paragraph and answer the following questions .

If $\alpha, \beta, \gamma, \delta$ are the solutions of the equation $\tan \left(\theta+\dfrac{\pi}{4}\right)=3 \tan 3 \theta$, no two of which have equal tangents, then

(i) The value of $\tan \alpha+\tan \beta+\tan \gamma+\tan \delta$ is

(a) $1 / 3$

(b) $8 / 3$

(c) $-8 / 3$

(d) 0

(ii) The value of $\tan \alpha \tan \beta \tan \gamma \tan \delta$ is

(a) $-1 / 3$

(b) -2

(c) 0

(d) None of these

(iii) The value of $\dfrac{1}{\tan \alpha}+\dfrac{1}{\tan \beta}+\dfrac{1}{\tan \gamma}+\dfrac{1}{\tan \delta}$ is

(a) -8

(b) 8

(c) $2 / 3$

(d) $1 / 3$

Show Answer Answer: (i) d (ii) a (iii) b

15.* Which of the following is / are correct?

(a) $(\tan x)^{\log _{c}(\sin x)}>(\cot x)^{\log _{c}(\sin x)} \hspace {2 cm}, \forall x \in(0, \pi / 4)$

(b) $4^{\log _{c}(\operatorname{cosec} x)}<5^{\log _{c}(\operatorname{cosec} x)}$ $\hspace {3 cm}$ $,\forall \mathrm{x} \in(0, \pi / 2)$

(c) $\left(\dfrac{1}{2}\right)^{\log _{c}(\cos x)}<\left(\dfrac{1}{3}\right)^{\log _{c}(\cos x)}$ $\hspace {2.4 cm}$,$\forall \mathrm{x} \in(0, \pi / 2)$

(d) $2^{\log _{e}(\tan x)}<2^{\log _{e}(\sin x)}$ $\hspace {3.5 cm}$,$\forall \mathrm{x} \in(0, \pi / 2)$

Show Answer Answer: a, b, c, d


Table of Contents