Permutations and Combinations - Fundamental Principle of Counting (Lecture-01)
Fundamental principle of counting
(i) Addition principle : If an operation can be performed in ’ $m$ ’ different ways and another operation which is independent of the first operation, can be performed in ’ $n$ ’ different ways then either of then can be performed in $(m+n)$ ways.
(ii) Multiplication Principle. If an operation can be performed is ’ $m$ ’ different ways; following which a second operation can be performed in ’ $n$ ’ different ways, then the two operations in succession can be performed in ’ $\mathrm{mn}$ ’ ways.
Permutation
Number of permutations of $n$ distinct things taking $r(1 \leq r \leq n)$ at a time is denoted by ${ }^{n} P _{r}$.
${ }^{n} P _{r}=\dfrac{n !}{(n-r) !}$
- Number of ways of filling $r$ places using $n$ things if repetition is allowed $=n^{r}$
Circular Permutation
Number of circular permutations of $n$ things $=(n-1)$ !
Number of circular permutations of $n$ different things taken $r$ at a time $=\dfrac{{ }^{n} P _{r}}{r}$
Number of circular permutations of $n$ different things when clockwise and anticlockwise circular permutations are considered as same is $\dfrac{(\mathrm{n}-1) !}{2}$
Note : When position are marked, circular arrangement is assumed to be linear.
Combination
Number of combinations of $n$ distinct things taking $r$ at a time is denoted by ${ }^{n} C _{r}$.
${ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}=\dfrac{\mathrm{n} !}{\mathrm{r} !(\mathrm{n}-\mathrm{r}) !}$
Note: ${ }^{n} \mathrm{P} _{\mathrm{r}}=\mathrm{r}$ ! ( $\left.{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}\right)$
Note the following facts
(i) ${ }^{n} C _{0}={ }^{n} C _{n}=1$
(ii) ${ }^{n} \mathrm{C} _{\mathrm{r}}={ }^{n} \mathrm{C} _{\mathrm{n}-\mathrm{r}} \quad(0 \leq \mathrm{r} \leq \mathrm{n})$
(iii) ${ }^{n} \mathrm{C} _{\mathrm{r}-1}+{ }^{\mathrm{n}} \mathrm{C} _{\mathrm{r}}={ }^{\mathrm{n}+1} \mathrm{C} _{\mathrm{r}} \quad(1 \leq \mathrm{r} \leq \mathrm{n})$
(iv) ${ }^{n} C _{r}={ }^{n} C _{s} \Rightarrow\left\{\begin{array}{l}r=s \\ \text { or } r+s=n\end{array}\right.$
(v) Greatest value of ${ }^{n} C _{r}=\left\{\begin{array}{l}{ }^{n} C _{\dfrac{n}{2}} \text { if } n \text { is even } \\ { }^{n} C _{\dfrac{n-1}{2}} \text { or }{ }^{n} C _{\dfrac{n+1}{2}} \text { if } n \text { is odd }\end{array}\right.$
Important Results
1. Total number of selections of one or more objects from $\mathrm{n}$ different objects
$={ }^{n} C _{1}+{ }^{n} C _{2}+\ldots .+{ }^{n} C _{n}=2^{n}-1$
2. Total number of selections of any number of things from $n$ identical things
$=\left\{\begin{array}{l}(n+1) ; \text { when selection of zero things is allowed } \\ n \quad ; \text { when at least one thing is to be selected. }\end{array}\right.$
3. Total number of selections from $p$ like things, $q$ like things of another type and $r$ distinct things
$=\left\{\begin{array}{l}(p+1)(q+1) 2^{r}-1 \text { (if at least one thing to be selected) } \\ (p+1)(q+1) 2^{r}-2(\text { if none or all cannot be selected) }\end{array}\right.$
4. Total number of selections of $\mathrm{r}$ things from $\mathrm{n}$ different things when each thing can be repeated unlimited number of times $={ }^{n+r-1} C _{r-1}$
5. Total number of ways to divide $n$ identical things among $\mathrm{r}$ persons $={ }^{n+r-1} \mathrm{C} _{\mathrm{r}-1}$
6. Results on distribution
Distribution of $n$ things to $r$ boxes
Given | Condition | Number of ways |
---|---|---|
$n$ distinct things | Empty boxes are allowed | $r^{n}$ |
$r$ distinct boxes | Empty boxes are not allowed | coefficient of $x^{n}$ in $n !\left(e^{x}-1\right)^{r}$ |
$n$ identical things | Empty boxes are allowed | ${ }^{n+r-1} C _{r-1}$ |
$r$ distinct boxes | Empty boxes are not allowed | ${ }^{n-1} C _{r-1}$ |
7. Division of items into groups
(i) Groups of unequal size.
- $\quad$ Number of ways in which $(m+n+p)$ items can be divided into unequal groups containing $\mathrm{m}, \mathrm{n}$, p items is $\dfrac{(\mathrm{m}+\mathrm{n}+\mathrm{p}) \text { ! }}{\mathrm{m} ! \mathrm{n} ! \mathrm{p} !}$
- $\quad$ Number of ways to distribute $(m+n+p)$ items among 3 persons in the group containing $\mathrm{m}, \mathrm{n}$ & $\mathrm{p}$ items is $\dfrac{(\mathrm{m}+\mathrm{n}+\mathrm{p}) !}{\mathrm{m} ! \mathrm{n} ! \mathrm{p} !} 3$ !
(ii) Groups of equal size
- Number of ways in which $(\mathrm{mn})$ different items can be divided equally into $\mathrm{m}$ groups each containing n objects
$=\left\{\begin{array}{l}\dfrac{(m n) !}{(n !)^{m} m !} ; \text { if order of gorups is not impor tan } t \\ \dfrac{(m n) !}{(n !)^{m}} ; \text { if order of groups is impor tan } t\end{array}\right.$
Note
(i) If there are $m$ items of one kind, $n$ items of another kind, then the number of ways of choosing $r$ items out of these $=$ coefficient of $x^{r}$ in $\left(1+x+x^{2}+\right.$ $\left.+x^{m}\right)\left(1+x+x^{2}+\ldots \ldots .+x^{n}\right)$
(ii) If there are $m$ items of one kind $n$ items of another kind, then the number of ways of choosing $r$ items such that at least one item of each kind is included
$=$ coefficient of $\mathrm{x}^{\mathrm{r}}$ in $\left(\mathrm{x}+\mathrm{x}^{2}+\ldots . .+\mathrm{x}^{\mathrm{m}}\right)\left(\mathrm{x}+\mathrm{x}^{2}+\ldots .+\mathrm{x}^{\mathrm{n}}\right)$
8. Results related with points, Lines, Rectangle, Polygon, Circle, etc.
(i) If these are $n$ points in the plane, number of line segments ${ }^{n} \mathrm{C} _{2}$
(ii) Number of points $n$, then the number of triangles ${ }^{n} C _{3}$
(iii) Number of diagonals in a regular polygon having $\mathrm{n}$ sides $={ }^{n} \mathrm{C} _{2}-\mathrm{n}$
(iv) Number of parallelograms when a parallelogram is cut by two sets of $m$ lines parallel to its sides $={ }^{\mathrm{m}+2} \mathrm{C} _{2}{ }^{\mathrm{m}+2} \mathrm{C} _{2}$
(v) $\left\{\begin{array}{l}\text { Number of rectangles }=\sum\limits _{r=1}^{n} r^{3} \\ \text { Number of squares }=\sum\limits _{r=1}^{n} r^{2}\end{array}\right.$
(vi) $\left\{\begin{array}{l}\text { Number of rectangles }={ }^{m+1} C _{2}{ }^{n+1} C _{2}=\dfrac{m n}{4}(m+1)(n+1) \\ \text { Number of squares }=\sum\limits _{r=1}^{n}(m-r+1)(n-r+1)\end{array}\right.$
(vii) Maximum number of parts in which a plane can be divided by $\mathrm{n}$ straight lines $=1+\sum\limits _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}$
(viii) Maximum number of points of intersection of $n$ straight Lines $=1 \times{ }^{n} C _{2}$
(ix) Maximum number of points of intersection of $n$ circles $=2 \times{ }^{n} C _{2}$
(x) Maximum number of points of intersection of $n$ parabolas $=4 \times{ }^{n} C _{2}$
De-arrangement
Number of arrangement of $m$ things in a row so that none of them occupies its original place is
$\mathrm{m} !\left\{1-\dfrac{1}{1 !}+\dfrac{1}{2 !}-\dfrac{1}{3 !}+\ldots \ldots .+(-1)^{\mathrm{m}} \dfrac{1}{\mathrm{~m} !}\right\}$
Exponent of prime $\mathbf{p}$ in $\mathbf{n}$ !
$E _{p}(n !)=\left[\dfrac{n}{p}\right]+\left[\dfrac{n}{p^{2}}\right]+\left[\dfrac{n}{p^{3}}\right]+\ldots \ldots \ldots+\left[\dfrac{n}{p^{k}}\right]$ where $k$ is the largest positive integer such that $\mathrm{p}^{\mathrm{k}} \leq \mathrm{n}<\mathrm{p}^{\mathrm{k}+1}$
Solved Examples
1. The number of zeroes at the end of 100 ! is
(a) 23
(b) 24
(c) 25
(d) None of these
Show Answer
Solution:
$\left[\dfrac{100}{5}\right]+\left[\dfrac{100}{5^{2}}\right]+\left[\dfrac{100}{5^{3}}\right]+$
$=20+4+0$
$=24$
Answer (b)
2. The total number of integral solutions of the triplet $(x, y, z)$ for the equation $x y z=24$ is
(a) 30
(b) 60
(c) 120
(d) None of these
Show Answer
Solution:
$\begin{aligned} & 24.1 .1 \rightarrow \frac{3!}{2!}=3 \\ & 12.2 .1 \rightarrow 3!=6 \\ & 6.4 .1 \rightarrow 3!=6 \\ & 8.3 .1 \rightarrow 3!=6 \\ & 6.2 .2 \rightarrow \frac{3!}{2!}=3 \\ & 4.3 .2 \rightarrow 3!=6 \\ & \therefore \text { Total }=30 \\ & 30 \text { positive integral solutions } \\ & \text { Total number of integral solutions with negative integers included is } 30 \times 4=120 \ & \end{aligned}$
Answer (c)
3. The total number of squares in a chess board is
(a) 64
(b) 65
(c) 204
(d) None of these
Show Answer
Solution:
$1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots \ldots \ldots+8^{2}=\dfrac{8(8+1)(16+1)}{6}=204$
Answer (c)
4. 20 lines pass through a given plane. The maximum number of parts in which the plane can be divided is
(a) 210
(b) 211
(c) 212
(d) None of these
Show Answer
Solution:
Use $1+\sum \mathrm{n}$
$=1+\sum 20=1+\dfrac{20.21}{2}=211$
Answer (b)
5. The number of quadrilaterals that can be formed using 10 points in a plane out of which 4 are collinear is
(a) 210
(b) 209
(c) 185
(d) None of these
Show Answer
Solution:
${ }^{10} \mathrm{C} _{4}-{ }^{4} \mathrm{C} _{4}-{ }^{4} \mathrm{C} _{3} \cdot{ }^{6} \mathrm{C} _{1}=185$
Answer (c)
6. The total number of distinct rational numbers $x$ such that $0<x<1$ and $x=\dfrac{p}{q}$ where $\mathrm{p}, \mathrm{q} \in\{1,2,3,4,5,6\}$ is
(a) 15
(b) 13
(c) 11
(d) None of these
Show Answer
Solution:
Values of $\mathrm{p} \quad$ Possible rational numbers
$\begin{array}{ll} 1 &\quad \quad \dfrac{1}{2}, \dfrac{1}{3}, \dfrac{1}{4}, \dfrac{1}{5}, \dfrac{1}{6} \\ 2 &\quad \quad \dfrac{2}{3}, \dfrac{2}{4}, \dfrac{2}{5}, \dfrac{2}{6} \\ 3 &\quad \quad \dfrac{3}{4}, \dfrac{3}{5}, \dfrac{3}{6} \\ 4 &\quad \quad \dfrac{4}{5}, \dfrac{4}{6} \\ 5 &\quad \quad \dfrac{5}{6} \end{array}$
Out of 15 possible rational numbers, only 11 are distinct.
Answer (c)
7. The sum of 5 digit number in which only odd digits occur without repetition is
(a) 277775
(b) 555550
(c) 1111100
(d) None of these
Show Answer
Solution:
Sum of $n$ digit numbers
$\begin{aligned} & =(\text { Sum of digits }) \dfrac{\left(10^{\mathrm{n}}-1\right)}{10-1}(\mathrm{n}-1) ! \\ & =(1+3+5+7+9) \dfrac{\left(10^{5}-1\right)}{10-1}(5-1) ! \\ & =25 \times 11111 \times 24 \\ & =6666600 \end{aligned}$
Answer (d)
Exercise
1. An n digit number is a positive number with exactly $n$ digits. Nine hundred distinct n-digit numbers are to be formed using only the three digits 2,5 and 7 . The smallest value of $n$ for which this is possible is
(a) 6
(b) 7
(c) 8
(d) 9
Show Answer
Answer: b2. Match the following:
Consider all possible permutations of the letters of the word ENDEANOEL
Column I | Column II | ||
---|---|---|---|
(a) | The number of permutations containing the word ENDEA is | (p) | 5 ! |
(b) | The number of permutations in which the letter E occurs in the first and last position is | (q) | $2 \times 5$ ! |
(c) | The number of permutations in which none of the letters $\mathrm{D}, \mathrm{L}, \mathrm{N}$ occurs in the last five positions is | (r) | $7 \times 5$ ! |
(d) | The number of permutations in which the letters A, E, O occur only in odd positions is | (s) | $21 \times 5$ ! |
Show Answer
Answer: $\mathrm{a} \rightarrow \mathrm{p} ; \mathrm{b} \rightarrow \mathrm{s} ; \mathrm{c} \rightarrow \mathrm{q} ; \mathrm{d} \rightarrow \mathrm{q}$3. Five balls of different colors are to be placed in 3 boxes of different sizes. Each box can hold all 5 balls. The number of ways we can place the balls so that no box is empty, is
(a) 116
(b) 126
(c) 144
(d) 150
Show Answer
Answer: d4. A student is allowed to select atmost $n$ books from a collection of $(2 n+1)$ books. If number of ways in which he can select atleast one book is 63 , then $\mathrm{n}=$
(a) 3
(b) 4
(c) 6
(d) 5
Show Answer
Answer: a5. A rectangle with sides $2 \mathrm{~m}-1,2 \mathrm{n}-1$ is divided into squares of unit length by drawing lines parallel to sides of a rectangle. The number of rectangles with odd side length is
(a) $(\mathrm{m}+\mathrm{n}+1)^{2}$
(b) $\mathrm{mn}(\mathrm{m}+1)(\mathrm{n}+1)$
(c) $\mathrm{m}^{2} \mathrm{n}^{2}$
(d) $4^{\mathrm{m}+\mathrm{n}-1}$
Show Answer
Answer: c6. Out of 5 apples, 10 mangoes and 15 oranges, the number of ways of distributing 15 fruits each to two persons, is
(a) 56
(b) 64
(c) 66
(d) 72
Show Answer
Answer: c7. Match the following
Column I | Column II | ||
---|---|---|---|
(a) | The number of positive integral solutions of the equation $\mathrm{x} _{1} \mathrm{x} _{2} \mathrm{X} _{3} \mathrm{x} _{4} \mathrm{x} _{5}=1050$ is $\lambda$, then $\lambda$ is divisible by | (p) | 3 |
(b) | Let $y$ be the element of the set $A=\{1,2,3,5,6,10,15,30\}$ and $x_1, x_2, x_3$ be integers such that $x_1 x_2 x_1=y$.If $\lambda$ be the number of integral solutions of $x_1 x_2 x_3=y$, then $\lambda$ is divisible by | (q) | 4 |
(c) | Let a be a factor of 120 . If $\lambda$ be the number of positive integral solutions of $\mathrm{x} _{1} \mathrm{x} _{2} \mathrm{x} _{3}=\mathrm{a}$, then $\lambda$ is divisible by | (r) | 5 |
(s) | 8 | ||
(t) | 16 |
Show Answer
Answer: $\mathrm{a} \rightarrow \mathrm{p}, \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{t} ; \mathrm{c} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{r}, \mathrm{t}$8. The maximum number of points into which 4 circles & 4 straight lines intersect is
(a) 26
(b) 50
(c) 56
(d) 72
Show Answer
Answer: b9. A is a set containing $n$ elements. A subset $P _{1}$ is chosen and $A$ is reconstructed by replacing the elements of $\mathrm{P} _{1}$. The same process is repeated for subsets $\mathrm{P} _{2}, \ldots \ldots . \mathrm{P} _{\mathrm{m}}$ with $\mathrm{m}>1$. The number of ways of choosing $\mathrm{P} _{1}, \mathrm{P} _{2}, \ldots \ldots ., \mathrm{P} _{\mathrm{m}}$, so that $\mathrm{P} _{1} \cup \mathrm{P} _{2} \cup \ldots \ldots \cup \mathrm{P} _{\mathrm{m}}=\mathrm{A}$ is
(a) $\left(2^{\mathrm{m}}-1\right)^{\mathrm{mn}}$
(b) $\left(2^{\mathrm{n}}-1\right)^{\mathrm{m}}$
(c) ${ }^{\mathrm{m}+\mathrm{n}} \mathrm{C} _{\mathrm{m}}$
(d) None of these
Show Answer
Answer: d10. Number of points having position vector $a \hat{i}+b \hat{j}+c \hat{k}$ where $a, b, c \in\{1,2,3,4,5$,$\} such that$ $2^{a}+3^{b}+5^{c}$ is divisible by 4 is
(a) 70
(b) 140
(c) 210
(d) 280
Show Answer
Answer: a11. Read the passage and answer the following questions.
$\mathrm{A}$ is a set containing $\mathrm{n}$ elements. $\mathrm{A}$ subset $\mathrm{P}$ of $\mathrm{A}$ is chosen and the set $\mathrm{A}$ is reconstructed by replacing the elements of P. A subset Q of A is chosen again. Find the number of ways of choosing P & Q when
(i) $\mathrm{Q}$ is subset of $\mathrm{P}$ is
(a) $3^{\text {n }}$
(b) $2^{\mathrm{n}}$
(c) n.3 $\mathrm{n}^{-1}$
(d) None of these
(ii) $\mathrm{P}$ & $\mathrm{Q}$ contain just one element is
(a) $2^{\mathrm{n}}$
(b) $3^{\mathrm{n}}$
(c) $n \cdot 3^{n-1}$
(d) None of these
(iii) $\mathrm{P}=\mathrm{Q}$ is
(a) $2^{\mathrm{n}}$
(b) $3^{\mathrm{n}}$
(c) $n .3^{n-1}$
(d) None of these