Parabola (Lecture-02)

Equation of Normal

Parabola Point form Pt.of contact Parametric form Point of contact slope Form Pt.of contact
$y^2=4 a x$ $y-y_1=\frac{-y_1}{2 a}\left(x-x_1\right)$ $\left(x_1, y_1\right)$ $y=-t x+2 a t+a t^3$ $\left(a t^2, 2 a t\right)$ $y=m x-2 a m-a m^3$ $\left(a m^2,-2 a m\right)$
$y^2=-4 a x$ $y-y_1=\frac{y_1}{2 a}\left(x-x_1\right)$ $\left(x_1, y_1\right)$ $y=-t x+2 a t+a t^3$ $\left(-a t^2, 2 a t\right)$ $y=m x+2 a m+a m^3$ $\left(-a m^2, 2 a m\right)$
$x^2=4 a y$ $x-x_1=\frac{x_1}{2 a}\left(y-y_1\right)$ $\left(x_1, y_1\right)$ $x=-t y+2 a t+a t^3$ $\left(2 a t, a t^2\right)$ $y=m x+2 a+\frac{a}{m^2}$ $\left(-\frac{2 a}{m}, \frac{a}{m^2}\right)$
$x^2=-4 a y$ $x-x_1=\frac{x_1}{2 a}\left(y-y_1\right)$ $\left(x_1, y_1\right)$ $x=t y+2 a t+a t^3$ $\left(2 a t,-a t^2\right)$ $y=m x-2 a-\frac{a}{m^2}$ $\left(\frac{2 a}{m},-\frac{a}{m^2}\right)$

Equation of normal to the parabola $(y-k)^{2}=4(x-h)$ is

$y-k=m(x-h)-2 a m-a^{3}$

Properties of Normal

1. If the normal at the point $\mathrm{P}\left(\mathrm{at} _{1}{ }^{2}, 2 \mathrm{at} _{1}\right)$ meets the parabola at

$\mathrm{Q}\left(\mathrm{at} _{2}{ }^{2}, 2 \mathrm{at} _{2}\right)$, then $\mathrm{t} _{2}=-\mathrm{t} _{1}-\dfrac{2}{\mathrm{t} _{1}}$

2. If the normal at the points $\left(a t _{1}{ }^{2}, 2 \mathrm{at} _{1}\right)$ and $\left(\mathrm{at} _{2}{ }^{2}, 2 \mathrm{at} _{2}\right)$ meet on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, then $\mathrm{t} _{1} \mathrm{t} _{2}=2$.

3. No normal other than axis passes through focus.

Important Properties :

  • If the tangent and normal at any point ’ $\mathrm{P}$ ’ of the parabola intersect the axis at $\mathrm{T}$ and $\mathrm{N}$ then $\mathrm{ST}$ $=\mathrm{SN}=\mathrm{SP}$ where $\mathrm{S}$ in the focus.
  • The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the focus.

$\angle \mathrm{PSQ}=90^{\circ}$

  • Any tangent to a parabola and the perpendicular on it from the focus meet on the tangent at the vertex.

$\angle \mathrm{PQS}=90^{\circ}$

  • If the tangents at $\mathrm{A}$ and $\mathrm{B}$ meet in $\mathrm{P}$ then $\mathrm{PA}$ and $\mathrm{PB}$ subtends equal angles at the focus $\mathrm{S}$. $(\mathrm{SP})^{2}=\mathrm{SA} \times \mathrm{SB}$

$\triangle \mathrm{SAP} \sim \triangle \mathrm{SPB}$

$\angle \mathrm{PSA}=\angle \mathrm{PSB}$.

  • The area of the triangle formed by three points on a parabola is twice the area of the triangle formed by the tangents at these points.

Conormal points:

Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point and equation of parabola be $\mathrm{y}^{2}=4 \mathrm{ax}$.

Equation of normal is

$y=m x-2 a m-a m^{3}$

If passes through $(\mathrm{h}, \mathrm{k})$ so

$\begin{aligned} & \mathrm{k}=\mathrm{mh}-2 \mathrm{am}-\mathrm{am}^{3} \\ & \mathrm{am}^{3}+2 \mathrm{am}-\mathrm{mh}+\mathrm{k}=0 \end{aligned}$

$\mathrm{am}^{3}+\mathrm{m}(2 \mathrm{a}-\mathrm{h})+\mathrm{k}=0$

Suppose $\mathrm{m} _{1}, \mathrm{~m} _{2}, \mathrm{~m} _{3}$ are the roots of this equation

$\therefore \quad \mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}=0$

$\begin{aligned} & \mathrm{m} _{1} \mathrm{~m} _{2}+\mathrm{m} _{2} \mathrm{~m} _{3}+\mathrm{m} _{3} \mathrm{~m} _{1}=\dfrac{2 \mathrm{a}-\mathrm{h}}{\mathrm{a}} \\ & \mathrm{m} _{1} \cdot \mathrm{m} _{2} \cdot \mathrm{m} _{3}=-\dfrac{\mathrm{k}}{\mathrm{a}} \end{aligned}$

So maximum three normal say PM, PN, PQ drawn through P. Points M, N, Q are called conormal points.

  • The algebraic sum of ordinates of the conormal points is zero.

Let the coordinates of conormal points be $\mathrm{M}\left(\mathrm{am} _{1}{ }^{2},-2 \mathrm{am} _{1}\right), \mathrm{N}\left(\mathrm{am} _{2}{ }^{2},-2 \mathrm{am} _{2}\right)$ and

$\mathrm{Q}\left(\mathrm{am} _{3}^{2},-2 \mathrm{am} _{3}\right)$. The ordinates of these points

$\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}=-2 \mathrm{am} _{1}-2 \mathrm{am} _{2}-2 \mathrm{am} _{3}$

$=-2 \mathrm{a}\left(\mathrm{m} _{1}+\mathrm{m} _{2}+\mathrm{m} _{3}\right)$

$=0$

$\Rightarrow \mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}=0$

  • Centroid of the triangle formed by conormal points lies on the axis of parabola.

Let coordinates of conormal points be $\mathrm{M}\left(\mathrm{x} _{2}, \mathrm{y} _{1}\right), \mathrm{N}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right) \mathrm{Q}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$

Then centroid is $\left(\dfrac{\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}}{3}, \dfrac{\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}}{3}\right)=\left(\dfrac{\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}}{3}, 0\right)$

Since sum of ordinates is zero. Therefore centroid lies on the axis of parabola.

  • $\quad$ Normal drown from a point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ to the parabola are real and distinct if $\mathrm{h}>2 \mathrm{a}$.

Chord of Contact

Let $\mathrm{PA}$ and $\mathrm{PB}$ be tangents drawn through the point $\mathrm{P}(\mathrm{h}, \mathrm{k})$.

Equation of tangent at $\mathrm{A}$ is

$\mathrm{yy} _{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right)$

Equation of chord whose midpoint $\left(x _{1}, y _{1}\right)$ is given :

$\begin{aligned} & \mathrm{S} \equiv \mathrm{y}^{2}-4 \mathrm{ax} \\ & \mathrm{S} _{1} \equiv \mathrm{y} _{1}{ }^{2}-4 \mathrm{ax} \\ & \mathrm{T} \equiv \mathrm{y} _{1}-2 \mathrm{a}\left(\mathrm{x}+\mathrm{x} _{1}\right) \end{aligned}$

Equation of $\mathrm{AB}$ is $\mathrm{T}=\mathrm{S}$

PI is incident ray then PS is reflected ray. So any ray incident parallel to axis of the parabola after reflection it passes through focus.

Example: 17 If the chord of contact of tangent from a point $\mathrm{P}$ to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ touches the parabola $\mathrm{x}^{2}=4 \mathrm{by}$. The locus of $\mathrm{P}$ is

(a) Parabola

(b) Hyperbola

(c) ellipse

(d) Circle

Show Answer

Solution: Let the point $\mathrm{P}$ be $(\mathrm{h}, \mathrm{k})$ then equation of chord of contact is $\mathrm{ky}=2 \mathrm{a}(\mathrm{x}+\mathrm{h})$

Now this chord is tangent of parabola $\mathrm{x}^{2}=4 \mathrm{by}$

$\Rightarrow \mathrm{x}^{2}=4 \mathrm{~b} \cdot \dfrac{2 \mathrm{a}}{\mathrm{k}}(\mathrm{x}+\mathrm{h})$

$\Rightarrow \quad x^{2}\left(-\dfrac{8 a b}{k}\right)^{2}-4 x(1)\left(-\dfrac{8 a b h}{k}\right)=0$

$64 \dfrac{\mathrm{a}^{2} \mathrm{~b}^{2}}{\mathrm{k}^{2}}+\dfrac{32 \mathrm{abh}}{\mathrm{k}}=0$

$\Rightarrow \quad \dfrac{2 \mathrm{ab}}{\mathrm{k}}+\mathrm{h}=0$

$\Rightarrow 2 \mathrm{ab}=-\mathrm{hk}$

Locus $o(h, k)$ is $x y=-2 b$. ie. Hyperbola.

Answer: b

Example: 18 Let $P$ and $Q$ be points $(4,-4)$ and $(9,6)$ on the parabola $y^{2}=4 a(x-b)$. $R$ is a point on the parabola so that area $\triangle \mathrm{PRQ}$ is maximum, then

(a) $\angle \mathrm{PRQ}=90^{\circ}$

(b) the point $\mathrm{R}$ is $(4,4)$

(c) the point $\mathrm{R}$ is $\left(\dfrac{1}{4}, 1\right)$

(d) None of these

Show Answer

Solution: $(4,-4)$ lies on $\mathrm{y}^{2}=4 \mathrm{a}(\mathrm{x}-\mathrm{b}) \Rightarrow 16=4 \mathrm{a}(4-\mathrm{b})$

$(9,6)$ lies on $y^{2}=4 a(x-b) \Rightarrow 36=4 a(9-b)$

$\dfrac{9}{4}=\dfrac{9-b}{4-b} \Rightarrow b=0$

$\mathrm{a}=1$

$\therefore \quad \mathrm{y}^{2}=4 \mathrm{x}$

Let $\mathrm{R}$ be $\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)$

area $\triangle \mathrm{PRQ}=\dfrac{1}{2}\left|\begin{array}{ccc}4 & -4 & 1 \\ 9 & 6 & 1 \\ \mathrm{t}^{2} & 2 \mathrm{t} & 1\end{array}\right|=\dfrac{1}{2}\left|\left\{4(6-2 \mathrm{t})+4\left(9-\mathrm{t}^{2}\right)+18 \mathrm{t}-6 \mathrm{t}^{2}\right\}\right|$

$=\dfrac{1}{2}\left(24-8 t+36-4 t^{2}+18 t-6 t^{2}\right)=\dfrac{1}{2}\left(-10 t^{2}+10 t+60\right)$

$=-5\left(t^{2}-t-6\right)=-5\left(t-\dfrac{1}{2}\right)^{2}+30+\dfrac{5}{4}$

Area is maximum when $\mathrm{t}=\dfrac{1}{2}$

Coordinates of $\mathrm{R}\left(\dfrac{1}{4}, 1\right)$

Answer: c

Example: 19 Minimum area of circle which touches the parabola’s $y^{2}=x^{2}+1$ and $y^{2}=x+1$ is

(a) $\dfrac{9 \pi}{32}$ sq.unit

(b) $\dfrac{\pi}{4}$ sq.unit

(c) $\dfrac{7 \pi}{32}$ sq.unit

(d) $\dfrac{9 \pi}{16}$ sq.unit

Show Answer

Solution: $\mathrm{y}=\mathrm{x}^{2}+1$ and $\mathrm{y}^{2}=\mathrm{x}+1$ are symmetrical about $\mathrm{y}=\mathrm{x}$

tangent at point. $\mathrm{A}$ and $\mathrm{B}$ are parallel to the line $\mathrm{y}=\mathrm{x}$

$\mathrm{y}=\mathrm{x}^{2}+1$ $\hspace {3 cm}\mathrm{y}^{2}=\mathrm{x}+1$

$\dfrac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}=1$ $\hspace {3 cm}\mathrm{y}=\dfrac{1}{2}$

$\mathrm{x}=\dfrac{1}{2}$ $\hspace {4 cm}\mathrm{x}=\dfrac{5}{4}$

$\mathrm{y}=\dfrac{5}{4}$

$\mathrm{A}\left(\dfrac{1}{2}, \dfrac{5}{4}\right) \hspace {3 cm}\mathrm{B}\left(\dfrac{5}{4}, \dfrac{1}{2}\right)$

$\mathrm{AB}=\sqrt{\left(\dfrac{1}{2}-\dfrac{5}{4}\right)^{2}+\left(\dfrac{5}{4}-\dfrac{1}{2}\right)^{2}}=\dfrac{3 \sqrt{2}}{4}$

Area of circle $=\pi \mathrm{r}^{2}=\pi\left(\dfrac{3 \sqrt{2}}{8}\right)^{2}=\dfrac{9 \pi}{32}$ sq.unit

Answer: a

Example: 20 The equation of the common tangents to the parabola $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=-(\mathrm{x}-2)^{2}$ is $/$ are

(a) $\mathrm{y}=4(\mathrm{x}-1)$

(b) $y=0$

(c) $y=-4(x-1)$

(d) $y=-30 x-50$

Show Answer

Solution: Let $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is tangent to $\mathrm{y}=\mathrm{x}^{2}$

$\therefore \quad \mathrm{mx}+\mathrm{c}=\mathrm{x}^{2} \Rightarrow \mathrm{x}^{2}-\mathrm{mx}-\mathrm{c}=0$ has equal roots $\mathrm{m}^{2}+4 \mathrm{c}=0$

$y=m x-\dfrac{m^{2}}{4}$ is tangent to $y=-(x-2)^{2}$ also

$m x-\dfrac{m^{2}}{4}=-x^{2}+4 x-4$

$\mathrm{x}^{2}+(\mathrm{m}-4) \mathrm{x}+4-\dfrac{\mathrm{m}^{2}}{4}=0$ has equal roots

$\therefore \quad(\mathrm{m}-4)^{2}-4\left(4-\dfrac{\mathrm{m}^{2}}{4}\right)=0$

$\mathrm{m}^{2}+16-8 \mathrm{~m}-16+\mathrm{m}^{2}=0$

$\mathrm{m}^{2}-4 \mathrm{~m}=0$

$\mathrm{m}=0,4$

Equation of tangent are $y=0$ and $y=4 x-4$

Answer: a,b

Example 21. $(3,0)$ is the point from which three normals are drawn to the parabola $y^{2}=4 x$ which meet the parabola in the points $\mathrm{P}, \mathrm{Q}$ and $\mathrm{R}$ then

Column I Column II
i. Area of $\triangle \mathrm{PQR}$ (a) 2
ii. Radius of circum circle of $\triangle \mathrm{PQR}$ (b) $\dfrac{5}{2}$
iii. Centroid of $\triangle \mathrm{PQR}$ (c) $\left(\dfrac{5}{2}, 0\right)$
iv. Circum centre of $\triangle \mathrm{PQR}$ (d) $\left(\dfrac{2}{3}, 0\right)$

Show Answer

Solution: Equation of normal is $\mathrm{y}=\mathrm{mx}-2 \mathrm{~m}-\mathrm{m}^{3}$

It passes through $(3,0)$, so

$\begin{aligned} & 3 \mathrm{~m}-2 \mathrm{~m}-\mathrm{m}^{3}=0 \\ & \mathrm{~m}\left(1-\mathrm{m}^{2}\right)=0 \\ & \mathrm{~m}=0,1,-1 \end{aligned}$

Points are given by $\left(\mathrm{m}^{2},-2 \mathrm{~m}\right)$

i.e. $P(0,0), Q(1,-2), R(1,2)$

area of $\triangle \mathrm{PQR}=\dfrac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & 1\end{array}\right|=$ 2 sq.units

$\mathrm{R}=\dfrac{\mathrm{abc}}{4 \Delta}=\dfrac{\sqrt{5} \cdot \sqrt{5} \cdot 4}{4 \cdot 2}=\dfrac{5}{2}$

Centroid $\triangle \mathrm{PQR}=\left(\dfrac{2}{3}, 0\right)$

Circum centre $\left(\dfrac{5}{2}, 0\right)$

Comprehension based Questions (Exampels 6 to 8)

Comprehension 1

Consider the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ and the parabola $\mathrm{y}^{2}=8 \mathrm{x}$. They intersect at $\mathrm{P}$ and $\mathrm{Q}$ in the first and the fourth quadrants, respectively. Tangents to the circle at $P$ and $Q$ intersect the $x$-axis at $R$ and tangents to the parabola at $\mathrm{P}$ and $\mathrm{Q}$ intersect the $\mathrm{x}$-axis at $\mathrm{S}$.

Example 22. The ratio of the area of the triangles $\mathrm{PQS}$ and $\mathrm{PQR}$ is

(a) $1: \sqrt{2}$

(b) 1:2

(c) $1: 4$

(d) $1: 8$

Show Answer

Solution: Point of intersection of circle & parabola

$\mathrm{x}^{2}+8 \mathrm{x}-9=0$

$(\mathrm{x}+9)(\mathrm{x}-1)=0$

$\mathrm{X}=1,-9$ (not possible)

$\mathrm{Y}= \pm 2 \sqrt{5}$

$\mathrm{P}(1,2 \sqrt{2}), \quad \mathrm{Q}(1,-2 \sqrt{2})$

Tangent to the parabola at $P$ is $2 \sqrt{2 y}=4(x+1)$

$\mathrm{S}(-1,0)$

Tangent to the circle at $P$ is $\quad x+2 \sqrt{2 y}=9$

$\mathrm{R}(9,0)$

$\dfrac{\operatorname{ar} \triangle \mathrm{PQS}}{\operatorname{ar} \triangle \mathrm{PQR}}=\dfrac{\dfrac{1}{2} \mathrm{xPQxST}}{\dfrac{1}{2} \mathrm{xPQxRT}}=\dfrac{\mathrm{ST}}{\mathrm{RT}}=\dfrac{2}{8}=\dfrac{1}{4}$

Answer: c

Example 23. The radius of the circum circle of the triangle PRS is

(a) 5

(b) $3 \sqrt{3}$

(c) $3 \sqrt{2}$

(d) $2 \sqrt{3}$

Show Answer

Solution: area $\triangle \mathrm{PRS}=\Delta=\dfrac{1}{2} \mathrm{xSRxPT}=\dfrac{1}{2} \times 10 \times 2 \sqrt{2}=10 \sqrt{2}$

$\mathrm{R}=\dfrac{\mathrm{abc}}{4 \Delta}=\dfrac{10 \cdot 6 \sqrt{2} \cdot 2 \sqrt{3}}{4.10 \sqrt{2}}=3 \sqrt{3}$

Answer: b

Example 24. The radius of the in circle of the triangle $\mathrm{PQR}$ is

(a) 4

(b) 3

(c) $\dfrac{8}{3}$

(d) 2

Show Answer

Solution: $\mathrm{r}=\dfrac{\Delta}{\mathrm{S}}=\dfrac{\dfrac{1}{2}=\mathrm{PQxRT}}{\dfrac{\mathrm{PR}+\mathrm{RQ}+\mathrm{QP}}{2}}=\dfrac{\dfrac{1}{2} \cdot 4 \sqrt{2} \cdot 8}{\dfrac{6 \sqrt{2}+6 \sqrt{2}+4 \sqrt{2}}{2}}=\dfrac{16 \sqrt{2}}{8 \sqrt{2}}=2$

Answer: d

COMPREHENSION 2 (EXAMPLES 25 TO 27)

If $y=x$ is tangent to the parabola $y=a x^{2}+c$

25. If $a=2$, then the value of $c$ is

(a) $\dfrac{1}{2}$

(b) $\dfrac{1}{4}$

(c) $\dfrac{1}{8}$

(d) 1

26. If $(1,1)$ is point of contact then ’ $a$ ’ is

(a) 1

(b) $\dfrac{1}{2}$

(c) $\dfrac{1}{3}$

(d) $\dfrac{1}{4}$

27. If $c=2$ then point of contact is

(a) $(4,4)$

(b) $(2,2)$

(c) $(8,8)$

(d) $\left(\dfrac{1}{2}, \dfrac{1}{2}\right)$

Show Answer

Solution: $y=a x^{2}+c$

$\dfrac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{ax}=1 \quad$ Point of contact of the tangent is $\left(\dfrac{1}{2 \mathrm{a}}, \dfrac{1}{4 \mathrm{a}}+\mathrm{c}\right)$ since it lies on $\mathrm{y}=\mathrm{x}$

$\therefore \quad c=\dfrac{1}{4 \mathrm{a}}$ thus $\mathrm{c}=\dfrac{1}{8}$ for $\mathrm{a}=2$

Answer: c

If $(1,1)$ is poit of contact then $\mathrm{a}=\dfrac{1}{2}$

Answer: b

If $\mathrm{c}=2$, then point of contact is $\left(\dfrac{1}{2 \mathrm{a}}, \dfrac{1}{4 \mathrm{a}}+2\right)$

Since it lies on the line $y=x$,

$\dfrac{1}{2 a}=\dfrac{1}{4 a}+2 \Rightarrow a=\dfrac{1}{8}$

$\therefore \quad$ point of contact is $(4,4)$

Exercise

1. The point $\mathrm{P}$ on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ for which $|\mathrm{PR}-\mathrm{PQ}|$ is maximum, where $\mathrm{R}(-\mathrm{a}, 0), \mathrm{Q}(0, \mathrm{a})$ is

(a) $(4 a,-4 a)$

(b) $(4 a, 4 a)$

(c) $(a, 2 a)$

(d) $(\mathrm{a},-2 \mathrm{a})$

Show Answer Answer: c

2. The shortest distance between the parabola $y^{2}=4 x$ and the circle $x^{2}+y^{2}+6 x-12 y+20=0$ is

(a) $4 \sqrt{2}-5$

(b) $4 \sqrt{2}+5$

(c) $3 \sqrt{2}+5$

(d) $3 \sqrt{2}-5$

Show Answer Answer: a

3. If normals are drawn from a point $p(h, k)$ to the parabola $y^{2}=4 a x$, then the sum of the intercepts which the normals act off from the axis of the parabola is

(a) $4(\mathrm{~h}+0)$

(b) $3(\mathrm{~h}+\mathrm{c})$

(c) $2(\mathrm{~h}+\mathrm{a})$

(d) $(\mathrm{h}+\mathrm{a})$

Show Answer Answer: c

4. If $a \neq 0$ and the line $2 p x+3 q y+4 r=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then

(a) $\mathrm{r}^{2}+(3 \mathrm{p}+2 \mathrm{q})^{2}=0$

(b) $r^{2}+(2 p+3 q)^{2}=0$

(c) $\mathrm{r}^{2}+(3 \mathrm{p}-2 \mathrm{q})^{2}=0$

(d) $r^{2}+(2 p-2 q)^{2}=0$

Show Answer Answer: b

5. The equation of the tangent at the vertex of the parabola $x^{2}+4 x+2 y=0$ is

(a) $\mathrm{x}=2$

(b) $x=2$

(c) $y=2$

(d) $y=2$

Show Answer Answer: d

6. The common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 a x$ and $x^{2}=32 a y$ is

(a) $x+2 y-4 a=0$

(b) $x+2 y+4 a=0$

(c) $x-2 y+4 a=0$

(d) $x-2 y-4 a=0$

Show Answer Answer: b

7. The shortest distnae between the parabolas $\mathrm{y}^{2}=4 \mathrm{x}$ and $\mathrm{y}^{2}=2 \mathrm{x}-6$ is

(a) $\sqrt{5}$

(b) 2

(c) 3

(d) none of these

Show Answer Answer: a

8. The largest value of a for which the circle $x^{2}+y^{2}=a^{2}$ falls totally in the interior of the parabola $y^{2}=4(x+4)$ is

(a) 4

(b) $4 \sqrt{3}$

(c) $3 \sqrt{3}$

(d) $2 \sqrt{3}$

Show Answer Answer: d

Multiple choice questions with one or more than one correct answer.

9. Let $P\left(x _{1}, y _{1}\right)$ and $Q\left(x _{2}, y _{2}\right), y _{1}<0, y _{2}, 0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y=4$. The equations of parabolas with latus rectum $\mathrm{PQ}$ are

(a) $x^{2}+2 \sqrt{3} \mathrm{y}=3+\sqrt{3}$

(b) $x^{2}-2 \sqrt{3} y=3+\sqrt{3}$

(c) $x^{2}+2 \sqrt{3} y=3-\sqrt{3}$

(d) $x^{2}-2 \sqrt{3} y=3-\sqrt{3}$

Show Answer Answer: b, c

10. The tangent $\mathrm{PT}$ and the normal $\mathrm{PN}$ to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at a point $\mathrm{P}$ on it meet its axis at point $\mathrm{T}$ and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose

(a) vertex is $\left(\dfrac{2 \mathrm{a}}{3}, 0\right)$

(b) directrix is $x=0$

(c) latus rectum is $\dfrac{2 \mathrm{a}}{3}$

(d) focus is $(a, 0)$

Show Answer Answer: a, d

11. Match the following :

Consider the parabola $\mathrm{y}^{2}=12 \mathrm{x}$

Column I Column II
(a) Equation of tangent can be p. $2 x+y-6=0$
(b) Equation of normal can be q. $x-2 y-12=0$
(c) Equation of chord of contact w.r.t. any point on the directrix r. $2 x-y=36$
(d) Equation of chord which subtends right angle at the vertex s. $3 x-y+1=0$
Show Answer Answer: $\mathrm{A} \rightarrow \mathrm{s}, \mathrm{B} \rightarrow \mathrm{r}, \mathrm{C} \rightarrow \mathrm{p}, \mathrm{D} \rightarrow \mathrm{q}$
Assertion and Reasoning

12. Statement 1 : The curve $y=\dfrac{x^{2}}{2}+x+1$ is symmetric with respect to the line $x=1$.

Statement 2 : A parabola is symmetric about its axis.

(A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanations for statement 1 .

(B) Statement 1 is True, statement 2 is true, statement 2 is not a correct explanation for statement 1 .

(C) Statement 1 is true, statement 2 is false.

(D) Statement 1 is false, statement 2 is true.

Show Answer Answer: A


Table of Contents