Matrices And Determinants - Properties and Evaluation of Determinants (Lecture-02)

Some useful results

(i) |1aa21 b b21cc2|=(ab)(bc)(ca)

(ii) |abca2 b2c2bccaab|=|111a2 b2c2a3 b3c3|=(ab)(bc)(ca)(ab+bc+ca)

(iii) |abcabcbcaabccababc|=|aa2a3 b b2 b3cc2c3|=abc(ab)(bc)(ca)

(iv) |111abca3 b3c3|=(ab)(bc)(ca)(a+b+c)

(v) |abcbcacab|=(a+b+c)(a2+b2+c2abbcca)=(a3+b3+c33abc)

SOLVED EXAMPLES

1. If Δr=|2r1mCr1 m212mm+1sin2( m2)sin2 msin2( m+1)|, then the value of r=0mΔr

(a) 0

(b) 1

(c) m21

(d) 2m

Show Answer

Solution:

r=0mΔr=|r=0m(2r1)r=0mmCrr=0m1m212mm+1sin2(m2)sin2msin2(m+1)|

Adding the first row we get

r=0mΔr=|1+(1+3+5+..+2 m1)mC0+mC1+.+mCm1+1+1m+1 times m212mm+1sin2( m2)sin2 msin2( m+1)|=|m212mm+1 m212mm+1sin2( m2)sin2 msin2( m+1)|=0

Answer: (a)

2. If f(x),g(x) and h(x) are polynomials of degree 2, then ϕ(x)=|f(x)g(x)h(x)f(x)g(x)h(x)f(x)g(x)h(x)| is a polynomial of degree

(a) 2

(b) 3

(c) 4

(d) None of these

Show Answer

Solution

ϕ(x)=|f(x)g(x)h(x)f(x)g(x)h(x)f(x)g(x)h(x)|+|f(x)g(x)h(x)f(x)g(x)h(x)f(x)g(x)h(x)|+|f(x)g(x)h(x)f(x)g(x)h(x)f(x)g(x)h(x)|=0+0+0

(f(x),g(x),h(x) are polynomials of degree 3,f(x),g(x) and h(x)=0 )

ϕ1(x)=0

ϕ(x) is a constant.

Answer: (d)

3. If α,β,γ are roots of x3+a2+b=0, then the value of |αβγβγαγαβ| is

(a) a3

(b) a33b

(c) a3

(d) None of these

Show Answer

Solution:

α+β+γ=a,αβ+βγ+γα=0,αβγ=b.

It can be shown that

|αβγβγαγαβ|=(α+β+γ)(α2+β2+γ2αββγγα)

=(α+β+γ)((α+β+γ)23(αβ+βγ+γα))=(a)((a)23×0)=a3

Answer: (c)

4. If f(x)=|1xx+12xx(x1)x(x+1)3x(x1)x(x1)(x2)x(x+1)(x1)|, then f(100) is equal to

(a) 0

(b) 1

(c) 100

(d) -100

Show Answer

Solution:

C3C3C2givesf(x)=|1x12xx(x1)2x3x(x1)x(x1)(x2)3x(x1)|

f(x)=0(C1&C3 are identical )

f(100)=0

5. If ai2+bi2+ci2=1;i=1,2,3 and aiaj+bibj+cicj=0, then the value of determinant

|a1a2a3 b1 b2 b3c1c2c3| is

(a) 12

(b) 0

(c) 2

(d) 1

Show Answer

Solution:

|a1 b1c1a2 b2c2a3 b3c3|2=|a1 b1c1a2 b2c2a3 b3c3||a1 b1c1a2 b2c2a3 b3c3|

=|a12a1a2a1a3a1a2a22a2a3a1a3a2a3a32|=|100010001|=1

Answer: (d)

6. If 0[x]<2,1[y]<1,1[z]<3 ([.] denotes the greatest integer function), then the maximum value of

Δ=|[x]+1[y][z][x][y]+1[z][x][y][z]+1| is 

(a) 2

(b) 6

(c) 4

(d) None of these

Show Answer

Solution:

Solving the determinant we get

Δ=1+[x]+[y]+[z]

=1+1+0+2=4( maximum values of [x],[y] and [z] are 1,0 and 2 respectively )

Answer: (c)

7. Let |x2xx2x6xx6|=ax4+bx3+cx2+dx+e then, 5a+4b+3c+2d+e is equal to

(a) 0

(b) -16

(c) 16

(d) None of these

Show Answer

Solution:

R3R3R2 gives

Δ=|x2xx2x6xx200|=12x312x2+x4

a=1, b=1,c=12, d=12,e=0

Put the values to get 5a+4b+3c+2d+e=11

Answer: (d)

EXERCISE

1. If Δ(x)=|exsin2xtan(x2)loge(1+x)cosxsinxcos(x2)ex1sin(x2)|=A+Bx+Cx2+. then B=

(a) 0

(b) 1

(c) 2

(d) 4

Show Answer Answer: a

2. Let f(x)=|x+ax+bx+acx+bx+cx1x+cx+dxb+d|&02f(x)dx=16

Where a,b,c,d are in A.P., then the common difference of the A.P is

(a) ±1

(b) ±2

(c) ±3

(d) ±4

Show Answer Answer: b

3. If |111mC1m+3C1m+6C1mC2m+3C2m+6C2|=2α3β5γ then α+β+γ is equal to

(a) 3

(b) 5

(c) 7

(d) 0

Show Answer Answer: a

4. Match the following:

Column I Column II
(a) (a) If |xx+yx+y+z2x3x+2y4x+3y+2z3x6x+3y10x+6y+3z|=343 then x= (p) 2
(b) If a2+b2+c2=2 and (q) 4
f(x)=|(1+a2x)(1+b2)x(1+c2)x(1+a2)x(1+b2x)(1+c2)x(1+a2)x(1+b2)x(1+c2x)|
then f(x) is a polynomial of degree
(c) If |a2+b2cccab2+c2aabbc2+a2b|=kabc then k= (r) 0
(d) If A, B, C are the angles of triangle then |sin2AsinCsinBsinCsin2BsinAsinBsinAsin2C|= (s) 7
Show Answer Answer: as;bp;cq;dr

5. Let k be a positive real number and let

A=|2k12k2k2k12k2k2k1| and B=|02k1k12k02kk2k0|. If

det(adjA)+det(adjB)=106, then [k]=

(a) 4

(b) 5

(c) 6

(d) None of these

Show Answer Answer: a

6. If A,B,C be the angles of a triangle, then |1+cosBcosC+cosBcosBcosC+cosA1+cosAcosA1+cosB1+cosA1|=

(a) -1

(b) 0

(c) 1

(d) 2

Show Answer Answer: b

7. If x,y,z are complex numbers, then Δ=|0yzy0xzx0| is

(a) purely real

(b) purely imaginary

(c) complex

(d) 0

Show Answer Answer: b

8. If |1+a111+b1+2 b11+c1+c1+3c|=0 where a0, b0,c0, then a1+b1+c1=

(a) 4

(b) -3

(c) -2

(d) -1

Show Answer Answer: b

9. If |aa21+a3bb21+b3cc21+c3|=0 and the vectors (1,a,a2),(1,b,b2),(1,c,c2) are noncoplanar, then abc=

(a) 2

(b) -1

(c) 1

(d) 0

Show Answer Answer: b

10. Let a,b,c be real numbers with a2+b2+c2=1. Then the equation

|axbycbx+aycx+abx+ayax+byccy+bcx+acy+baxby+c|=0 represents 

(a) a parabola

(b) pair oflines

(c) a straight line

(d) circle.

Show Answer Answer: c

11. Let Δ0 and Δc denotes the determinants of cofactors, then Δc=Δn1, where n(>0) is the order of Δ. On the basis of above information, answer the following questions :-

(i) If a,b,c are the roots of x3p2+r=0 then

|bca2cab2abc2cab2abc2bca2abc2bca2cab2| is 

(a) p2

(b) p4

(c) p6

(d) p9

(ii) If 1, m1,n1;2, m2,n2;3, m3,n3;are real quantities satisfying the six relations : 12+m12+n12 =22+m22+n22=32+m32+n32=1;12+m1 m2+n1n2=23+m2 m3+n2n3= 31+m3 m1+n3n1=0, then

|1 m1n12 m2n23 m3n3| is

(a) 0

(b) ±1

(c) ±2

(d) ±3

(iii) If a, b, c are the roots of x33x2+3x+7=0, then |2bca2c2 b2c22acb2a2 b2a22abc2| is

(a) 9

(b) 27

(c) 8

(d) 0

(iv) If a2+b2+c2=λ2 then the value of

|a2+λ2ab+cλcabλabcλb2+λ2bc+aλac+bλbcaλc2+λ2|×|λcbcλabaλ| is 

(a) 8λ6

(b) 27λ9

(c) 8λ9

(d) 27λ6

(v) Suppose a,b,cR,a+b+c>0,A=bca2,B=cab2&C=abc2 and

|ABCBCACAB|=49, then |abcbcacab|=

(a) -7

(b) 7

(c) -2401

(d) 2401

Show Answer Answer: (i) c (ii) b (iii) d (iv) c (v) b

12. The value of the determinant |1eiπ/3eiπ/4eiπ/31ei2π/3eiπ/4ei2π/31| is

(a) 2+2

(b) (2+2)

(c) 2+3

(d) 23

Show Answer Answer: b

13.* If (x1x2)2+(y1y2)2=a2

(x2x3)2+(y2y3)2=b2

(x3x1)2+(y3y1)2=c2 and

4|x1y11x2y21x3y31|=λ{λ3(λ1+λ2+λ3)λ2+(λ1λ2+λ2λ3+λ3λ1)λλ1λ2λ3} then

(a) λ32(λ1λ2λ3)1/3

(b) λ1λ2λ3=8abc

(c) λ1λ2=4ab

(d) 2λ=λ1+λ2+λ3

Show Answer Answer: a,b,c,d

14. If Ar=|rr1r1r|, where r is a natural number, then the value of r=12008Ar is………….

(a) 2008

(c) 2007

(b) 0

(d) None of these

A program to give wings to girl students

Show Answer Answer: a

15.* If f(x)=|x32x2183x381x52x2504x3500123|, then f(1)f(3)+f(3)f(5)+f(5)f(1)=

(a) f(3)

(c) 2928

(b) 0

(d) None of these

Show Answer Answer: a,b