Matrices And Determinants - Properties and Evaluation of Determinants (Lecture-01)

DETERMINANTS

Minors & cofactors of elements of a determinant.

It we delete the row and column passing through the element ai, the determinant thus obtained is called the minor of aij denoted by Mij and cofactor of aij is (1)i+jMij and is denoted by Aij or Cij.

Note :

If all the elements in a row (or column), except one element, are zeros the determinant reduces to a determinant of an order less by one.

Eg:|500732154|=5|3254|

Also a determinant can be replaced by a determinant of higher order by one.

Eg: |3285|=|100032085|

Singular or non singular matrix :

A square matrix A is said to be non-singular if |A|0, and is said to be singular if |A|=0

Properties of determinants

For a square matrix A,

(i) If a row (column) is a zero vector, then |A|=0

(ii) If any two rows (columns) are proportional, then |A|=0

(iii) If the rows & columns are interchanged, then |A| remains the same i.e. |A|=|AT|

(iv) If any two rows (columns) are interchanged, value of |A| differ by a negative sign.

(v) |kakbkcpqruvw|=k|abcpqruvw|

(vi) If A is a square matrix of order n, then |kA|=kn|A|

(vii) |a1+a2 b1+b2c1+c2pqruvw|=|a1 b1c1pqruvw|+|a2 b2c2pqruvw|

(viii) If a scalar multiple of any row (column) is added to another row (column) then |A| is unchanged.

i.e. |abcpqruvw|=|a+λpb+λqc+λrpqruvw|

(ix) The sum of the products of elements of any row (column) of a determinant with the cofactors of the corresponding elements of any other row (column) is zero

If, A = [a11a12a13a21a22a23a31a32a33], then a11C21+a12C22+a13C23=0

(x) The sum of the products of elements of any row (or column) of a determinant with the cofactors of the corresponding elements of same row is |A|

i.e. a11C11+a12C12+a13C13=|A|.

(xi) If r rows (columns) become identical when ’ a ’ is substituted for x, then (xa)r1 is a factor of the given determinant.

Eg:LetA(x)=|x2x3x4x3x52x8x4x63x10|

Put x=1

Δ=|123246357|=0

(R1&R2 are proportional)

(xii) If A=diag(a11,a22,..ann) then

|A|=a11a22ann

(xiii) |AB|=|A||B|=|BA|=|ABT|=|ATB|=|ATBT|

(xiv) Let Δ(x)=|a(x)b(x)c(x)p(x)q(x)r(x)u(x)v(x)w(x)|, then

ddxΔ(x)=|a1(x)b1(x)c1(x)p(x)q(x)r(x)u(x)v(x)w(x)|+|a(x)b(x)c(x)p1(x)q1(x)r1(x)u(x)v(x)w(x)|+|a(x)b(x)c(x)p(x)q(x)r(x)u1(x)v1(x)w1(x)|

(xv) Product of determinants of same order

|a1b1c1a2b2c2a3b3c3|×|α1β1γ1α2β2γ2α3β3γ3|=|a1α1+b1β1+c1γ1a1α2+b1β2+c1γ2a1α3+b1β3+c1γ3a2α1+b2β1+c2γ1a2α2+b2β2+c2γ2a2α3+b2β3+c2γ3a3α1+b3β1+c3γ1a3α2+b3β2+c3γ2a3α3+b3β3+c3γ3|

Multiplication can also be performed row by column ; column by row or column by column as required in the problem.

(xvi) |An|=|A|n

(xvii) Determinant of a skew symmetric matrix of odd order is zero

Use of Determinants :

(i) Area of triangle whose vertices are (x1,y1)(x2,y2)(x3,y3) is given by

Δ=12|x1y11x2y21x3x31|

(ii) If a1x+b1y+c1=0,a2x+b2y+c2=0&a3x+b3y+c3=0 are the sides of a triangle, the area of the triangle is given by

Δ=12C1C2C3|a1 b1c1a2 b2c2a3 b3c3|2 where C1,C2,C3 are the cofactor of c1,c2&c3 respectively in |a1 b1c1a2 b2c2a3 b3c3|

(ii) ax2+2hxy+by2+2gx+2fy+c=0 represents a pair of straight lines, then

abc+2fghaf2b2c2=|ahghbfgfc|=0

Cramer’s rule for solving simultaneous linear equations

Consider the system of equations

a1x+b1y+c1z=d1

a2x+b2y+c2z=d2

a3x+b3y+c3z=d3

Here Δ=|a1 b1c1a2 b2c2a3 b3c3|,

Δ1=|d1 b1c1 d2 b2c2 d3 b3c3|

Δ2=|a1 d1c1a2 d2c2a3 d3c3|

Δ3=|a1 b1 d1a2 b2 d2a3 b3 d3|

By cramer’s rule,

x=Δ1Δ,y=Δ2Δ,z=Δ3Δ

In the above system, if d1=d2=d3=0, it is called a homogeneous system.

Solved Examples

1. The value of the determinant

|cos(AP)cos(AQ)cos(AR)cos(BP)cos(BQ)cos(BR)cos(CP)cos(CQ)cos(CR)| is 

(a) 0

(b) 1

(c) sin2 Asin2 Bsin2C

(d) None of these

Show Answer

None of these

Solution :

We can write the given determinant as the product of two determinants

|cos(AP)cos(AQ)cos(AR)cos(BP)cos(BQ)cos(BR)cos(CP)cos(CQ)cos(CR)|=|cosAsinA0cosBsinB0cosCsinC0||cosPsinP0cosQsinQ0cosRsinR0|=0

Answer: (a)

2. If |(a1b1)2(a1b2)2(a1b3)2(a2b1)2(a2b2)2(a2b3)2(a3b1)2(a3b2)2(a3b3)2|=k(a1a2)(a2a3)(a3a1)(b1b2)(b2b3)(b3b1), then k

is equal to

(a) 1

(b) 2

(c) 4

(d) 8

Show Answer

Solution :

The given determinant can be written as

|a122a11a222a21a322a31|×|1 b1 b121 b2 b221 b3 b32|

=2|a12a11a22a21a32a31|×|1 b1 b121 b2 b221 b3 b32|

=2|1a1a121a2a221a3a32|×|1 b1 b121 b2 b221 b3 b32|

=2(a1a2)(a2a3)(a3a1)(b1b2)(b2b3)(b3b1); comparing k=2

Answer: (b)

3. If the value of determinant |a111 b111c| is positive, then

(a) abc >1

(b) abc >8

(c) abc <8

(d) abc>2

Show Answer

Solution :

Δ=|a111 b111c|=abc(a+b+c)+2>0 abc+2>a+b+c

abc+2>3(abc)13(a+b+c3>(abc)13)

x3+2>3x where x=(abc)13

x33x+2>0(x1)2(x+2)>0x>2

(abc)13>2abc>8

Answer: (b)

4. If α,β and γ are such that α+β+γ=0, then |1cosγcosβcosγ1cosαcosβcosα1| is equal to

(a) cosαcosβcosγ

(b) cosα+cosβ+cosγ

(c) 1

(d) None of these

Show Answer

Solution :

Let α=BC,β=CA,γ=AB

Solution :

|1cos(AB)cos(CA)cos(AB)1cos(BC)cos(CA)cos(BC)1|=|cosAsinA0cosBsinB0cosCsinC0||cosAsinA0cosBsinB0cosCsinC0|=0

Answer: (d)

5. If Δ=|cosαsinα1sinαcosα1cos(α+β)sin(α+β)1|, then Δ

(a) [12,1+2]

(b) [1,1]

(c) [2,2]

(d) None of these

Show Answer

Solution :

Apply R3R3(cosβ.R1+sinβ.R2

|cosαsinα1sinαcosα1001+sinβcosβ|=1+sinβcosβ

Δ12,1+2

Answer: (a)

Exercise

1. If Dk=|1nn2kn2+n+2n2+n2k1n2n2+n+2| and k=1nDk=48, then n equals

(a) 4

(b) 6

(c) 8

(d) 10

Show Answer Answer: d

2. If f(x)=|sinxcosecxtanxsecxxsinxxtanxx21cosxx2+1|, then aa|f(x)|dx=

(a) 1

(b) -1

(c) 2a

(d) 0

Show Answer Answer: d

3. If A,B,C are the angles of ABC, then |sin2 AcotA1sin2 BcotB1sin2CcotC1|=

(a) a2+b2+c24Δ

(b) a2+b2+c24R2Δ

(c) a2+b2+c216R2Δ

(d) 0

Show Answer Answer: d

4. A triangle has vertices Ai(xi,yi) for i=1,2,3. Then the determinant

Δ=|x2x3y2y3y1(y2y3)+x1(x2x3)x3x1y3y1y2(y3y1)+x2(x3x1)x1x2y2y2y3(y1y2)+x3(x1x2)|=0 means

(a) the medians for triangle A1 A2 A3 are concurrent

(b) the triangle A1 A2 A3 is right angled at A3

(b) the triangle A1 A2 A3 equilateral triangle

(b) altitudes of the triangle A1 A2 A3 are concurrent

Show Answer Answer: d

5. Let {D1,D2,D3……………..Dn}be the set of all third order determinants that can be formed with the distinct nonzero real numbers a1,a2,.a9, then

(a) i=1nDi=1

(b) i=1nDi=0

(c) Di=Dii&j

(d) None of these

Show Answer Answer: b

6. If the value of |(1)na(1)n+1b(1)n+2ca+1b1c+1a1b+1c1|+|aa+1a1bb1b+1cc+1c1| is zero, then the value of n is

(a) any even integer

(b) any odd integer

(c) any positive integer

(d) zero

Show Answer Answer: b

7. Δ1=|y5z6(z3y3)x4z6(x3z3)x4y5(y3x3)y2z3(y6z6)xz3(z6x6)xy2(x6y6)y2z3(z3y3)xz3(x3z3)xy2(y3x3)| and

Δ2=|xy2z3x4y5z6x7y8z9| then Δ1Δ2 is equal to

(a) Δ23

(b) Δ22

(c) Δ24

(d) Δ25

Show Answer Answer: a

8. Match the following :

Column I Column II
(a) If r>1,Mr=|r11r11(r1)2| (p) 2
then limn\rarr (M2+ M3 + M4 + Mn )logen is (q) 4
(b) If A=[3111],C=(BAB1)(B1 ATB) then |C|= (r) 1
(c) If A=[1111] and A4=λI1 then λ= (s) 3
Show Answer Answer: ar;bq;cq

9. If p+q+r=a+b+c=0 then the value of |paqbrcqcrapbrbpcqa| is

(a) 0

(c) 1

(b) ap+bq+cr

(d) None of these

Show Answer Answer: a

10. |bccaabpqr111|=…………….where a,b,c are respectively the pth ,qth ,rth  terms of an H.P.

(a) 0

(b) 1

(c) -1

(d) None of these

Show Answer Answer: a

11. Suppose f(x) is a function satisfying the following conditions :

(i) f(0)=2,f(1)=1

(ii) fhas minimum at x=5/2 and

(iii) for all x,f1(x)=|2ax2ax12ax+b+1 b b112(ax+b)2ax+2 b+12ax+b| where a,b are constants, then f(x)=

(a) 0

(b) constant x

(c) 14(x25x+2)

(d) None of these

Show Answer Answer: d

12. Let Δ=|bcb2+bcc2+bca2+acacc2+aca2+abb2+abab| and the equation px3+qx2+rx+s=0 has roots a,b,c where a,b,cR+

(i) The value of Δ is

(a) 9r2p2

(b) 27 s2p2

(c) 27 s3p3

(d) None of these

(ii) The value of Δ is

(a) r2p2

(b) r3p3

(c) sp

(d) None of these

(iii) If Δ=27 and a2+b2+c2=2, then

(a) 3p+2q=0

(c) 3p+q=0

(b) 4p+3q=0

(d) None of these

Show Answer Answer: (i) b (ii) b (iii) c

13. If pλ4+qλ3+rλ2+sλ+t=|λ2+3λλ1λ+3λ2+12λλ3λ23λ+43λ|, then p=

(a) -5

(b) -4

(c) -3

(d) -2

Show Answer Answer: b

14.* If g(x)=|axexlogcax2a3xe3logcax4a5xe5xlogca1|, then

(a) graph of g(x) is symmetric about origin

(b) graph of g(x) is symmetric about Y axis

(c) (d4 g(x)dx4)x=0=0

(d) f(x)=g(x)loge(axa+x) is an odd function

Show Answer Answer: a, c

15.* If f(α,β)=|cosαsinα1sinαcosα1cos(α+β)sin(α+β)1| then

(a) f(300,200)=f(400,200)

(c) f(100,200)=f(200,200)

(b) f(200,400)=f(200,600)

(d) None of these

Show Answer Answer: a,c