Integral Calculus - Definite Integrals (Lecture-01)

If f(x) is continuous on [a,b] and F is an antiderivative (primitive) of f.

i.e. f(x)=ddxF, then

abf(x)dx=F(x)]ab=F(b)F(a)

Note: aaf(x)dx=0

Geometrical interpretation of definite integral

If f(x)>0x[a,b], then abf(x)dx is numerically equal to the area bonded by the curve y=f(x), the x - axis and the straight lines x = a & x = b.

Properties of definite integrals

1. abf(x)dx=abf(t)dt

2. abf(x)dx=baf(x)dx

3. abf(x)dx=acf(x)dx+cbf(x)dx where cR

4. abf(x)dx=abf(ax)dx

5. abf(x)dx=abf(a+bx)dx

6. aaf(x)dx=0a(f(x)+f(x))dx = {l20af(x)dx if f(x)=f(x) ie. if f(x) is even 0, if f(x)=f(x)( ie. if f(x) is odd ).

7. a2af(x)dx=0a(f(x)+f(2ax))dx = {20af(x)dx if f(2ax)=f(x)0 ,if f(2ax)=f(x).

8. baf(x)dx=(ba)01f((ba)x+a)dx

9. If m & M be the least and greatest values of f(x) respectively on [a,b], then m(ba)abf(x)dxM.

10. 01xm(1x)ndx=m!n!(m+n+1)!

11. ab(fg)(x)g1(x)dx=abf( g(x))g1(x)dx=g(a)g(b)f(t)dt

12. If f(x) is a periodic function with period T then

i. 0nTf(x)dx=n0Tf(x)dxnZ

ii. aa+nTf(x)dx=naa+Tf(x)dx=n0Tf(x)dx

which is independent of a

iii. a+n Tb+n Tf(x)dx=abf(x)dx,nZ

iv. mTnTf(x)dx=(nm)0Tf(x)dx,m,nZ.

v. If f(t) is an odd (even) function periodic with period T, then F(x)=axf(t)dt is an even (odd) function with period T.

13. If f(x)g(x) on [a,b], then abf(x)dxabg(x)dx.

Also abf(x)dxab|f(x)|dx

14. Leibnitz Rule

i. ddxφ(x)Ψ(x)f(t)dt=f(Ψ(x))ddx(Ψ(x))f(φ(x))ddx(φ(x))

ii. ddxφ(x)Ψ(x)f(x,t)dt=φ(x)Ψ(x)f(x,t)xdt+dΨ(x)dxf(x,Ψ(x))dφ(x)dxf(x,φ(x))

Reduction Formulae

In=0π/2sinnxdx=0π/2cosnxdx=n1nIn2,nZ+

1. = {(n1n)(n3n2)..12π2, If n is even (n1n)(n3n2)23, If n is odd. .

2. In=0π/4tannxdxn>1,

In+In2=1n1

In=1n11n3+1n51n7I1 or I0

according as n is odd or even.

(I0=π4,I,=12loge2=loge2)

iii. 0π/4(tannx+tann2x)dx=π/4π/2(cotnx+cotn2x)dx=1n1

Walli’s Formulae.

Im,n=0π/2(sinmxcosnx)dx=m1m+1Im2,n=n1m+1Im,n2 where m,nZxIm,n=0π/2(sinmxcosnx)dx=((m1)(m3).1 or 2)((n1)(n3)..1 or 2)(m+n)(m+n2)(m+n4)..(1 or 2)k

where k=π2 if both m & n are even

k=1 otherewise. 

Improper integral

If f(x) is continuous on [a,) then af(x)dx=limbabf(x)dx is called an improper integral.

If there exists a finite limit on right side of the above equation, we say the improper integral is convergent, otherwise it is divergent.

Similarity bf(x)dx=limaabf(x)dx

f(x)dx=af(x)dx+af(x)dx

Geometrically, for f(x)>0,af(x)dx gives area of the figure bounded by y=f(x),x axis & x=a.

Gamma Function

If n is a positive rational number, then the improper integral 0exxn1dx,xQ+ is defined as

Gamma function and is denoted by Γn

Γn=0exxn1dx,xQ+

Properties

i. Γn+1=nΓn=n!;nN

ii. Γ1=1 and Γ0=,Γ12=π

iii. 0π/2sinmxcosnxdx=Γm+12Γn+12222m+n+22

iv. ΓnΓn1 = πsinnπ,0<n<1.

v. ΓnΓm+12=π22 m1Γ2 m

vi. Γ1nΓ2nΓ3n..Γn1n=(2π)n12n12

Beta Function

The Beta function is denoted by B(m,n) where B(m,n)=01xm1(1x)n1dx,m,n>0

Properties

i. B(m,n)=01xm1(1x)n1dx,m,n>0=01xm1(1+x)m+ndx=ΓmΓnΓ(m+n)

Integration as limit of a sum

01f(x)dx=limn1nr=1nf(r1n)=limn1nr=0n1f(rn)

Here replace rn by x

replace 1n by dx

and limn by

Solved Examples

1. If 01etdtt+1=a, then b1betdttb1 is equal to

(a) aeb

(b) aeb

(c) bea

(d) aeb

Show Answer

Solution: b1betdttb1  Put tb=ydt=dy

10eyby1dy=01ebeydy(y+1)=aeb

Answer: b

2. If 0ex2dx=π2, then 0eaxdx(a>0) is equal to

(a) π2

(b) π2a

(c) 2πa

(d) π2a

Show Answer

Solution: If 0eax2dx; Put ax2=t2

2axdx=2tdt

0et2tdtata=1a0et2tdtat

=1a0et2dt=1a0ex2dx=π2a

Answer: d

3. Given 12ex2dx=a, then the value of ee4logexdx is equal to

(a) e4e

(b) e4a

(c) 2e4a

(d) 2e4ea

Show Answer

Solution: ee4logexdx; Put logex=t

logex=t2x=et2dx=et22tdt

12t(et22t)dt=(tet2)12121et2dt

=(2e4e)12et2dt=2e4ea

Answer: d

4. 01sint.dtt+1=α, then the value of

4π24πsint2dt4π+2t is equal to

(a) α

(b) α

(c) πα

(d) 2α

Show Answer

Solution: Put 4πt=2z in the second integral

=dt=2dz

10sin(2πz)2dz2(z+1)=

=10sinzdzz+1=α

Answer: b

5. Let f be a continuous function. Let

I1=sin2t1+cos2txf{x(2x)}dx and I2=sin2t1+cos2tf{x(2x)}dx, then I1:I2=

(a) 0

(b) 1

(c) 2

(d) none

Show Answer

Solution: Apply abf(x)dx=abf(a+bx)dx in I1

i.e: Replace x by 1+cos2t+sin2tx=2x

I1=sin2t1+cos2t(2x)f{(2x)(2(2x))}dx

.I1=2sin2t1+cos2tf(x(2x))dxsin2t1+cos2tf(x(2x))dx

I1=2I2I1 2I1=2I2I1=I2

Answer: b

6. If f(x)=logexdx1+x, then f(e)+f(1e) is equal to

(a) 2

(b) 12

(c) 1

(d) none

Show Answer

Solution: f(x)+f(1x)=logex1+xdx+loge1x1+1xd(1x)

=logex1+xdx+logexx+1x(1x2)dx

=logex1+xdx+logexx(1+x)dx=logex1+x(1+1x)dx=logex1+x(1+xx)dx=(logex)22f(e)+f(1e)=(logee)22=12

Answer: b

7. 0xf(t)dt=x+x1tf(t)dt, then f(1) is equal to

(a) 12

(b) 0

(c) 1

(d) 12

Show Answer

Solution: Differentiate both sides w.r.t x

f(x)=1+(0xf(x))f(x)=11+x

f(1)=12

Answer: a

8. f(x)=cosx0y(xt)f(t)dt, then f(x)+f(x) is equal to

(a) cosx

(b) sinx

(c) 0

(d) none of these

Show Answer

Solution: f(x)=cosxx0xf(t)dt+0xtf(t)dt

f(x) = sinx{x(f(x)0)+0x(t)dt}+{xf(x)0}

(applying lebnitz rule)

f(x)=sinxxf(x)0xf(t)dt+xf(x)f(x)=cosx(f(x)10)f(x)+f(x)=cosx

Answer: a

Exercise:

1. Let I=01sinxxdx and J=01cosxxdx. Then which one of the following is true?

(a) I<23 &  J>2

(b) I>23 &  J<2

(c) I>23 &  J>2

(d) I<23 &  J<2

Show Answer Answer: d

2. The equaiton of a curve is y=f(x). The tangent at (1,f(1)),(2,f(2)) & (3,f(3)) make angles π6,π3 & π4 respectively with the positive direction of the x axis. Then the value of 23f(x)f(x)dx+13f(x)dx=

(a) 13

(b) 13

(c) 0

(d) none of these

Show Answer Answer: b

3. limλ0(01(1+x)λdx)1/λ is equal to

(a) 2loge2

(b) 4e

(c) loge(4/e)

(d) 4

Show Answer Answer: b

4. If β+201x2ex2dx=01ex2dx, then the value of β is

(a) e1

(b) e

(c) 12e

(d) cannot be determined

Show Answer Answer: a

5.* If f(a)=a1a+1dx1+x8, then the value of a for which f(a) attains maximum is

(a) at a=0

(b) at one value of a only

(c) at two values of a, one is (1,0) and the other is (0,1)

(d) at no value of a

Show Answer Answer: a, b

6.* If I1=0π/4(tanx)cotxdx,I2=0π/4(cotx)tanxdx,I3=0π/4(tanx)tanxdx,I4=0π/4(cotx)cotxdx then

(a) I1<I3

(b) I2<I4

(c) I1<I4

(d) I3<I2

Show Answer Answer: b, c

7.* If I=01esinxdx, then

(a) I>0

(b) I<e

(c) I>e

(d) I>e2

Show Answer Answer: a, b

8. If 010f(x)dx=5, then k=11001f(k1+x)dx=

(a) 50

(b) 20

(c) 5

(d) 0

Show Answer Answer: c

9. The value of the definite integral 0π(cosx2013+sinx2013+tanx2013)dx0π/2sinx2013dx is

(a) 2

(b) 1

(c) 12

(d) 0

Show Answer Answer: a

10. The value of 0πsin(n+12)xsinx2dx is

(a) π2

(b) 0

(c) π

(d) 2π

Show Answer Answer: c

11. The value of f(x)=0sin2xsin1tdt+0cos2xcos1tdt is

(a) π2

(b) 1

(c) π4

(d) none of these

Show Answer Answer: c

12. The value of the definite integral 01(1+ex2)dx is

(a) -1

(b) 2

(c) 1+e1

(d) none of these

Show Answer Answer: d