Hyperbola (Lecture-02)

Practice Problems

1. Let $\mathrm{C}$ be a curve which is locus of the point of the intersection of lines $\mathrm{x}=2+\mathrm{m}$ and $\mathrm{my}=4-\mathrm{m}$. A circle $(x-2)^{2}+(y+1)^{2}=25$ intersects the curve $C$ at four points $P, Q, R$ and $S$. If $O$ is the centre of curve ’ $\mathrm{C}$ ’ than $\mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}$ is

(a) 25

(b) 50

(c) $\dfrac{25}{2}$

(d) 100

Show Answer

Solution

$\begin{aligned} & \mathrm{x}-2=\mathrm{m} \\ & \mathrm{y}+1=\dfrac{4}{\mathrm{~m}} \\ & \therefore(\mathrm{x}-2)(\mathrm{y}+1)=4 \\ & \mathrm{XY}=4, \text { where } \mathrm{X}=\mathrm{x}-2 \text { and } \mathrm{Y}=\mathrm{y}+1 \\ & \mathrm{x}-2)^{2}+(\mathrm{y}+1)^{2}=25 \\ & \mathrm{X}^{2}+\mathrm{Y}^{2}=25 \end{aligned}$

$\text { and }(x-2)^{2}+(y+1)^{2}=25$

Curve $\mathrm{C}$ and circle both are concentric.

$\therefore \mathrm{OP}^{2}+\mathrm{OQ}^{2}+\mathrm{OR}^{2}+\mathrm{OS}^{2}=4 \mathrm{r}^{2}$

$\begin{aligned} & =4(25) \\ & =100 \end{aligned}$

Answer (d)

2. If $(5,12)$ and $(24,7)$ are the foci of a hyperbola passing through the origin, then

(a) $\mathrm{e}=\dfrac{\sqrt{386}}{12}$

(b) $\mathrm{e}=\dfrac{\sqrt{386}}{36}$

(c) $\mathrm{LR}=\dfrac{121}{6}$

(d) $\mathrm{LR}=\dfrac{121}{9}$

Show Answer

Solution

$\begin{aligned} & \left|\mathrm{PS} _{1}-\mathrm{S} _{2}\right|=2 \mathrm{a} \quad \mathrm{P}(0,0) \\ & \sqrt{(24-0)^{2}+(7-0)^{2}}-\sqrt{(5-0)^{2}+(12-0)^{2}}=2 \mathrm{a} \\ & 25-13=2 \mathrm{a} \\ & \quad \therefore \mathrm{a}=6 \\ & 2 \mathrm{ae}=\sqrt{(24-5)^{2}+(7-12)^{2}}=\sqrt{386} \\ & \quad \mathrm{e}=\dfrac{\sqrt{386}}{12} \\ & \mathrm{LR}=\dfrac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\dfrac{2 \mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)}{\mathrm{a}}=2 \times 6\left(\dfrac{386}{144}-1\right)=\dfrac{121}{6} \end{aligned}$

Answer (a,c)

3. If the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ intersects the hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ in four points $\mathrm{P}\left(\mathrm{x} _{1}, \mathrm{y} _{1}\right), \mathrm{Q}\left(\mathrm{x} _{2}, \mathrm{y} _{2}\right), \mathrm{R}\left(\mathrm{x} _{3}, \mathrm{y} _{3}\right)$, $\mathrm{S}\left(\mathrm{x} _{4}, \mathrm{y} _{4}\right)$ then

(a) $\mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}+\mathrm{x} _{4}=0$

(b) $\mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}+\mathrm{y} _{4}=0$

(c) $\mathrm{x} _{1} \mathrm{x} _{2} \mathrm{x} _{3} \mathrm{x} _{4}=\mathrm{c}^{4}$

(d) $\mathrm{y} _{1} \mathrm{y} _{2} \mathrm{y} _{3} \mathrm{y} _{4}=\mathrm{c}^{4}$

Show Answer

Solution

solving $\mathrm{xy}=\mathrm{c}^{2}$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$, we get

$\begin{gathered} \mathrm{x}^{2}+\dfrac{\mathrm{c}^{4}}{\mathrm{x}^{2}}=\mathrm{a}^{2} \\ \mathrm{x}^{4}-\mathrm{a}^{2} \mathrm{x}^{2}+\mathrm{c}^{4}=0 \\ \mathrm{x} _{1}+\mathrm{x} _{2}+\mathrm{x} _{3}+\mathrm{x} _{4}=0 \\ \mathrm{x} _{1} \cdot \mathrm{x} _{2} \cdot \mathrm{x} _{3} \cdot \mathrm{x} _{4}=\mathrm{c}^{4} \\ \text { similarly } \dfrac{\mathrm{c}^{4}}{\mathrm{y}^{2}}+\mathrm{y}^{2}=\mathrm{a}^{2} \\ \mathrm{y}^{4}-\mathrm{a}^{2} \mathrm{y}^{2}+\mathrm{c}^{4}=0 \\ \mathrm{y} _{1}+\mathrm{y} _{2}+\mathrm{y} _{3}+\mathrm{y} _{4}=0 \\ \mathrm{y} _{1} \cdot \mathrm{y} _{2} \cdot \mathrm{y} _{4} \cdot \mathrm{y} _{4}=\mathrm{c}^{4} \\ \end{gathered}$

Answer a, b, c, d

Linked comprehension Type (For problem 4-6)

The vertices of $\triangle \mathrm{ABC}$ lie on a rectangular hyperbola such that the orthocenter of the triangle is $(3,2)$ and the asymptotes of the rectangular hyperbola are parallel to the wordinate axes. The two perpendicular tangents of the hyperbola intersect at the point $(1,1)$.

4. The equation of rectangular hyperbola is

(a) $x y=x+y-1$

(b) $x y=x+y+1$

(c) $2 x y=x+y$

(d) $x y=x+y$

5. The equation of asymptotes is

(a) $(x-1)(y+1)=0$

(b) $(x+1)(y-1)=0$

(c) $(\mathrm{x}-1)(\mathrm{y}-1)=0$

(d) $(x+1)(y+1)=0$

6. Number of real tangents that can be drawn from the point $(1,1)$ to the rectangular hyperbola is

(a) 4

(b) 1

(c) 0

(d) 2

Show Answer

Solution

Perpendicular tangents intersect at the centre of rectangular hyperbola.

Hence centre is $(1,1)$

Equation of asymptotes are $(x-1)(y-1)=0$

Equation of hyperbola is $x y-x-y+1+\lambda=0$

If panes through $(3,1)$, hence $\lambda=-2$

Equation of hyperbola is $\mathrm{xy}-\mathrm{x}-\mathrm{y}-1=0$

  1. Ans b

  2. Ans c

  3. From centre of hyperbola we can drow two real tangents.

Answer (d)

7. True/ False

S1: Number of points from where perpendicular tangents can be drown to the hyperbola $16 x^{2}-9 y^{2}=144$ is infinite.

S2: If distance between two parallel tangents drawn to the hyperbola $\dfrac{x^{2}}{9}-\dfrac{y^{2}}{49}=1$ is 2 then

their slopes is equal to $\pm \dfrac{5}{2}$.

S3: If through the point $(5,0)$ chords are drawn to the hyperbola $\dfrac{x^{2}}{25}-\dfrac{y^{2}}{9}=1$. Then locus of their middle points is also a hyperbola whose length of latus rectum is same as given hyperbola $9 \mathrm{x}^{2}-25 \mathrm{y}^{2}=225$.

S4: If the line $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$ touches the hyperbola $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ at the point $(\operatorname{asec} \theta, b \tan \theta)$ then $\theta=\sin ^{-1}\left(\dfrac{\mathrm{b}}{\mathrm{am}}\right)$.

(a) TTFF

(b) FTTF

(c) FTFT

(d) TFTF

Show Answer

Solution

S1: If $b^{2}>a^{2}$, the radius of director circle is imaginary. Hence there is no pair of tangents at right angle can be drawn to the curve.

S2: $y=m x \pm \sqrt{9 m^{2}-49}$

Now $\left|\dfrac{2 \sqrt{9 \mathrm{~m}^{2}-49}}{\sqrt{1+\mathrm{m}^{2}}}\right|=2 \Rightarrow 9 \mathrm{~m}^{2}-49=1+\mathrm{m}^{2}$

$\Rightarrow \quad 8 \mathrm{~m}^{2}=50$

$\Rightarrow \mathrm{m}= \pm \dfrac{5}{2}$

S3: Let mid point be $(\mathrm{h}, \mathrm{k})$

Equation of chord whose mid point is given is

$\mathrm{T}=\mathrm{S} _{1}$

$\dfrac{\mathrm{xh}}{25}-\dfrac{\mathrm{yk}}{9}-1=\dfrac{\mathrm{b}^{2}}{25}-\dfrac{\mathrm{k}^{2}}{9}-1$

This passes through $(5,0) \dfrac{5 \mathrm{~h}}{25}-0-1=\dfrac{\mathrm{h}^{2}}{25}-\dfrac{\mathrm{K}^{2}}{9}-1$

$45 \mathrm{~h}=9 \mathrm{~h}^{2}-25 \mathrm{k}^{2}$

Locus of (h,k) is $9 x^{2}-45 x-25 y^{2}=0$

$\begin{aligned} & 9\left(x^{2}-5 x+\dfrac{25}{4}-\dfrac{25}{4}\right)-25 y^{2}=0 \\ & 9(x-5 / 2)^{2}-25 y^{2}=\dfrac{225}{4} \end{aligned}$

$\dfrac{(x-5 / 2)^{2}}{\left(\dfrac{25}{4}\right)}-\dfrac{y^{2}}{\left(\dfrac{9}{4}\right)}=1$

Length of latus rectum in not same.

S4: Since $(\operatorname{asec} \theta, b \tan \theta)$ lies on $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$

$\therefore \operatorname{btan} \theta=\mathrm{amsec} \theta+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}$

$(b \tan \theta-a \sec \theta)^{2}=a^{2} m^{2}-b^{2}$

$\mathrm{a}^{2} \mathrm{~m}^{2} \sin ^{2} \theta-$ eabmsin $\theta+\mathrm{b}^{2}=0 \quad(\because \cos \theta \neq 0)$

$(\mathrm{am} \sin \theta-\mathrm{b})^{2}=0$

$\therefore \sin \theta=\dfrac{\mathrm{b}}{\mathrm{am}}$

Hence $\theta=\sin ^{-1}\left(\dfrac{\mathrm{b}}{\mathrm{am}}\right)$

Answer (c)

8. Match the column

Column I Column II
(a) The area of the triangle that a tangent at a point of the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$ makes with its asymptotes is (p) 12
(b) If the line $y=3 x+\lambda$ touches the curve $9 x^{2}-5 y^{2}=45$, then $|\lambda|$ is (q) 6
(c) If the chord $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ of the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{18}=1$ subtends a right angle at the centre, then the diameter of the circle, concentric with the hyperbola, to which the given chord is a tangent is (r) 24
(d) If $\lambda$ be the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}+32 x+36 y-164=0$, then $3 \lambda$ is equal to (s) 32
Show Answer

Solution

(a) Equation of tangent at $(a, 0)$ is $x=a$

asymptotes $y=\dfrac{b}{a} x$ & $y=-\dfrac{b}{a} x$

$\text { Area }=2 \times \dfrac{1}{2} \times \mathrm{a} \times \mathrm{b}=4 \times 3=12 {a}$

(b) $y=3 x+\lambda$ touches the curve $9 x^{2}-5 y^{2}=45$

$\begin{aligned} & \text { then } 9 x^2-5(3 x+\lambda)^2=45 \\ & \quad 36 x^2+30 \lambda x+5 \lambda^2+45=0 \text { has equal roots } \\ & \therefore 900 \lambda^2-4 \times 36\left(5 \lambda^2+45\right)=0 \\ & \lambda^2=36 \Rightarrow \lambda= \pm 6 \\ & \text { Hence }|\lambda|=6 \end{aligned}$

(c) The combined equation $\mathrm{OA}$ and $\mathrm{OB}$ we get when we make a homogeneous equation with the help of line and hyperbola

i.e. $18 \mathrm{x}^{2}-16 \mathrm{y}^{2}-288\left(\dfrac{\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha}{\mathrm{p}}\right)^{2}=0$

$9 p^{2} x^{2}-9 p^{2} y^{2}-144\left(x^{2} \cos ^{2} \alpha+y^{2} \sin ^{2} \alpha+2 x y \sin \alpha \cos \alpha\right)=0$

$\left(9 p^{2}-144 \cos ^{2} \alpha\right) x^{2}-288 \sin \alpha \cos \alpha \cdot x y+\left(-144 \sin ^{2} \alpha-8 p^{2}\right) y^{2}=0$

Lines are perpendicular $\Rightarrow 9 p^{2}-144 \cos ^{2} \alpha-8 p^{2}-144 \sin ^{2} \alpha=0$

$\begin{aligned} & \mathrm{p}^{2}=144 \\ & \mathrm{p}= \pm 12 \end{aligned}$

Radius of circle $=12$

$\therefore$ Diameter of circle $=24$

(c) $\rightarrow(\mathrm{r})$

(d) $16 x^{2}+32 x-9 y^{2}+36 y=164$

$16(\mathrm{x}+1)^{2}-9(\mathrm{y}-2)^{2}=144$

$\dfrac{(\mathrm{x}+1)^{2}}{9}-\dfrac{(\mathrm{y}-2)^{2}}{16}=1$

length of latus rectum $=2 \times \dfrac{16}{3}=\dfrac{32}{3}$

$\therefore 3 \lambda=32$

$(d) \rightarrow (s)$

Exercis - 9

1. For a given non zero value of $m$ each of the lines $\dfrac{x}{a}-\dfrac{y}{b}=m$ and $\dfrac{x}{a}+\dfrac{y}{b}=m$ meets the hyperbola $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ at a point. Sum of the ordinates of these points, is

(a) $\dfrac{a\left(1+m^{2}\right)}{m}$

(b) $\dfrac{a+b}{2 m}$

(c) $\dfrac{\mathrm{b}\left(1-\mathrm{m}^{2}\right)}{\mathrm{m}}$

(d) 0

Show Answer Answer: d

2. For which of the hyperbola, we can have more than one pair of perpendicular tangents?

(a) $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{9}=-1$

(b) $\dfrac{x^{2}}{4}-\dfrac{y^{2}}{9}=1$

(c) $x^{2}-y^{2}=9$

(d) $x y=9$

Show Answer Answer: a

3. From point $(2,2)$ tangents are drawn to the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$ then point of contact lie in

(a) I & IV quadrants

(b) II & III quadrants

(c) III & IV quadrants

(d) II & III quadrants

Show Answer Answer: c

4. If $(5,12)$ and $(24,7)$ are the foci of a conic passing through the origin then the eccentricity of conic is

(a) $\dfrac{\sqrt{386}}{13}$

(b) $\dfrac{\sqrt{386}}{12}$

(c) $\dfrac{\sqrt{386}}{38}$

(d) $\dfrac{\sqrt{386}}{25}$

Show Answer Answer: c

5. For the hyperbola $9 x^{2}-16 y^{2}-18 x+32 y-151=0$

(a) directrix is $x=\dfrac{21}{5}$

(b) latus rectum $=\dfrac{9}{2}$

(c) eccentricity is $\dfrac{5}{4}$

(d) foci are $(6,1)$ and $(-4,1)$

Show Answer Answer: d

6. Assertion / Reasoning

Statement - 1 If a circle $S=0$ intersects a hyperbola $x y=4$ at four points. Three of then are $(2,2),(4,1)$ and $\left(6, \dfrac{2}{3}\right)$ then coordinates of the fourth point are $\left(\dfrac{1}{4}, 16\right)$.

Statement - 2 If a circle $S=0$ intersects a hyperbola $x y=c^{2}$ at $t _{1}, t _{2}, t _{3}, t _{4}$ then $t _{1} \cdot t _{2} \cdot t _{3} \cdot t _{4}=1$

(a) Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement -1

(b) Statement -1 is True, Statement - 2 is True, Statement -2 is NOT a correct explanation for Statement - 1

(c) Statement - 1 is True, Statement - 2 is False.

(d) Statement - 1 is False, statement 2 is True.

Show Answer Answer: d

True/ false

7. S1: Centre of the hyperbola $x^{2}-4 y^{2}-4 x+8 y+4=0$ is $(2,1)$

S2 : If eccentricity of hyperbola $x(y-1)=2$ is $\sqrt{2}$ then eccentricity of its conjugate hyperbola is 2 .

S3 : From point $(2,2)$ tangents are drawn to the hyperbola $\dfrac{x^{2}}{16}-\dfrac{y^{2}}{9}=1$, then point of contact lie in I & IV quadrants.

S4 : Product of the length of perpendiculars drawn from any foci of the hyperbola $x^{2}-4 y^{2}-$ $4 x+8 y+4=0$ to its asymptotes is 4 .

(a) TFTT

(b) TFFT

(c) TTFT

(d) TTTT

Comprehension

For the hyperbola $\dfrac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\dfrac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ the normal at $\mathrm{P}$ meets the transverse axis $\mathrm{A}^{\prime}$ in $\mathrm{D}$ and the conjugate axis $\mathrm{BB}^{\prime}$ in $\mathrm{E}$ and $\mathrm{CF}$ be perpendicular to the normal from the centre.

Show Answer Answer: b

8. $\mathrm{PF} \times \mathrm{PD}=\mathrm{k}(\mathrm{CB})^{2}$, then $\mathrm{k}=$

(a) $\dfrac{1}{2}$

(b) 1

(c) 2

(d) 3

Show Answer Answer: b

9. $\quad \mathrm{PF} \times \mathrm{PE}$ equal to

A program to give wings to girl students

(a) $\mathrm{CA} \times \mathrm{CB}$

(b) $(\mathrm{CB})^{2}$

(c) $(\mathrm{CA})^{2}$

(d) $(\mathrm{CF})^{2}$

Show Answer Answer: c

10. Locus of middle point of $\mathrm{D}$ and $\mathrm{E}$ is a hyperbola of eccentricity

(a) $\sqrt{\mathrm{e}^{2}-1}$

(b) $\dfrac{1}{\sqrt{\mathrm{e}^{2}-1}}$

(c) $\mathrm{e} \sqrt{\mathrm{e}^{2}-1}$

(d) $\dfrac{\mathrm{e}}{\sqrt{\mathrm{e}^{2}-1}}$

Show Answer Answer: d


Table of Contents