TRIGONOMETRY EQUATIONS - 4 (Trigonometric Equations - Problem Solving)

Equations involving trigonometric functions of unknown angles are called trigonometric equations. Numerically least angle is called the principal value (solution).

Since, trigonometric functions are periodic, a solution is generalised by means of periodicity of the function. The solution consisting of all possible solutions of a trigonometric equation is called its general solution .

Trigonometric Equations General solutions $\left(\mathbf{n} _{\in} \mathbf{Z}\right)$
$\sin \theta=0$ $\theta=\mathrm{n} \pi$
$\cos \theta=0$ $\theta=(2 \mathrm{n}+1) \pi / 2$
$\tan \theta=0$ $\theta=\mathrm{n} \pi$
$\cot \theta=0$ $\theta=(2 \mathrm{n}+1) \pi / 2$
$\sin \theta=\sin \alpha$ $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \alpha$
$\cos \theta=\cos \alpha$ $\theta=2 \mathrm{n} \pi \pm \alpha$
$\tan \theta=\tan \alpha$ $\theta=\mathrm{n} \pi+\alpha$
$\sin ^{2} \theta=\sin ^{2} \alpha$ $\theta=\mathrm{n} \pi \pm \alpha$
$\cos ^{2} \theta=\cos ^{2} \alpha$ $\theta=\mathrm{n} \pi \pm \alpha$
$\tan ^{2} \theta=\tan ^{2} \alpha$ $\theta=\mathrm{n} \pi \pm \alpha$

Method of an auxiliary angle

Equations of the form $a \cos \theta \pm b \sin \theta=c$ are equivalent to the elementary trigonometric equations

$\cos (\theta \mp \phi)=\frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$ where $\sin \phi=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}, \cos \phi=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}$

If $|c|>\sqrt{a^{2}+b^{2}}$, then $a \cos \theta \pm b \sin \theta=c$ has no solution.

If $|c| \leq \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$, then put

$\frac{|\mathrm{c}|}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}=\cos \alpha$ so that

$\cos (\theta \mp \phi)=\cos \alpha$

$\Rightarrow \quad \theta \mp \phi=2 \mathrm{n} \pi \pm \alpha$

$\Rightarrow \quad \theta=2 \mathrm{n} \pi \pm \alpha \pm \phi ; \quad \mathrm{n} \in \mathrm{Z}$

Note :

(i). While solving, if you are squaring a trigonometric equation (which should be avoided as for as possible), check the solution for extraneous roots.

(ii). Do not cancel terms containing unknown terms which are in product (it may cause loss of a valid solution)

(iii). Remove all those values (angles) which make any of the terms undefined or infinite.

Solving trigonometric equations graphically

Sketch the graph of each side of the equation. Now look for all the points of intersection within the given interval.

Solved examples

1. The number of distinct solutions of

$ \sin 5 \theta \cos 3 \theta=\sin 9 \theta \cos 7 \theta \text { in }\left[0, \frac{\pi}{2}\right] \text { is } $

(a). 4

(b). 5

(c). 8

(d). 9

Show Answer

Solution :

$2 \sin 5 \theta \cos 3 \theta=2 \sin 9 \theta \cos 7 \theta$

$\Rightarrow \sin 8 \theta+\sin 2 \theta=\sin 16 \theta+\sin 2 \theta$

$\Rightarrow \sin 16 \theta-\sin 8 \theta=0$

$\Rightarrow 2 \cos 12 \theta \cdot \sin 4 \theta=0$

$\sin 4 \theta=0 \quad$ $\hspace{1.5cm}$ or$\hspace{1.5cm}$ $\cos 12 \theta=0$

gives $\theta=\frac{n \pi}{4}$ $\hspace{1.5cm}$ or$\hspace{1.5cm}$ gives $\theta=(2 n+1) \frac{\pi}{24}$

$\therefore \theta=0, \frac{\pi}{4}, \frac{\pi}{2}$ $\hspace{1.5cm}$ or$\hspace{1.5cm}$ $\therefore \theta=\frac{\pi}{24}, \frac{3 \pi}{24}, \frac{5 \pi}{24}, \frac{7 \pi}{24}, \frac{9 \pi}{24}, \frac{11 \pi}{24}$

$\therefore 9$ possible values

Answer: (d)

2. The number of values of $x$ in $[0,5 \pi]$ satisfying $3 \cos 2 x-10 \cos x+7=0$ is

(a). 5

(b). 6

(c). 8

(d). 10

Show Answer

Solution :

$3\left(2 \cos ^{2} x-1\right)-10 \cos x+7=0$

$3 \cos ^{2} \mathrm{x}-5 \cos \mathrm{x}+2=0 \Rightarrow 3 \cos ^{2} \mathrm{x}-3 \cos \mathrm{x}+2=0$

$(3 \operatorname{\cos x}-2) \quad(\operatorname{\cos x}-1)=0$

$\Rightarrow \cos x=\frac{2}{3}, 1$.

Clearly the lines $\mathrm{y}=\frac{2}{3}, 1$ intersect the graph at 8 points

Hence 8 values

Answer: (c)

3. If $\sin ^{2} \theta-2 \sin \theta-1=0$ is to be satisfied for exactly 4 distinct values of $\theta \in[0, n \pi], \forall n \in N$; then the least value of $n$ is

(a). 2

(b). 6

(c). 4

(d). 8

Show Answer

Solution :

$ \begin{aligned} & \sin ^{2} \theta-2 \sin \theta-1=0 \\ & \sin \theta=1 \pm \sqrt{2} \\ \Rightarrow & \sin \theta=1-\sqrt{2} \text { (as } 1+\sqrt{2} \text { is rejected) } \end{aligned} $

clearly four solutions lie in $[0,4 \pi]$

$\therefore$ least value of $\mathrm{n}$ is 4

Also $5^{\text {th }}$ solution lies in $[0,5 \pi]$

$\therefore$ greatest value can be 5 .

Answer: (c)

4. The most general solution of sec $x-1=(\sqrt{2}-1) \tan x$ is

(a). $\mathrm{n} \pi+\frac{\pi}{8}$

(b). $2 \mathrm{n} \pi, 2 \mathrm{n} \pi+\frac{\pi}{4}$

(c). $2 \mathrm{n} \pi$

(d). None of these

Show Answer

Solution :

Given equation can be simplified to

$(1-\cos x)=(\sqrt{2}-1) \sin x$

$2 \sin ^{2} \frac{x}{2}-(\sqrt{2}-1) 2 \sin \frac{x}{2} \cos \frac{x}{2}=0$

$2 \sin \frac{x}{2}\left(\sin \frac{x}{2}-(\sqrt{2}-1) \cos \frac{x}{2}\right)=0$

$\Rightarrow \quad \sin \frac{x}{2}=0 \hspace {1cm}$ or $\hspace {1cm} \tan \frac{x}{2}=\sqrt{2}-1$

$\Rightarrow \quad \frac{\mathrm{x}}{2}=\mathrm{n} \pi \hspace {2.4cm} \tan \frac{\mathrm{x}}{2}=\tan \frac{\pi}{8}$

$ \begin{aligned} & \mathrm{x}=2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z} \hspace {2.4cm}\frac{\mathrm{x}}{2}=\mathrm{n} \pi+\frac{\pi}{8} \\ & \hspace {3.8cm}\mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathrm{Z} \end{aligned} $

Answer: (b)

5. Sum of all the solutions of $\cos x \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4}, x \in[0,6 \pi]$ is

(a). $15 \pi$

(b). $30 \pi$

(c). $\frac{110 \pi}{3}$

(d). None of these

Show Answer

Solution :

$\frac{1}{4} \cos 3 \mathrm{x}=\frac{1}{4}$

$\cos 3 x=1 \Rightarrow \cos 3 x=\cos 0 \Rightarrow 3 x=2 n \pi \Rightarrow x=\frac{2 n \pi}{3}$

$\therefore \mathrm{x}=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{6 \pi}{3}, \frac{8 \pi}{3}, \ldots \ldots \ldots \ldots \ldots, \frac{18 \pi}{3}$

Adding we get the sum as $30 \pi$

Answer: (b)

6. The number of solutions of $\cos x=|1+\sin x|$ for $x \in[0,3 \pi]$, is

(a). 3

(b). 2

(c). 4

(d). None of these

Show Answer

Solution :

It is evident from the figure that, the two graphs intersect at 3 points.

Answer: (a)

7. The number of solutions of $16^{\sin ^{2} x}+16^{\cos ^{2} x}=10$ in $x \in[0,2 \pi]$ is

(a). 8

(b). 6

(c). 4

(d). 2

Show Answer

Solution :

$16^{\sin ^{2} x}+16^{1-\sin ^{2} x}=10$

put $16^{\sin ^{2} x}=y \Rightarrow y+\frac{16}{y}=10$

$\mathrm{y}^{2}-10 \mathrm{y}+16=0 \quad$ gives $\mathrm{y}=8,2$

$\therefore 16^{\sin ^{2} x}=2,8=(16)^{\frac{1}{4}} \&(16)^{\frac{3}{4}}$

$\therefore \sin ^{2} x=\frac{1}{4}, \frac{3}{4}$

Clearly lines $\mathrm{y}=\frac{1}{4}, \frac{3}{4}$ intersect the graph in 8 points

Hence 8 possible solutions.

Answer: (a)

Practice questions

1. $\begin{aligned} \text { Let } & P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\} \text { and } \\ & Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\} \text { be two sets. Then }\end{aligned}$

(a). $\mathrm{P} \subset \mathrm{Q}$ and $\mathrm{Q}-\mathrm{P} \neq \phi$

(b). $\mathrm{Q} \not \subset \mathrm{P}$

(c). $\mathrm{P} \not \subset \mathrm{Q}$

(d). $\mathrm{P}=\mathrm{Q}$

Show Answer Answer: (d)

2. The number of values of $\theta$ in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $n=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is

(a). 0

(b). 1

(c). 2

(d). 3

Show Answer Answer: (d)

3. The positive integer value of $n>3$ satisfying the equation

$\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is

(a). 5

(b). 6

(c). 7

(d). 8

Show Answer Answer: (c)

4. All values of $\theta$ in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ satisfying $(1-\tan \theta)(1+\tan \theta) \sec ^{2} \theta+2^{\tan ^{2} \theta}=0$

(a). $\frac{\pi}{3}$

(b). $\frac{-\pi}{3}$

(c). $0$

(d). None of these.

Show Answer Answer: (a, b)

5. Match the following :-

Column I Column II
(a). Number of roots of $\cos ^{7} x+\sin ^{4} x=1$ in the interval $[0,2 \pi]$ (p). 1
(b). Value of ’ $a$ ’ for which $a^{2}-2 a+\sec ^{2} \pi(a+x)=0$ has solution (q). 0
(c). Number of solutions of $\mid\cos x\mid=2[x]$ (r). 4
Show Answer Answer: (a $\rarr$ r; b $\rarr$ p; c $\rarr$ q)

6. The solution set of $|4 \sin x-1|<\sqrt{5},|x|<\pi$ is

(a). $\left(-\pi,-\frac{4 \pi}{5}\right) \cup\left(-\frac{\pi}{5}, \frac{\pi}{10}\right) \cup\left(\frac{9 \pi}{10}, \pi\right)$

(b). $\left(\frac{-9 \pi}{10}, \frac{-\pi}{10}\right) \cup\left(\frac{3 \pi}{10}, \frac{7 \pi}{10}\right)$

(c). $\left(-\pi, \frac{-9 \pi}{10}\right) \cup\left(\frac{-\pi}{10}, \frac{3 \pi}{10}\right) \cup\left(\frac{7 \pi}{10}, \pi\right)$

(d). $\left(\frac{-7 \pi}{10}, \frac{9 \pi}{10}\right)$

Show Answer Answer: (c)

7. The number of points $(x, y)$ inside the circle $x^{2}+y^{2}=4$ satisfying the equation $\tan ^{4} x+\cot ^{4} x+1=3 \sin ^{2} y$ is

(a). 1

(b). 2

(c). 4

(d). 8

Show Answer Answer: (c)

8. If $\sin x=2 \sin \theta, \cos x=\tan y, \tan x=\cos z$ and $\cos y=\tan z$, then $\theta$ is

(a). $18^{\circ}$

(b). $36^{\circ}$

(c). $54^{\circ}$

(d). $72^{\circ}$

Show Answer Answer: (a)

9. Read the following and then answer the questions.

Consider the system of equations

$\sin x \cos 2 \mathrm{y}=\left(\mathrm{a}^{2}-1\right)^{2}+1, \cos x \sin 2 \mathrm{y}=\mathrm{a}+1$

(i). the number of values of a for which the system has a solution is

(a). 1

(b). 2

(c). 3

(d). infinite.

Show Answer Answer: (a)

(ii). The number of values of $\mathrm{x} \in[0,2 \pi]$ when the system has solution for permissible values of a is

(a). 1

(b). 2

(c). 3

(d). 4

Show Answer Answer: (b)

(iii). The number of values of $y \in[0,2 \pi]$ when the system has solution for permissible values of a

(a). 2

(b). 3

(c). 4

(d). 5

Show Answer Answer: (d)

10. The total number of solutions of $\sin \{x\}=\cos \{x\}$ in $[0,2 \pi]$ is

(a). 5

(b). 6

(c). 8

(d). None of these

Show Answer Answer: (b)

11. If $\sin x+\cos x=\sqrt{\left(y+\frac{1}{y}\right)}, x \in[0, \pi]$ then

(a). $\mathrm{x}=\frac{\pi}{4}, \mathrm{y}=1$

(b). $y=2$

(c). $x=\frac{3 \pi}{4}$

(d). None of these.

Show Answer Answer: (a)

12. If the inequatlity $\sin ^{2} x+a \cos x+a^{2}>1+\cos x$ hods for any $x \in R$ then the largest negative integral value of ’ $a$ ’ is

(a). $-4$

(b). $-3$

(c). $-2$

(d). $-1$

Show Answer Answer: (b)

13. The number of solutions of $x \in[0,2 \pi]$ for which $[\sin x+\cos x]=3+[-\sin x]+[-\cos x]$ is

(a). 0

(b). 4

(c). infinite

(d). 1

Show Answer Answer: (a)

14. The arithmetic mean of the roots of the equation $4 \cos ^{3} x-4 \cos ^{2} x-\cos (315 \pi+x)=1$ in the interval $(0,315)$ is

(a). $50 \pi$

(b). $51 \pi$

(c). $100 \pi$

(d). $315 \pi$

Show Answer Answer: (b)

15. Values of $x$ & y satisfying the equation $\sin ^{7} y=\left|x^{3}-x^{2}-9 x+9\right|+\left|x^{3}-x^{2}-4 x+4\right|+\sec ^{2} 2 y+\cos ^{4} y$ are

(a). $x=1, y=n \pi, n \in Z$

(b). $x=1, y=2 n \pi+\frac{\pi}{2}, n \in Z$

(c). $\mathrm{x}=1, \mathrm{y}=2 \mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$

(d). None of these

Show Answer Answer: (b)


Table of Contents