TRIGONOMETRY EQUATIONS - 1 (Trigonometric Functions - Problem Solving)
1. Values of trigonometrical ratios of some particular angles
$\quad$ (i). $\sin 7 \frac{1}{2}^{\circ}=\frac{\sqrt{4-\sqrt{2}-\sqrt{6}}}{2 \sqrt{2}}$
$\quad$$\quad$ $\cos 7 \frac{1}{2}^{\circ}=\frac{\sqrt{4+\sqrt{2}+\sqrt{6}}}{2 \sqrt{2}}$
$\quad$$\quad$ $\tan 7 \frac{1}{2}^{\circ}=(\sqrt{3}-\sqrt{2})(\sqrt{2}-1)$
$\quad$$\quad$ $\cot 7 \frac{1}{2}^{\circ}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)$
$\quad$ (ii). $\sin 15^{\circ}=\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
$\quad$$\quad$ $\cos 15^{\circ}=\sin 75^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
$\quad$$\quad$ $\tan 15^{\circ}=\cot 75^{\circ}=2-\sqrt{3}$
$\quad$$\quad$ $\cot 15^{\circ}=\tan 75^{\circ}=2+\sqrt{3}$
$\quad$ (iii). $\sin 22 \frac{1}{2}^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{2}}$
$\quad$$\quad$ $\cos 22 \frac{1}{2}^{\circ}=\frac{1}{2} \sqrt{2+\sqrt{2}}$
$\quad$$\quad$ $\tan 22 \frac{1}{2}^{\circ}=\sqrt{2}-1$
$\quad$$\quad$ $\cot 22 \frac{1}{2}^{\circ}=\sqrt{2}+1$
$\quad$ (iv). $\sin 18^{\circ}=\cos 72^{\circ}=\frac{\sqrt{5}-1}{4}$
$\quad$$\quad$ $\cos 18^{\circ}=\sin 72^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}$
$\quad$$\quad$ $\sin 36^{\circ}=\cos 54^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}$
$\quad$ $\cos 36^{\circ}=\sin 54^{\circ}=\frac{\sqrt{5}+1}{4}$
$\quad$ (v). $\quad \cos 9^{\circ}=\frac{1}{2}\left(\sqrt{1+\sin 18^{\circ}}+\sqrt{1-\sin 18^{\circ}}\right)$
$\quad$ (vi). $\quad \cos 27^{\circ}=\frac{1}{2}\left(\sqrt{1+\cos 36^{\circ}}+\sqrt{1-\cos 36^{\circ}}\right)$
2. Conditional identities
If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles of a triangle (i.e. $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ ) then
-
$\quad \tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \tan B \tan \mathrm{C}$
-
$\quad \cot \mathrm{A} \cot \mathrm{B}+\cot \mathrm{B} \cot \mathrm{C}+\cot C \cot \mathrm{A}=1$
-
$\quad \tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1$
-
$\quad \cot \frac{\mathrm{A}}{2}+\cot \frac{\mathrm{B}}{2}+\cot \frac{\mathrm{C}}{2}=\cot \frac{\mathrm{A}}{2} \cot \frac{\mathrm{B}}{2} \cot \frac{\mathrm{C}}{2}$
-
$\quad \sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{A} \sin B \sin \mathrm{C}$
-
$\quad \cos 2 \mathrm{~A}+\cos 2 \mathrm{~B}+\cos 2 \mathrm{C}=-1-4 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}$
-
$\quad \sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=4 \cos \frac{\mathrm{A}}{2} \cos \frac{\mathrm{B}}{2} \cos \frac{\mathrm{C}}{2}$
-
$\quad \cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+4 \sin \frac{\mathrm{A}}{2} \sin \frac{\mathrm{B}}{2} \sin \frac{\mathrm{C}}{2}$
3. Trigonometric ratios of sum of more than three angles.
-
$\quad \sin \left(\mathrm{A} _1+\mathrm{A} _2 \ldots \ldots \ldots \ldots \ldots . .+\mathrm{A} _{\mathrm{n}}\right) \quad=\cos \mathrm{A} _1 \cos \mathrm{A} _2 \ldots \ldots \ldots \ldots . \cos \mathrm{A} _{\mathrm{n}}\left(\mathrm{S} _1-\mathrm{S} _3+\mathrm{S}_5-\ldots \ldots \ldots \ldots \ldots.\right)$
-
$\quad \cos \left(\mathrm{A} _{1}+\mathrm{A} _{2}\right.$ $\left.+\mathrm{A} _{\mathrm{n}}\right) \quad=\cos \mathrm{A} _{1} \cos \mathrm{A}$ . $\cos \mathrm{A} _{\mathrm{n}}\left(1-\mathrm{S} _{2}+\mathrm{S} _{4}-\mathrm{S} _{6}+…………\right)$
-
$\quad \tan \left(\mathrm{A} _1+\mathrm{A} _2 \ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{A} _{\mathrm{n}}\right) \quad=\frac{\mathrm{S} _1-\mathrm{S}_3+\mathrm{S}_5-\ldots \ldots . .}{1-\mathrm{S}_2+\mathrm{S}_4-\mathrm{S}_6+\ldots \ldots}$
where $S _{1}=\sum \tan A _{1} \quad=$ sum of tangents of angles
$\mathrm{S} _{2}=\sum \tan \mathrm{A} _{1} \tan \mathrm{A} _{2}=$ sum of tangents taken two at a time etc.
In particular, if $\mathrm{A} _{1}=\mathrm{A} _{2}=$ $A _{n}=A$, then
$\mathrm{S} _{1}=\mathrm{n} \tan \mathrm{A} ; \mathrm{S} _{2}={ }^{n} \mathrm{C} _{2} \tan ^{2} \mathrm{~A} ; \mathrm{S} _{3}={ }^{n} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}$ etc.
$\sin \mathrm{nA}=\cos ^{\mathrm{n}} \mathrm{A}\left({ }^{\mathrm{n}} \mathrm{C} _{1} \tan \mathrm{A}-{ }^{\mathrm{n}} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{5} \tan ^{5} \mathrm{~A}-………..\right)$
$\cos \mathrm{nA}=\cos ^{\mathrm{n}} \mathrm{A}\left(1-{ }^{\mathrm{n}} \mathrm{C} _{2} \tan ^{2} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{4} \tan ^{4} \mathrm{~A}-……..\right)$
$\tan \mathrm{nA}=\frac{{ }^{\mathrm{n}} \mathrm{C} _{1} \tan \mathrm{A}-{ }^{\mathrm{n}} \mathrm{C} _{3} \tan ^{3} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{5} \tan ^{5} \mathrm{~A}-\ldots \ldots \ldots . . . .}{1-{ }^{\mathrm{n}} \mathrm{C} _{2} \tan ^{2} \mathrm{~A}+{ }^{\mathrm{n}} \mathrm{C} _{4} \tan ^{4} \mathrm{~A}-\ldots \ldots \ldots \ldots \ldots \ldots . . . . . . .}$
Solved examples
1. If $f(\mathrm{x})=\frac{\cot \mathrm{x}}{1+\cot \mathrm{x}}$ and $\alpha+\beta=\frac{5 \pi}{4}$, then the value of $f(\alpha) \cdot f(\beta)$ is
(a). $2$
(b). $-\frac{1}{2}$
(c). $\frac{1}{2}$
(d). None of these
Show Answer
Solution :
$f(\alpha) \cdot f(\beta)=\frac{\cot \alpha}{1+\cot \alpha} \cdot \frac{\cot \beta}{1+\cot \beta}=\frac{1}{1+\tan \alpha} \cdot \frac{1}{1+\tan \beta}$
$=\frac{1}{1+\tan \alpha} \cdot \frac{1}{1+\tan \left(\pi+\frac{\pi}{4}-\alpha\right)}=\frac{1}{1+\tan \alpha} \times \frac{1}{1+\frac{1-\tan \alpha}{1+\tan \alpha}}$
$=\frac{1}{1+\tan \alpha} \frac{1+\tan \alpha}{2}=\frac{1}{2}$
Answer: (c).
2. The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ equals
(a). 1
(b). 2
(c). 3
(d). 4
Show Answer
Solution :
$\left(\tan 81^{\circ}+\tan 9^{\circ}\right)-\left(\tan 63^{\circ}+\tan 27^{\circ}\right)$
$=\left(\cot 9^{\circ}+\tan 9^{\circ}\right)-\left(\cot 27^{\circ}+\tan 27^{\circ}\right)$
$=\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}=\frac{2 \times 4}{\sqrt{5}-1}-\frac{2 \times 4}{\sqrt{5}+1}$
$=\frac{8\{\sqrt{5}+1-\sqrt{5}+1\}}{5-1}=\frac{8 \times 2}{4}=4$
Answer: (d).
3. The number of integral values of $k$ for which the equation $7 \cos x+5 \sin x=2 k+1$ has a unique solution is
(a). 4
(b). 8
(c). 10
(d). 12
Show Answer
Solution :
$ \begin{array}{ll} & \frac{7}{\sqrt{74}} \cdot \cos x+\frac{5}{\sqrt{74}} \sin x=\frac{2 k+1}{\sqrt{74}} \\ \Rightarrow & \sin (\mathrm{x}+\alpha)=\frac{2 \mathrm{k}+1}{\sqrt{74}} \\ \text { Now } \quad & -1 \leq \frac{2 \mathrm{k}+1}{\sqrt{74}} \leq 1 \end{array} $
$ \begin{array}{ll} \Rightarrow & \frac{-\sqrt{74}-1}{2} \leq \mathrm{k} \leq \frac{\sqrt{74}-1}{2} \\ \Rightarrow & -4.8 \leq \mathrm{k} \leq 3.8 \\ \Rightarrow \quad & \mathrm{k}=-4,-3,-2,-1,-0,1,2,3 \\ & \text { i.e. } 8 \text { values. } \end{array} $
Answer: (b).
4. If $\frac{\sin x}{\sin y}=\frac{1}{2}$ and $\frac{\cos x}{\cos y}=\frac{3}{2}$ where $x, y \in\left(0, \frac{\pi}{2}\right)$ then $\tan (x+y)=$
(a). $\sqrt{13}$
(b). $\sqrt{14}$
(c). $\sqrt{17}$
(d). $\sqrt{15}$
Show Answer
Solution :
$ \sin ^{2} x+\cos ^{2} x=1 $
$\Rightarrow \quad \frac{1}{4} \sin ^{2} \mathrm{y}+\frac{9}{4} \cos ^{2} \mathrm{y}=1$
$\Rightarrow \quad \cos y=\frac{\sqrt{3}}{2 \sqrt{2}}$ and tany $=\sqrt{\frac{5}{3}}$
Also $\sin x=\frac{\sqrt{5}}{4 \sqrt{2}}$ and $\tan x=\frac{\sqrt{5}}{3 \sqrt{3}}$
$\therefore \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \cdot \tan y}=\frac{\frac{\sqrt{5}}{3 \sqrt{3}}+\frac{\sqrt{5}}{\sqrt{3}}}{1-\frac{\sqrt{5}}{3 \sqrt{3}} \cdot \frac{\sqrt{5}}{\sqrt{3}}}$
$=\frac{\sqrt{5}+3 \sqrt{5}}{\frac{9-5}{\sqrt{3}}}$
$=\frac{4 \sqrt{5}}{4} \times \sqrt{3}=\sqrt{15}$
Answer: (d).
5. If $\alpha+\beta=\frac{\pi}{2}$ and $\beta+\gamma=\alpha$, then $\tan \alpha$ is equal to
(a). $2(\tan \beta+\tan \gamma)$
(b). $\tan \beta+\tan \gamma$
(c). $\tan \beta+2 \tan \gamma$
(d). $2 \tan \beta+\tan \gamma$
Show Answer
Solution :
$ \gamma=\alpha-\beta $
$\Rightarrow \quad \tan \gamma=\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \beta}$
$ \begin{array}{ll} \Rightarrow & \tan \gamma=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \cdot \tan \left(\frac{\pi}{2}-\alpha\right)} \\ \Rightarrow \quad & \tan \gamma=\frac{\tan \alpha-\tan \beta}{1+1} \\ \Rightarrow \quad & 2 \tan \gamma=\tan \alpha-\tan \beta \\ \Rightarrow \quad \tan \alpha=\tan \beta+2 \tan \gamma \end{array} $
Answer: (c).
6. $\sum _{\mathrm{r}=1}^{7} \tan ^{2} \frac{\mathrm{r} \pi}{16}=$
(a). 34
(b). 35
(c). 37
(d). None of these
Show Answer
Solution : Given series can be simplified to
$\left(\tan ^{2} \frac{\pi}{16}+\cot ^{2} \frac{\pi}{16}\right)+\left(\tan ^{2} \frac{2 \pi}{16}+\cot ^{2} \frac{2 \pi}{16}\right)+\left(\tan ^{2} \frac{3 \pi}{16}+\cot ^{2} \frac{3 \pi}{16}\right)+1$
$\Rightarrow$ General pattern is $\tan ^{2} \theta+\cot ^{2} \theta$
$=\frac{\sin ^{4} \theta+\cos ^{4} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\frac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=\frac{4}{\sin ^{2} 2 \theta}-2$
$=\frac{4 \times 2}{1-\cos 4 \theta}-2=\frac{8}{1-\cos 4 \theta}-2$
$\therefore\left(\frac{8}{1-\cos \frac{\pi}{4}}-2\right)+\left(\frac{8}{1-\cos \frac{\pi}{2}}-2\right)+\left(\frac{8}{1-\cos \frac{3 \pi}{4}}-2\right)+1$
$=\frac{8 \sqrt{2}}{\sqrt{2}-1}-2+8-2+\frac{8 \sqrt{2}}{\sqrt{2}+1}-2+1$
$=\frac{8 \sqrt{2}}{\sqrt{2}-1}+\frac{8 \sqrt{2}}{\sqrt{2}+1}-6+8+1$
$=\frac{16+8 \sqrt{2}+16-8 \sqrt{2}}{2-1}+3=32+3=35$
Answer: (b).
Exercise
1. If $\mathrm{p} _{\mathrm{n}+1}=\sqrt{\frac{1}{2}\left(1+\mathrm{p} _{\mathrm{n}}\right)}$, then $\cos \left(\frac{\sqrt{1-\mathrm{p} _{0}{ }^{2}}}{\mathrm{p} _{1} \mathrm{p} _{2} \mathrm{p} _{3} \ldots \ldots \infty}\right)$ is equal to
(a). $1$
(b). $-1$
(c). $\mathrm{p} _{0}$
(d). $\frac{1}{\mathrm{p} _{0}}$
Show Answer
Answer: (c).2. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are acute positive angles such that $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$ and $\cot \mathrm{A} \cot \mathrm{B} \cot \mathrm{C}=\mathrm{k}$, then
(a). $\mathrm{k} \leq \frac{1}{3 \sqrt{3}}$
(b). $\mathrm{k} \geq \frac{1}{3 \sqrt{3}}$
(c). $\mathrm{k}<\frac{1}{9}$
(d). $\mathrm{k}>\frac{1}{3}$
Show Answer
Answer: (a).3. If $\sum x y=1$, then $\sum \frac{x+y}{1-x y}=$
(a). $\frac{1}{x y z}$
(b). $\frac{4}{x y z}$
(c). $x y z$
(d). None of these
Show Answer
Answer: (a).4. The value of $\cot 16^{\circ} \cot 44^{\circ}+\cot 44^{\circ} \cot 76^{\circ}-\cot 76^{\circ} \cot 16^{\circ}$ is
(a). $3$
(b). $\frac{1}{3}$
(c). $\frac{-1}{3}$
(d). $-3$
Show Answer
Answer: (a).5. The number of solutions of $\tan (5 \pi \cos \theta)=\cot (5 \pi \sin \theta)$ for $\theta$ in $(0,2 \pi)$ is
(a). 28
(b). 14
(c). 4
(d). 2
Show Answer
Answer: (a).6. If $\cos x=\tan y, \cos y=\tan z$ and $\cos z=\tan x$, then a value of $\sin x$ is equal to
(a). $2 \cos 18^{\circ}$
(c). $\sin 18^{\circ}$
(b). $\cos 18^{\circ}$
(d). $2 \sin 18^{\circ}$
Show Answer
Answer: (d).7. Let $n$ be an odd integer. If $\operatorname{sinn} \theta=\sum _{\mathrm{r}=0}^{\mathrm{n}} \mathrm{b} _{\mathrm{r}} \sin ^{\mathrm{r}} \theta, \forall \theta$, then
(a). $\mathrm{b} _{0}=1, \mathrm{~b} _{1}=3$
(c). $\mathrm{b} _{0}=-1 \mathrm{~b} _{1}=\mathrm{n}$
(b). $\mathrm{b} _{0}=0, \mathrm{~b} _{1}=\mathrm{n}$
(d). $\mathrm{b} _{0}=0, \mathrm{~b} _{1}=\mathrm{n}^{2}-3 \mathrm{n}+3$
Show Answer
Answer: (b).8. If $\mathrm{e}^{-\pi / 2}<\theta<\frac{\pi}{2}$, which is larger, $\cos \left(\log _{\mathrm{e}} \theta\right)$ or $\log _{\mathrm{e}}(\cos \theta)$
(a). $\cos \left(\log _{\mathrm{e}} \theta\right)$
(b). $\log _{e}(\cos \theta)$
(c). both are equal
(d). None of these
Show Answer
Answer: (a).9. $\sum _{r=1}^{n-1}(n-r) \cos \frac{2 r \pi}{n}$ for $n \geq 3$ is$…….$
(a). $\frac{n}{2}$
(b). $\mathrm{n}$
(c). $(\mathrm{n}-3)$
(d). None of these
Show Answer
Answer: (a).10. Match the following :-
Column I | Column II |
---|---|
(a). In an acute angled $\triangle \mathrm{ABC}$, the least values of $\sum \sec \mathrm{A} \& \sum \tan ^{2} \mathrm{~A}$ are $\lambda$ and $\mu$ respectively, then | (p). $\lambda-\mu=2$ |
(b). In $\triangle \mathrm{ABC}$, the least values of $\sum \operatorname{\cosec}(\mathrm{A} / 2)$ $\& \sum \sec ^{2}(\mathrm{~A} / 2)$ and $\lambda \& \mu$ respectively then | (q). $\mu-\lambda=3$ |
(c). In $\Delta \mathrm{ABC}$, the least values of $\operatorname{\cosec}\left(\frac{\mathrm{A}}{2}\right) \operatorname{\cosec}\left(\frac{\mathrm{B}}{2}\right) \operatorname{\cosec}\left(\frac{\mathrm{C}}{2}\right)\& \sum \operatorname{\cosec}^{2} \mathrm{~A}$ are $\lambda \& \mu$ respectively, then | (r). $ \lambda-\mu=4$ |
(s). $ 3 \lambda-2 \mu=0$ | |
(t). $ 2 \lambda-3 \mu=0$ |
Show Answer
Answer: a $\rarr$ q, s; b $\rarr$ p, t; c $\rarr$ r11. In any $\triangle A B C$, the minimum value of $\sum \frac{\sqrt{\sin A}}{\sqrt{\sin B}+\sqrt{\sin C}-\sqrt{\sin A}}$ is
(a). 3
(b). 0
(c). 4
(d). None of these
Show Answer
Answer: (a).12. If $\cos \frac{\pi}{7}, \cos \frac{3 \pi}{7}, \cos \frac{5 \pi}{7}$, are the roots of the equation $8 x^{3}-4 x^{2}-4 x+1=0$.
On the basis of above information, answer the following questions :-
(i). The value of $\sec \frac{\pi}{7}+\sec \frac{3 \pi}{7}+\sec \frac{5 \pi}{7}$ is
(a). 2
(b). 4
(c). 8
(d). None of these
Show Answer
Answer: (b).(ii). The value of $\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14}$ is
(a). $\frac{1}{4}$
(b). $\frac{1}{8}$
(c). $\frac{\sqrt{7}}{4}$
(d). $\frac{\sqrt{7}}{8}$
Show Answer
Answer: (b).(iii). The value of $\cos \frac{\pi}{14} \cos \frac{3 \pi}{14} \cos \frac{5 \pi}{14}$ is
(a). $\frac{1}{4}$
(b). $\frac{1}{8}$
(c). $\frac{\sqrt{7}}{4}$
(d). $\frac{\sqrt{7}}{8}$
Show Answer
Answer: (d).(iv). The equation whose roots $\operatorname{arc}^{2} \tan ^{2} \frac{\pi}{7}, \tan ^{2} \frac{3 \pi}{7}, \& \tan ^{2} \frac{5 \pi}{7}$, is
(a). $x^{3}-35 x^{2}+7 x-21=0$
(b). $x^{3}-35 x^{2}+21 x-7=0$
(c). $x^{3}-21 x^{2}+35 x-7=0$
(d). $x^{3}-21 x^{2}+7 x-35=0$
Show Answer
Answer: (c).(v). the value of $\sum _{\mathrm{r}=1}^{3} \tan ^{2}\left(\frac{2 \mathrm{r}-1}{7}\right) \sum _{\mathrm{r}=1}^{3} \cot ^{2}\left(\frac{2 \mathrm{r}-1}{7}\right)$ is
(a). 15
(b). 105
(c). 21
(d). 147
Show Answer
Answer: (b).13. If $a=\sin \frac{\pi}{18} \sin \frac{5 \pi}{18} \sin \frac{7 \pi}{18}$, and $x$ is the solution of the equation $y=2[x]+2$ and $y=3[x-2]$, then $\mathrm{a}=$
(a). $[\mathrm{x}]$
(b). $\frac{1}{[\mathrm{x}]}$
(c). $2[x]$
(d). $[\mathrm{x}]^{2}$
Show Answer
Answer: (b).14. If $\tan \alpha, \tan \beta, \tan \gamma$ are the roots of $\mathrm{x}^{3}-\mathrm{px}^{2}-\mathrm{r}=0$, then the value of $\left(1+\tan ^{2} \alpha\right)\left(1+\tan ^{2} \beta\right)\left(1+\tan ^{2} \gamma\right)$ is equal to
(a). $(\mathrm{p}-\mathrm{r})^{2}$
(b). $1+(\mathrm{p}-\mathrm{r})^{2}$
(c). $1-(\mathrm{p}-\mathrm{r})^{2}$
(d). None of these
Show Answer
Answer: (b).15. If $\tan \alpha$ is an integral solution of $4 x^{2}-16 x+15<0$ and $\cos \beta$ is the slope of the bisector of the angle in the first quadrant between the $x \& y$ axes, then the value of $\sin (\alpha+\beta): \sin (\alpha-\beta)$ is equal to
(a). $-1$
(b). $0$
(c). $1$
(d). $2$