SEQUENCES AND SERIES - 8 (Special Series - Problem Solving)
Arithmetico - Geometric Series (A.G.S.)
If $\mathrm{a} _{1}, \mathrm{a} _{2}………….$, $a _{n}$ is an A.P. and $b _{1}, b _{2}$, $……… \mathrm{b} _{\mathrm{n}}$ is a G.P, then the sequence $\mathrm{a} _{1} \mathrm{~b} _{1}, \mathrm{a} _{1} \mathrm{~b} _{2}$, $…………\mathrm{a} _{\mathrm{n}} \mathrm{b} _{\mathrm{n}}$ is said to be an A.G.S. The sequence is of the form $a b,(a+d) b r,(a+2 d) b r^{2}$, $……………..$
Sum to $n$ terms $=S _{n}=\frac{a b}{1-r}+\frac{d b r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{(a+(n-1) d) b r^{n}}{1-r}$
If $-1<\mathrm{r}<1$, sum to infinite numbers is given by
$\mathrm{S} _{\infty}=\frac{\mathrm{ab}}{1-\mathrm{r}}+\frac{\mathrm{dbr}}{(1-\mathrm{r})^{2}}$
Important results
$1. \quad$ Let $\mathrm{S} _{\mathrm{r}}=1^{\mathrm{r}}+2^{\mathrm{r}}+3^{\mathrm{r}}+………….$ $+\mathrm{n}^{\mathrm{r}}$, then
$\quad$ (i) $\mathrm{S} _{1}=1+2+3+\ldots \ldots \ldots \ldots \ldots+n=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$\quad$ (ii) $\mathrm{S} _{2}=1^{2}+2^{2}+3^{3}+……….$ $+\mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
$\quad$ (iii) $\mathrm{S} _{3}=1^{3}+2^{3}+3^{3}+………..$ $+\mathrm{n}^{3}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}=\mathrm{S} _{1}{ }^{2}$
$\quad$ (iv) $\mathrm{S} _{4}=1^{4}+2^{4}+3^{4}+\ldots \ldots \ldots \ldots \ldots \ldots+n^{4}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)\left(3 \mathrm{n}^{2}+3 \mathrm{n}-1\right)}{30}=\frac{\mathrm{S} _{2}}{5}\left(6 \mathrm{~S} _{1}-1\right)$
$\quad$ (iv) $\mathrm{S} _{5}=1^{5}+2^{5}+3^{5}+\ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{5}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}\left(2 \mathrm{n}^{2}+2 \mathrm{n}-1\right)}{12}=\frac{1}{3} \mathrm{~S} _{1}^{2}\left(4 \mathrm{~S} _{1}-1\right)$
$2. \quad 1+3+5+………..$ to $\mathrm{n}$ terms $=\mathrm{n}^{2}$
$3. \quad 1^{2}+3^{2}+5^{2}+………$ to $\mathrm{n}$ terms $=\frac{\mathrm{n}\left(4 \mathrm{n}^{2}-1\right)}{3}$
$4. \quad 1^{3}+3^{3}+5^{3}+……….$to $\mathrm{n}$ terms $=\mathrm{n}^{2}\left(2 \mathrm{n}^{2}-1\right)$
$5. \quad 1-1+1-………………$ to $\mathrm{n}$ terms $=\frac{1-(-1)^{\mathrm{n}}}{2}$
$6. \quad 1-2+3-…………..$ to $\mathrm{n}$ terms $=\frac{1-(-1)^{\mathrm{n}}(2 \mathrm{n}+1)}{4}$
$7. \quad 1^{2}-2^{2}+3^{2}-…………$ to $\mathrm{n}$ terms $=\frac{(-1)^{\mathrm{n}-1} \mathrm{n}(\mathrm{n}+1)}{2}=(-1)^{\mathrm{n}-1} \mathrm{~S} _{1}$
$8. \quad 1^{3}-2^{3}+3^{3}-………….$ to $n$ terms $=\frac{(-1)^{n-1}\left(4 n^{3}+6 n^{2}-1\right)-1}{8}$
Note 1: $(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+3)………$ $(x+n)=x^{n}+A _{1} x^{n-1}+A _{2} x^{n-2}+A _{3} x^{n-3}+………$
Then $\quad \mathrm{A} _{1}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
$ \begin{aligned} & \mathrm{A} _{2}=\frac{(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)(3 \mathrm{n}+2)}{24} \\ & \mathrm{~A} _{3}=\frac{(\mathrm{n}-1)(\mathrm{n}-2) \mathrm{n}^{2}(\mathrm{n}+1)^{2}}{48} \end{aligned} $
Note 2 : To obtain the sum $\sum _{i<j} a _{i} a _{j}$ we use the identity
$2\sum _{i<j} a _{i} a _{j}=\left(a _{1}+a _{2}+\ldots \ldots \ldots+a _{n}\right)^{2}-\left(a _{1}{ }^{2}+a _{2}{ }^{2}+\ldots+a _{n}^{2}\right)$
More methods of summation of series
If $n^{\text {th }}$ term of a sequence is given by
$\mathrm{T} _{\mathrm{n}}=\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}$, then
$ \begin{aligned} \mathrm{S} _{\mathrm{n}}=\sum \mathrm{T} _{\mathrm{n}} & =\mathrm{T} _{1}+\mathrm{T} _{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{T} _{\mathrm{n}} \\ & =\mathrm{a} \sum \mathrm{n}^{3}+\mathrm{b} \sum \mathrm{n}^{2}+\mathrm{c} \sum \mathrm{n}+\mathrm{d} \sum 1 \end{aligned} $
I. Method of differences
If the differences of successive terms of a series are in A.P. or G.P., we can find $\mathrm{T} _{\mathrm{n}}$ as follows
(a) Denote $\mathrm{n}^{\text {th }}$ term and the sum up to $\mathrm{n}$ terms by $\mathrm{T} _{\mathrm{n}} \& \mathrm{~S} _{\mathrm{n}}$ respectively
(b) Rewrite the given series with each term shifted by one place to the right
(c) Subtracting the above two forms of the series, find $T _{n}$.
(d) Apply $S _{n}=\sum T _{n}$.
Note: Instead of determining the $\mathrm{n}^{\text {th }}$ item of a series by the method of difference, we can use the following steps to obtain the same
(i) If the differences $\mathrm{T} _{2}-\mathrm{T} _{1}, \mathrm{~T} _{3}-\mathrm{T} _{2},……….$ etc are in A.P. Then take the $\mathrm{n}^{\text {th }}$ term as $\mathrm{T} _{\mathrm{n}}=\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$
Determine $a, b$, by putting $n=1,2,3$ and equating them with the values of corresponding terms of the given series.
(ii) If the differences $\mathrm{T} _{2}-\mathrm{T} _{1}, \mathrm{~T} _{3}-\mathrm{T} _{2},………$etc are in G.P, with common ratio $r$, then take $\mathrm{T} _{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}+\mathrm{bn}+\mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$
Determine $a, b$, by putting $n=1,2,3$ and equating them with the values of corresponding terms of the given series.
(iii) If the differences of the differences computed in step (i) are in A.P, then take $T _{n}=a^{3}$ $+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$
Determine $\mathrm{a}, \mathrm{b}$, c by putting $\mathrm{n}=1,2,3,4$ and equating them with the values of corresponding terms of the given series.
(iv) If the differences of differences computed in step (i) are in G.P with common ratio $r$, then take
$\mathrm{T} _{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}+\mathrm{bn}^{2}+\mathrm{cn}+\mathrm{d}$
Determine $a, b$, c by putting $n=1,2,3,4$ and equating them with the values of corresponding terms of the given series.
II. Sum of series whose $n^{\text {th }}$ term is
$ T _{n}=\frac{1}{[a+(n-1) d][(a+n d)]} $
Resolve $T _{n}$ into partial fractions, (or express the $\mathrm{N}^{r}$ of $T _{n}$ in terms of factors of $D^{r}$ and simplify), then find $T _{1}, T _{2}$, $\mathrm{T} _{\mathrm{n}}$ and add to get $\mathrm{S} _{\mathrm{n}}$.
III. Sum of series in special form
(a) Let the series consists of terms whose $n^{\text {th }}$ term
$ T _{n}=\frac{1}{a(a+d)(a+2 d) \ldots \ldots \ldots \ldots . .(a+(n-1) d)} $
To find sum of such a series ( factors of $D^{r}$ are in A.P.) as shown above, remove the least factor and multiply the denominator by the number of factors left out (here $n-1$ ), and also by the common difference (here d) change the sign and add a constant $C$.
Thus, $S _{n}=\frac{1}{(n-1) d(a+d)(a+2 d) \ldots \ldots \ldots \ldots \ldots \ldots . .(a+(n-1) d)}+C$
Find $S _{1}$ and hence value of $C$. This gives the required sum.
(b) Let the series consists of terms whose $\mathrm{n}^{\text {th }}$ term $\mathrm{T} _{\mathrm{n}}=\mathrm{a}(\mathrm{a}+\mathrm{d})(\mathrm{a}+2 \mathrm{~d}) \ldots \ldots \ldots .(\mathrm{a}+(\mathrm{n}-1) \mathrm{d})$.
To find sum of such a series, as shown above, add one more factor and divide by the total number of factors (here ( $\mathrm{n}+1$ )) and also by the common difference (here d). Also add a constant $\mathrm{C}$.
Thus $S _{n}=\frac{a(a+d)(a+2 d) \ldots \ldots . .(a+(n-1) d)(a+n d)}{(n+1) d}+C$
Find $S _{1}$ and hence value of $C$. This gives the required sum.
Note :
(i) for odd $\mathrm{n}, \quad \mathrm{n}=\left(\frac{\mathrm{n}+1}{2}\right)^{2}-\left(\frac{\mathrm{n}-1}{2}\right)^{2}$
(ii) For any $\mathrm{n}, \quad \mathrm{n}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}-\left(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\right)^{3}$
(iii) For odd $\mathrm{n}, \quad \mathrm{n}^{3}=\left(\frac{\mathrm{n}^{3}+1}{2}\right)^{3}-\left(\frac{\mathrm{n}^{3}-1}{2}\right)^{2}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}-\left(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\right)^{2}$
Solved examples
1. It is given that $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots \ldots \ldots \infty=\frac{\pi^{4}}{90}$ then, $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \ldots \ldots \ldots \infty$ is equal to
(a) $\frac{\pi^{4}}{96}$
(b) $\frac{\pi^{4}}{45}$
(c) $\frac{89 \pi^{4}}{90}$
(d) None of these
Show Answer
Solution : Let $\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \ldots \ldots \ldots \infty=\mathrm{S}$
$ \begin{aligned} & \text { Now } \frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots \ldots \ldots \infty=\frac{\pi^{4}}{90} \\ & \left(\frac{1}{1^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\ldots \ldots \ldots\right)+\left(\frac{1}{2^{4}}+\frac{1}{4^{4}}+\frac{1}{6^{4}}+\ldots \ldots \ldots\right)=\frac{\pi^{4}}{90} \\ & \Rightarrow \mathrm{S}+\frac{1}{2^{4}}\left(\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots \ldots\right)=\frac{\pi^{4}}{90} \\ & \Rightarrow \mathrm{S}+\frac{1}{16} \cdot \frac{\pi^{4}}{90}=\frac{\pi^{4}}{90} \\ & \Rightarrow \mathrm{S}=\frac{\pi^{4}}{90}\left(1-\frac{1}{16}\right)=\frac{\pi^{4}}{90} \times \frac{15}{16}=\frac{\pi^{4}}{96} \end{aligned} $
Answer: (a)
2. If $\mathrm{S} _{\mathrm{n}}=\sum _{\mathrm{r}=1}^{\mathrm{n}} \frac{1+2+2^{2}+\ldots \ldots \ldots .+\mathrm{r} \text { terms }}{2^{\mathrm{r}}}$, then
$\mathrm{S} _{\mathrm{n}}$ is equal to
(a) $2^{\mathrm{n}}-(\mathrm{n}+1)$
(b) $1-2^{-\mathrm{n}}$
(c) $\mathrm{n}-1+2^{-\mathrm{n}}$
(d) $2^{\mathrm{n}}-1$
Show Answer
Solution :
$\mathrm{T} _{\mathrm{r}}=\frac{1+2+2^{2}+\ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{r} \text { terms. }}{2^{\mathrm{n}}}$
$=\frac{1\left(2^{\mathrm{r}}-1\right)}{(2-1) 2^{\mathrm{r}}}=1-2^{-\mathrm{r}}$
$\mathrm{T} _{\mathrm{r}}=1-\frac{1}{2^{\mathrm{r}}}$
$\mathrm{S} _{\mathrm{n}}=\mathrm{n}-\left\{\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots n\text { terms }\right\}$
$\mathrm{S} _{\mathrm{n}}=\mathrm{n}-\frac{\frac{1}{2}\left(1-\frac{1}{2^{\mathrm{n}}}\right)}{1-\frac{1}{2}}=\mathrm{n}-\left(1-2^{-\mathrm{n}}\right)$
$=\mathrm{n}-1+2^{-\mathrm{n}}$
Answer: (c)
3. The sum to $n$ terms of the series
$1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots =\frac{\mathrm{n}^{2}(\mathrm{n}+1)^2}{2}$ when $n$ is even. When $n$ is odd, the sum is:
(a) $\frac{\mathrm{n}^{2}(\mathrm{n}+1)}{2}$
(b) $\frac{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}{2}$
(c) $\mathrm{n}(\mathrm{n}+1)^{2}(2 \mathrm{n}+1)$
(d) None of these
Show Answer
Solution : Let $\mathrm{n}=2 \mathrm{k}$
$\therefore 1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+……..$ $+(2 \mathrm{k}-1)^{2}+2(2 \mathrm{k})^{2}$
$=\frac{2 \mathrm{k}(2 \mathrm{k}+1)^{2}}{2}$
Let $\mathrm{n}=2 \mathrm{k}+1$ (odd)
$\therefore 1^{2}+2.2^{2}+3^{2}+2.4^{2}+…….$ $+(2 \mathrm{k}-1)^{2}+2(2 \mathrm{k})^{2}+(2 \mathrm{k}+1)^{2}$
$=\frac{2 \mathrm{k}(2 \mathrm{k}+1)^{2}}{2}+(2 \mathrm{k}+1)^{2}$
$=\frac{(2 \mathrm{k}+1)^{2}(2 \mathrm{k}+2)}{2}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)}{2}$
Answer: (a)
4. If the sum to $n$ terms of an A.P is $\operatorname{cn}(\mathrm{n}-1) ; \mathrm{c} \neq 0$, then the sum of squares of these terms is
(a) $\mathrm{c}^{2} \mathrm{n}^{2}(\mathrm{n}+1)^{2}$
(b) $\frac{2 \mathrm{c}^{2}}{3} \mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1)$
(c) $\frac{2 \mathrm{c}^{2}}{3} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)$
(d) None of these
Show Answer
Solution : $T _{n}=S _{n}-S _{n-1}=\operatorname{cn}(n-1)-c(n-1)(n-2)$
$ \begin{array}{rl} & =\mathrm{c}(\mathrm{n}-1)\{\mathrm{n}-\mathrm{n}+2\} \\ & =2 \mathrm{c}(\mathrm{n}-1) \\ & \therefore \mathrm{T}^{2}=4 \mathrm{c}^{2}(\mathrm{n}-1)^{2} \\ \therefore \mathrm{S} _{\mathrm{n}}{ }^{2} & 4 \mathrm{c}^{2}\left\{0^{2}+1^{2}+2^{2}+\ldots \ldots \ldots \ldots \ldots \ldots+(\mathrm{n}-1)^{2}\right\} \\ & =4 \mathrm{c}^{2} \frac{\mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1)}{6} \\ & =\frac{2 \mathrm{c}^{2}}{3} \mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1) \end{array} $
Answer: (b)
5. Let $\mathrm{t} _{\mathrm{r}}=2^{\mathrm{r} / 2}+2^{-\mathrm{r} / 2}$
The $\sum _{\mathrm{r}=1}^{10} \mathrm{t} _{\mathrm{r}}{ }^{2}$ is equal to
(a) $\frac{2^{21}-1}{2^{10}}+20$
(b) $\frac{2^{21}-1}{2^{10}}+19$
(c) $\frac{2^{21}-1}{2^{20}}-19$
(d) None of these
Show Answer
Solution: $\mathrm{t} _{\mathrm{r}}{ }^{2}=2^{\mathrm{r}}+2^{-\mathrm{r}}+2$
$ \begin{aligned} \therefore \mathrm{S} _{10}^{2} & =\left(2^{1}+2^{2}+\ldots \ldots . .+2^{10}\right)+\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots \ldots . .+\frac{1}{2^{10}}\right)+20 \\ \quad & =\frac{2\left(2^{10}-1\right)}{2-1}+\frac{\frac{1}{2}\left(1-\frac{1}{2^{10}}\right)}{1-\frac{1}{2}}+20 \end{aligned} $
$ \begin{aligned} & =2^{11}-2+1-\frac{1}{2^{10}}+20 \\ & =2^{11}-\frac{1}{2^{10}}+19=\frac{2^{21}-1}{2^{10}}+19 \end{aligned} $
Answer: (b)
6. Sum to $\mathrm{n}$ terms
$1.(3 n-1)+2 .(3 n-2)+3 .(3 n-3)+………n$ terms is
(a) $\frac{\mathrm{n}(2 \mathrm{n}+1)(5 \mathrm{n}-1)}{3}$
(b) $\frac{\mathrm{n}(2 \mathrm{n}+1)(5 \mathrm{n}+1)}{3}$
(c) $\frac{\mathrm{n}(\mathrm{n}+1)(7 \mathrm{n}-1)}{6}$
(d) None of these.
Show Answer
Solution :
$ \begin{aligned} T _{r} & =r(3 n-r) \\ & =3 n r-r^{2} \\ & S _{n}=\sum _{r=1}^{n} T _{r}=3 n \sum _{r=1}^{n} r-\sum _{r=1}^{n} r^{2} \\ & =3 n \cdot \frac{n \cdot(n+1)}{2}-\frac{n(n+1)(2 n+1)}{6} \\ & =\frac{n(n+1)}{2}\left\{3 n-\frac{2 n+1}{3}\right\} \\ & =\frac{n(n+1)}{2}\left\{\frac{9 n-2 n-1}{3}\right\}=\frac{n(n+1)(7 n-1)}{6} \end{aligned} $
Answer: (c)
7. $ \sum _{r=1}^{n} r^{2}-\sum _{m=1}^{n} \sum _{r=1}^{m} r$ is equal to
(a) $\frac{1}{2}\left(\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}+\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}\right)$
(b) $\frac{1}{2}\left(\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}-\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}\right)$
(c) $0$
(d) None of these
Show Answer
Solution: $\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}-\sum _{\mathrm{m}=1}^{\mathrm{n}} \frac{\mathrm{m}(\mathrm{m}+1)}{2}$
$=\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}-\sum _{\mathrm{r}=1}^{\mathrm{n}} \frac{\mathrm{r}^{2}+\mathrm{r}}{2}$
$ \begin{aligned} & =\sum _{\mathrm{r}=1}^{\mathrm{n}}\left(\mathrm{r}^{2}-\frac{\mathrm{r}^{2}}{2}\right)-\sum _{\mathrm{r}=1}^{\mathrm{n}} \frac{\mathrm{r}}{2} \\ & =\frac{1}{2} \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}-\frac{1}{2} \sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}=\frac{1}{2}\left(\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{2}-\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}\right) \end{aligned} $
Practice questions
1. For a positive integer $n$ let
$\mathrm{a}(\mathrm{n})=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{\left(2^{\mathrm{n}}\right)-1}$ then
(a) $a(100) \leq 100$
(b) $ \mathrm{a}(100)>100$
(c) $ \mathrm{a}(200) \leq 100$
(d) $ \mathrm{a}(200)>100$
Show Answer
Answer: (a, d)2. $11^3-10^3+9^3-8^3+7^3-6^3+5^3-4^3+3^3-2^3+1^3=$
(a) 756
(b) 724
(c) 648
(d) 812
Show Answer
Answer: (a)3. If $a _{1}, a _{2}, \ldots \ldots \ldots . . a _{n+1}$ are in A.P with common difference d, then $\sum _{r=1}^{n} \tan ^{-1} \frac{d}{1+a _{r} a _{r+1}}$
(a) $\tan ^{-1} \frac{n d}{1+a _{1} a _{n+1}}$
(b) $\tan ^{-1} \frac{(n+1) d}{1+a _{1} a _{n+1}}$
(c) $\tan ^{-1} \frac{(\mathrm{n}-1) \mathrm{d}}{1-\mathrm{a} _{1} \mathrm{a} _{\mathrm{n}+1}}$
(d) $\tan ^{-1} \frac{(n-1) d}{1-a _{1} a _{n+1}}$
Show Answer
Answer: (a)4. The sum to 50 terms of
$\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+……….$ is
(a) $\frac{50}{17}$
(b) $\frac{100}{17}$
(c) $\frac{150}{17}$
(d) $\frac{200}{17}$
Show Answer
Answer: (b)5. The sum of the first 10 common terms of the series $17, 21, 25,………$ and $16,21,25, ……..$ is
(a) 1100
(b) 1010
(c) 1110
(d) 1200
Show Answer
Answer: (c)6. Match the following:
Column I | Column II |
---|---|
(a) $1^{2}-2^{2}+3^{2}……….$ to 21 terms | (p) 680 |
(b) $1^{3}-2^{3}+3^{3}-4^{3}+………$ to 15 terms | (q) 2556 |
(c) $1^{2}+3^{2}+5^{2}+……..$ to 8 terms | (r) 1856 |
(d) $1^{3}+3^{3}+5^{3}+……..$ to 6 terms | (s) 231 |
Show Answer
Answer: a$\rarr$ s, b $\rarr$ r, c$\rarr$ p, d$\rarr$ q7. The sum of the series $\sum _{\mathrm{r}=1}^{\infty} \operatorname{cosec}^{-1} \sqrt{4 \mathrm{r}^{4}+1}$ is
(a) $\pi$
(b) $\pi / 2$
(c) $\pi / 4$
(d) None of these
Show Answer
Answer: (c)8. Let $\sum _{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{4}=f(\mathrm{n})$, then $\sum _{\mathrm{r}=1}^{\mathrm{n}}(2 \mathrm{r}-1)^{4}$ is equal to
(a) $f(2 \mathrm{n})-16 f(\mathrm{n}), \forall \mathrm{n} \in \mathrm{N}$
(b) $ f(\mathrm{n})-16 f\left(\frac{\mathrm{n}-1}{2}\right)$ when $\mathrm{n}$ is odd
(c) $ f(\mathrm{n})-16 f\left(\frac{\mathrm{n}}{2}\right)$ when $\mathrm{n}$ is odd
(d) None of these
Show Answer
Answer: (a)9. Match the following:-
Column I | Column II |
---|---|
(a) If $\sum \mathrm{n}=210$, then $\sum \mathrm{n}^{2}$ is divisible by the greatest prime number which is greater than | (p) 16 |
(b) Between 4 & 2916 is inserted odd number $(2 n+1)$ G.M’S. Then the $(\mathrm{n}+1)^{\mathrm{th}}$ G.M. is divisible by greatest odd integer which is less than | (q) 10 |
(c) In a certain progression, three consecutive terms are $40,30,24,20$. Then the integral part of the next term of the progression is more then | (r) 34 |
(d) $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots$ to $\infty=\frac{\mathrm{a}}{\mathrm{b}}$, where $\operatorname{HCF}(\mathrm{a}, \mathrm{b})=1$, then $\mathrm{a}-\mathrm{b}$ is less then | (s) 30 |
Show Answer
Answer: a $\rarr$ p, q, r, s; b $\rarr$ r, s; c $\rarr$ p, q; d $\rarr$ r, s10. If $S=\frac{1}{3^{2}+1}+\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\ldots \ldots \ldots \ldots \infty$ then the value of $\left[\frac{1}{S}\right]$ is$……..$
Show Answer
Answer: 211. The value of the ratio $\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots \ldots . ..\right) \left\lvert,\left(1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots \ldots \ldots \ldots . ..\right)\right.$ is$………$
Show Answer
Answer: 212. $\lim _{\mathrm{n} \rightarrow \infty} \sum _{\mathrm{r}=1}^{\mathrm{n}} \frac{\mathrm{r}}{1.3 .5 .7 .9 \ldots \ldots \ldots \ldots \ldots \ldots . .(2 \mathrm{r}+1)}$ is equal to
(a) $\frac{1}{3}$
(b) $\frac{3}{2}$
(c) $\frac{1}{2}$
(d) None of these
Show Answer
Answer: (c)13. If $\left(1^{2}-\mathrm{t} _{1}\right)+\left(2^{2}-\mathrm{t} _{2}\right)+\ldots \ldots \ldots \ldots+\left(\mathrm{n}^{2}-\mathrm{t} _{\mathrm{n}}\right)=\frac{\mathrm{n}}{3}\left(\mathrm{n}^{2}-1\right)$, then $\mathrm{t} _{\mathrm{n}}$ is equal to
(a) $\mathrm{n}^{2}$
(b) $2 \mathrm{n}$
(c) $\mathrm{n}^{2}-2 \mathrm{n}$
(d) None of these
Show Answer
Answer: (d)14. If $(1+3+5+……$ $+\mathrm{p})+(1+3+5+…..$ $+q)=(1+3+5+…….$ $+r$ ) where each set of parantheses contains the sum of consecutive odd integers as shown, the smallest possible value of $\mathrm{p}+\mathrm{q}+\mathrm{r}($ where $\mathrm{p}>6)$ is$……..$
(a) 12
(b) 21
(c) 45
(d) 54