PARABOLA-7

Conormal points:

Let P(h,k) be a point and equation of parabola be y2=4ax.

Equation of normal is

y=mx2amam3

If passes through (h,k) so

k=mh2amam3am3+2ammh+k=0am3+m(2ah)+k=0

Suppose m1, m2, m3 are the roots of this equation

m1+m2+m3=0

m1 m2+m2 m3+m3 m1=2aham1m2m3=ka

So maximum three normal say PM, PN, PQ drawn through P. Points M, N, Q are called co-normal points.

  • The algebraic sum of ordinates of the conormal points is zero. Let the coordinates of conormal points be M(am12,2am1),N(am22,2am2) and Q(am32,2am3). The ordinates of these points y1+y2+y3=2am12am22am3 =2a(m1+m2+m3) =0 y1+y2+y3=0

  • Centroid of the triangle formed by conormal points lies on the axis of parabola. Let coordinates of conormal points be M(x2,y1),N(x2,y2)Q(x3,y3) Then centroid is (x1+x2+x33,y1+y2+y33)=(x1+x2+x33,0) Since sum of ordinates is zero. Therefore centroid lies on the axis of parabola.

  • Normal drawn from a point P(h,k) to the parabola are real and distinct if h>2a.

m12+m22+m32>0(m1+m2+m3)22( m1 m2+m2 m3+m1 m3)>002(2ah)a>02ah<0h>2a

This shows that position of point

(h,k) should be in shaded region.

  • Equation of a circle passing through the conormal points

Let M(am12,2am1),N(am22,2am2) and Q(am32,2am3) be three points on the parabola y2=4ax.

These three normals passes through point p(h,k)

am3+(2ah)m+k=0(1)

m1+m2+m3=0m1m2+m2m3+m1m3=2aham1m2m3=ka

Let equation of circle be x2+y2+2gx+2fy+c=0

If the point (am2,2am) lies on the circle then

(am2)2+(2am)2+2 g(am2)+2f(2am)+c=0

a2 m4+4a2 m2+2gam24afm+c=0

a2m4+(4a2m2+2ga)m24afm+c=0(2)

This equation has four roots say m1, m2, m3, m4 such

that the circle passes through the points M(am12,2am1)

N(am22,2am2),Q(am32,2am3) and S(am42,2am4)

m1+m2+m3+m4=0 (From equation (2)) 0+m4=0 (Since m1+m2+m3=0)m4=0

Therefore circle passes through origin.

c=0

Now equation (2) is

a2m4+(4a2+2ga)m24afm=0(÷am)am3+(4a+2g)m4f=0

Now this equation is identical with equation (1)

aa=2ah4a+2g=k4f2g=(2a+h),2f=k2

Equation of circle is

x2+y2(2a+h)xk2y=0



Table of Contents