PARABOLA-5

Examples

1. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible value of the slope of this chord, are

(a). $ \{-1,1\}$

(b). $\{-2,2\}$

(c). $ -2, \frac{1}{2}$

(d). $2,-\frac{1}{2}$

Show Answer

Solution: The focus of parabola is $(4,0)$. Let slope of focal chord be $m$. Equation of focal chord is $y=m(x-4)$. It is tangent to the circle then

$ \begin{aligned} & \left|\frac{6 m-4 m}{\sqrt{m^{2}+1}}\right|=\sqrt{2} \\ & 4 m^{2}=2\left(m^{2}+1\right) \\ & 2 m^{2}=2 \\ & m= \pm 1 \end{aligned} $

Answer: a

2. The curve represented by $\sqrt{\mathrm{ax}}+\sqrt{\mathrm{by}}=1$, where $\mathrm{a}, \mathrm{b}>0$ is

(a). a circle

(b). a parabola

(c). an ellipse

(d). a hyperbola

$\sqrt{\mathrm{ax}}=1-\sqrt{\mathrm{by}}$

Show Answer

Solution: $\mathrm{ax}=1+\mathrm{by}-2 \sqrt{\mathrm{by}}$

$ \begin{aligned} & (a x-b y-1)^{2}=(-2 \sqrt{b y})^{2} \\ & a^{2} x^{2}+b^{2} y^{2}+1-2 a b x y-2 a x+2 b y=4 b y \\ & a^{2} x^{2}-2 a b x y+b^{2} y^{2}-2 a x-2 b y+1=0 \\ & \begin{array}{rlr} \Delta=\left|\begin{array}{ccc} a^{2} & -a b & -a \\ -a b & b^{2} & -b \\ -a & -b & 1 \end{array}\right| \\ & =a^{2}\left(b^{2}-b^{2}\right)+a b(-a b-a b)-a\left(a b^{2}+a b^{2}\right) \\ & =0-2 a^{2} b^{2}-2 a^{2} b^{2} \\ & =-4 a^{2} b^{2} \neq 0 \end{array} \\ & h^{2}-a b=(-a b)^{2}-\left(a^{2}\right)\left(b^{2}\right)=0 \\ & \therefore \text { It is a parabola } \end{aligned} $

Answer: b

3. The equation of the directrix of the parabola $y^{2}+4 x+4 y+2=0$ is

(a). $\mathrm{x}=-1$

(b). $ \mathrm{x}=1$

(c). $x=\frac{-3}{2}$

(d). $ x=\frac{3}{2}$

Show Answer

Solution: $\mathrm{y}^{2}+4 \mathrm{y}=-4 \mathrm{x}-2$

$(y+2)^{2}=-4 x-\frac{1}{2}$

$y^{2}=-4 A X$

Equation of directrix is $\mathrm{X}=$ Ai.e. $\mathrm{x}-\frac{1}{2}=1$

$2 \mathrm{x}-3=0$ or $\mathrm{x}=\frac{3}{2}$

Answer: d

4. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix

(a). $y=0$

(b). $\mathrm{x}=-\mathrm{a}$

(c). $ \mathrm{x}=0$

(d). none of these

Show Answer

Solution: Let $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ lies on the parabola

$\mathrm{y}^{2}=4 \mathrm{ax}$

Mid point of PS is Q.

$\mathrm{h}=\frac{\mathrm{at}{ }^{2}+\mathrm{a}}{2}, \mathrm{k}=\frac{0+2 \mathrm{at}}{2}$

$\frac{2 \mathrm{~h}-\mathrm{a}}{\mathrm{a}}=\mathrm{t}^{2}, \frac{\mathrm{k}}{\mathrm{a}}=\mathrm{t}$

$\frac{2 \mathrm{~h}-\mathrm{a}}{\mathrm{a}}=\frac{\mathrm{k}}{\mathrm{a}}^{2}$

$\mathrm{a}(2 \mathrm{~h}-\mathrm{a})=\mathrm{k}^{2}$

Locus of $(h, k)$ is $ y^{2}=2 a x-\frac{a}{2}$

Equaiton of directrix is $x-\frac{a}{2}=-\frac{a}{2}$

$ x=0 $

Answer: c

5. The angle between the tangents drawn from the point $(1,4)$ to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ is

(a). $\frac{\pi}{6}$

(b). $\frac{\pi}{4}$

(c). $\frac{\pi}{3}$

(d). $\frac{\pi}{2}$

Show Answer

Solution: Equation of tangent of the parabola $y^{2}=4 x$ is

$ \mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}} $

This equation passes through $(1,4)$ i.e.

$4=\mathrm{m}+\frac{1}{\mathrm{~m}}$

$ m^{2}-4 m+1=0 $

$\mathrm{m} _{1} \cdot \mathrm{m} _{2}=1$ and $\mathrm{m} _{1}+\mathrm{m} _{2}=4$

Angle between the two tangents is $\tan \theta=\left|\frac{\mathrm{m} _{1}-\mathrm{m} _{2}}{1+\mathrm{m} _{1} \mathrm{~m} _{2}}\right|$

$\tan \theta=\left|\frac{\sqrt{(4)^{2}-4}}{1+1}\right|=\frac{\sqrt{12}}{2}=\sqrt{3}$

$\therefore \theta=\frac{\pi}{3}$

Answer: c

6. Tangent to the curve $y=x^{2}+6$ at a point $(1,7)$ touches the circle $x^{2}+y^{2}+16 x+12 y+c$ $=0$ at a point $\mathrm{Q}$ then coordinates of $\mathrm{Q}$ are

(a). $(-6,-11)$

(b). $(-9,-13)$

(c). $(-10,-15)$

(d). $(-6,-7)$

Show Answer

Solution: Equation of tangent at $(1,7)$ to the curve $y=x^{2}+6$ is

$\frac{\mathrm{y}+7}{2}=\mathrm{x}+6$

$2 \mathrm{x}-\mathrm{y}+5=0$

This line also touches the circle i.e.

Equation of normal of circle passing through

centre $(-8,-6)$.

$\mathrm{x}+2 \mathrm{y}+\lambda=0$

$-8-12+\lambda=0$

$\lambda=20$

$\therefore \mathrm{x}+2 \mathrm{y}+20=0$

$\mathrm{Q}$ is intersection point of (1) and (2)

$\mathrm{x}=-6$,

$y=-7$

$\mathrm{Q}(-6,-7)$

Answer: d

7. Consider the two curves $c _{1}: y^{2}=4 x, c _{2}: x^{2}+y^{2}-6 x+1=0$. Then

(a). $ \mathrm{c} _{1}$ and $\mathrm{c} _{2}$ touch each other only at one point.

(b). $ \mathrm{c} _{1}$ and $\mathrm{c} _{2}$ touch each other only at two points.

(c). $ \mathrm{c} _{1}$ and $\mathrm{c} _{2}$ intersect (but do not touch) at exactly two points.

(d). $ c _{1}$ and $c _{2}$ neither intersect nor touch each other.

Show Answer

Solution: Let eq $\mathrm{q}^{\mathrm{n}}$ of tangent of parabola be $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$ is also a tangent to the circle then $\left|\frac{3 m+\frac{1}{m}}{\sqrt{1+m^{2}}}\right|=2 \sqrt{2}$ $\frac{\left(3 m^{2}+1\right)^{2}}{m^{2}}=8\left(1+m^{2}\right)$

$\mathrm{m}^{4}-2 \mathrm{~m}^{2}+1=0$

$\mathrm{m}^{2}=1 \mathrm{~m}= \pm 1 $ Two common tangents are possible.

8. If $b, c$ are intercepts of a focal chord of the parabola $y^{2}=4 a x$ then $c$ is equal to

(a). $\frac{\mathrm{b}}{\mathrm{b}-\mathrm{a}}$

(b). $\frac{\mathrm{a}}{\mathrm{b}-\mathrm{a}}$

(c). $\frac{a b}{a-b}$

(d). $\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}$

Show Answer

Solution: We know that $2 \mathrm{a}=\frac{2 \mathrm{xSAxSB}}{\mathrm{SA}+\mathrm{SB}}$

$2 a=\frac{2 b c}{b+c} \Rightarrow \begin{aligned} a b & =b c-a c \\ a b & =(b-o) c\end{aligned}$

$\mathrm{ab}+\mathrm{ac}=\mathrm{bc}$

$\frac{a b}{b-a}=c$

Answer: d

9. The circle $x^{2}+y^{2}-2 x-6 y+2=0$ intersects the parabola $y^{2}=8 x$ orthogonally at the point $\mathrm{P}$. The equation of the tangent to the parabola at $\mathrm{P}$ can be

(a). $2 x-y+1=0$

(b). $ 2 x+y-2=0$

(c). $ x+y-4=0$

(d). $x-y-4=0$

Show Answer

Solution: Let $y=m x+\frac{2}{m}$ be tangent to $y^{2}=8 x$. Since circle intersects the parabola orthogonally. So this tangent is the normal for the circle. Every normal of the circle passes through its centre. So centre $(1,3)$.

$ \begin{aligned} & 3=m+\frac{2}{m} m^{2}-3 m+2=0 \\ & (m-2)(m-1)=0 \\ & m=1,2 \\ & y=x+2 \text { or } y=2 x+1 \\ \end{aligned} $

Answer: a



Table of Contents