PARABOLA-2 (Parabola)

A parabola is the locus of a point, whose distance from a fixed point is equal to the perpendicular distance from a fixed straight line.

Let $\mathrm{S}$ be the focus, $\mathrm{ZZ}^{\prime}$ be the directrix.

Consider $\mathrm{S}(\mathrm{a}, 0)$ and equation of $\mathrm{ZZ}^{\prime}$ is $\mathrm{x}+\mathrm{a}=0$.

Axis of parabola is $\mathrm{x}$-axis.

Now according to definition.

$\mathrm{PS}=\mathrm{PM}$

$ \begin{aligned} & \sqrt{(x-a)^{2}+y^{2}}=\left|\frac{x+a}{\sqrt{1}}\right| \\ & (x-a)^{2}+y^{2}=(x+a)^{2} \\ & y^{2}=4 a x \end{aligned} $

Vertex $(0,0)$

Tangent of latus rectum $\mathrm{x}=0$

Extremities of latus rectum (a, 2a), (a, $-2 \mathrm{a})$

Length of latus rectum. $=4 \mathrm{a}$

Focal distance (SP) $\quad \mathrm{SP}=\mathrm{PM}=\mathrm{x}+\mathrm{a}$

Parametric form $x=a t^{2}, y=2 a t, t$ is parameter.

Focal distance - the distance of a point on the parabola from the focus.

Focal chord - A chord of the parabola, which passes through the focus.

Double ordinate - A chord of the parabola perpendicular to the axis of the parabol(a).

Latus Rectum-A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabol(a).

  • Perpendicular distance from focus on directrix = half the latus rectum.
  • Vertex is middle point of the focus and the point of intersection of directrix and axis.
  • Two parabolas are said to be equal if they have the same latus rectum.

Other Standard Forms of Parabola:

Equation of curve: $y^{2}=-4 a x$ $\mathrm{x}^{2}=4 \mathrm{ay}$ $\mathrm{x}^{2}=-4 \mathrm{ay}$
Vertex $(0,0)$ $(0,0)$ $(0,0)$
Focus $(-a, 0)$ $(0, a)$ $(0,-a)$
Directrix $x-a=0$ $y+a=0$ $y-a=0$
Equation of axis $y=0$ $x=0$ $x=0$
Tangent of vertex $x=0$ $y=0$ $y=0$
Parametric form $\left(-a t^{2}, 2 a t\right)$ $\left(2 a t, a t^{2}\right)$ $\left(2 a t,-a t^{2}\right)$

Position of a point with respet to Parabola

Equation of Parabola when vertex is shifte(d).

I. Axis is Parallel to $\mathrm{x}$-axis:

Let vertex $A$ be $(p, q)$ then equation of parabola be $(y-q)^{2}=4 a(x-p)$.

II. Axis is parallel to y-axis:

Let vertex $A$ be $(p, q)$ then equation of parabola is $(x-p)^{2}=4 a(y-q)$

Example: 1 The equation of parabola is $y=a x^{2}+b x+c$, find its vertex, focus, directrix,

Show Answer

Solution:

Equation of a is, length of latus rectum.

$ \begin{aligned} & y=a \quad x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+c \\ & y-c=a \quad x+\frac{b}{2 a}^{2}-\frac{b^{2}}{4 a^{2}} \end{aligned} $

$ x+\frac{b}{2 a}^{2}=\frac{1}{a} y+\frac{b^{2}}{4 a}-c $

$X^{2}=4 A Y$ where $X=x+\frac{b}{2 a}, Y=y+\frac{b^{2}-4 a c}{4 a}, 4 A=\frac{1}{a}$

Vertex : $X=0, Y=0$ i.e. $-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}$

Focus: $\mathrm{X}=0, \mathrm{Y}=$ A i.e. $\quad-\frac{\mathrm{b}}{2 \mathrm{a}}, \frac{1+4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}$

Equation of directrix: $y+\frac{b^{2}-4 a c+1}{4 a}=0$

Equation of axis: $x+\frac{b}{2 a}=0$

Length of latus rectum $=\frac{1}{\mathrm{a}}$

Example: 2 The equation of parabola is $\mathrm{y}^{2}=\mathrm{ax}+\mathrm{ay}$. Find its vertex, focus, directrix, axis and length of latus rectum.

Show Answer

Solution:

$y^{2}-a y=a x$

$y^{2}-a y+\frac{a^{2}}{4}=a x+\frac{a^{2}}{4}$

$y-\frac{a}{2}^{2}=a x+\frac{a}{4}$

$\mathrm{Y}^{2}=4 \mathrm{AX}$

Where: $Y=y-\frac{a}{2}, X=x+\frac{a}{4}, 4 A=a$ ie. $A=\frac{a}{4}$

Vertex $-\frac{\mathrm{a}}{4}, \frac{\mathrm{a}}{2}$

Focus $0, \frac{\mathrm{a}}{2}$

Directrix $x+\frac{a}{2}=0$

Axis $y-\frac{a}{2}=0$

Length of latus rectum $=\mathrm{a}$

Practice questions

1. The equation of parabola whose focus is at $(-1,-2)$ and directrix is $x-2 y+3=0$ is

(a). $4 x^{2}-y^{2}-4 x y+4 x-32 y-16=0$

(b). $x^{2}+4 y^{2}+4 x y+x+6 y+16=0$

(c). $4 x^{2}+y^{2}+4 x y+4 x+32 y+16=0$

(d). $4 x^{2}+y^{2}-4 x y+4 x-32 y-1=0$

Show Answer Answer: (c)

2. The equation of parabola whose vertex is at $(4,-1)$ and focus is $(4,-3)$ is

(a). $y^{2}-8 x+8 y+24=0$

(b). $x^{2}-8 x+8 y+24=0$

(c). $y^{2}-8 x-8 y+24=0$

(d). $x^{2}+8 x-8 y-24=0$

Show Answer Answer: (b)

3. The focal distance of a point on the parabola $y^{2}=8 x$ is 8 , then coordinates of the point (s) is/are

(a). $(4 \sqrt{3}, 6)$

(b). $(6,4 \sqrt{3})$

(c). $(4 \sqrt{3},-6)$

(d). $(6,-4 \sqrt{3})$

Show Answer Answer: (b, d)

4. The equation of the parabola whose focus is $(0,0)$ and tangent at the vertex is $x-y+1=0$ is

(a). $x^{2}+y^{2}+2 x y-4 x+4 y-4=0$

(b). $x^{2}+y^{2}+4 x y+4 x+4 y+4=0$

(c). $x^{2}+y^{2}-4 x y+4 x+4 y-4=0$

(d). $x^{2}+y^{2}-4 x y-4 x-4 y-4=0$

Show Answer Answer: (a)


Table of Contents