HYPERBOLA-3 (Equation of Hyperbola)

Equation of a Hyperbola referred to two perpendicular lines

Let equation of hyperbola be

x2a2y2 b2=1

From diagram PM=y and PN=x

PN2a2PM2 b2=1

ie. if perpendicular distance of a point P(x,y) from two mutually perpendicular lines say 1=a1x+b1y+c1=0 and 2=a2x+b2y+c2=0 then

(a1x+b1y+c1a12+b12)a2(a2x+b2y+c2a22+b22)b2=1

then the locus of point P denotes a hyperbola

  • centre of the hyperbola, we get after solving 1=0 and 2=0

  • Transverse axis : =0

  • Conjugate axis :1=0

  • Foci : The foci of the hyperbola is the point of intersection of the lines a1x+b1y+c1a12+b12=±ae and 2=0

  • Directrix: a1x+b1y+c1a12+b12=±ae

  • Length of transverse axis =2a

  • Length of conjugate axis =2b

  • Length of latus Rectum =2b2a

Examples

1. Find the eccentricity and centre of the hyperbola

(3x4y12)2100(4x+3y12)2225=1

Show Answer

Solution :

11=3x4y12,12=4x+3y12

a=10, b=15

e=1+225100=132

3x4y12=0

4x+3y12=0

x=8425,y=1225 Centre (8425,1225)

2. Find the eccentricity of the conic 4(2yx3)29(2x+y1)2=80

Show Answer

Solution :

4(2yx3)8029(2x+y1)280=8080(2yx3)220(2x+y1)280/9=1a2=20,b2=809e=1+b2a2=1+809x20=1+49=133

3. Find the coordinates of the centre, foci and vertices, length of axes and latus rectum, equation of axes and directries, and eccentricity of the conic 9x216y218x+32y151=0

Show Answer

Solution :

9x216y218x+32y151=09(x22x+11)16(y22y+11)151=09(x1)216(y1)2=144(x1)216(y1)29=1

Let x1=X,y1=Y,a=4, b=3

Centre : X=0,Y=0x=1, y=1 i.e. (1,1)

Eccentricity : e=1+916=54

Foci : X=± ae, Y=0x=1±5, y=1 i.e. (6,1) and (4,1)

Vertices : X=±a,Y=0x=1±4, y=1 i.e. (5,1) and (3,1)

Length of transverse axis =2a=8

Length of conjugate axis =2b=6

Length of latus rectums =2 b2a=92

Equation of transverse axis : Y=0y1=0

Equation of conjugate axis : X=0x1=0

Equation of directries X=±aex1=±165 i.e. 5x21=0 and 5x+11=0

4. The equation of the transverse and conjugate axes of a hyperbola are respectively 3x+4y7=0, 4x3y+8=0 and their respective lengths are 4 and 6 . The equation of the hyperbola is

(a). 17x2+312xy+108y2634x312y715=0

(b). 108x2+312xy+17y2312x634y715=0

(c). 108x2312xy+17y2312x634y715=0

(d). none of these

Show Answer

Solution :

The equations of hyperbola is

(3x+4y732+42)2(42)2(4x3y+842+32)2(62)2=1(3x+4y7)2100(4x3y+8)2225=19(9x2+16y2+49+24xy42x56y)4(16x2+9y2+6424xy+64x48y)=90017x2+312xy+108y2634x312y715=0

Answer: a

Line and Hyperbola

Let equation of line be y=mx+c and equation of hyperbola be x2a2y2b2=1

x2a2(mx+c)2b2=1x2a2m2x2b2c2b22mcb2x1=0x2(1a2m2b2)2mcb2x(c2+b2b2)=0x2(b2a2m2)2mcx(c2+b2)=0

D=4 m2c2+4(b2a2 m2a2)(c2+b2)=4( m2ϕ2+b2a2c2m2ϕ2+b4a2m2 b2)=4 b2(c2+b2a2 m2a2)

i. D<0 i.e. c2a2 m2+b2<0 line do not intersect hyperbola .

ii. D=0 i.e. c2a2 m2+b2=0 line touches the hyperbola .

iii. D>0 i.e. c2a2 m2+b2>0 line intersect hyperbola at two points.

Hence y=mx±a2m2b2 is a tangent to hyperbola .

Let this tangent passes through a point (h,k) then k=mh±a2 m2b2 (kmh)2=a2 m2b2

m2( h2a2)2mkh+k2+b2=0

Hence maximum two tangents can be drawn through a point P.

Now m1+m2=2khh2a2

m1m2=k2+b2 h2a2

If θ is the angle between the two tangents, then

tanθ=(m1m21+m1 m2)

tan2θ=(m1+m2)24m1m2(1+m1m2)2=(2khh2a2)24(k2+b2h2a2)(1+k2+b2h2a2)2

tan2θ=4k2 h24( h2a2)(k2+b2)(h2+k2a2+b2)2

tan2θ=4(a2 b2+a2k2h2 b2)(h2+k2a2+b2)2

If θ=90 then h2+k2a2+b2=0

i.e. h2+k2=a2b2

Locus of (h,k) is x2+y2=a2b2

Hence, Locus of point of intersection of two perpendicular tangents is known as Director Circle. Its equation is x2+y2=a2b2

If a=b, director circle is a point circle.

If a<b, no real director circle is possible.

For equation of hyperbola (xh)2a2(yh)2b2=1, equation of tangent in slope from is yk=m(xh) ±a2m2b2.

Practice questions

1. If the foci of the ellipse x2232+y2 b2=1 and the hyperbola x2144y281=1 coincide then b2=

(a). 3

(b). 5

(c). 7

(d). 9

Show Answer Answer: (c)

2. If PQ is a double ordinate of the hyperbola x2a2y2 b2=1 such that OPQ is an equilateral triangle, O being the centre of the hyperbola, the range of eccentricity is

(a). (0,23)

(b). (23,)

(c). (0,43)

(d). (43,)

Show Answer Answer: (b)

3. An ellipse and hyperbola are confocal and the conjugate axis of the hyperbola is equal to the minor axis of the ellipse. If e1 and e2 are the eccentricities of the ellipse and hyperbola then

(a). e12+e22=2

(b). e1+e2=2

(c). 1e1+1e2=2

(d). 1e12+1e22=2

Show Answer Answer: (d)

4. The centre of a hyperbola (3x+4y7)2100(4x3y+8)2225=1 is

(a). (1125,5225)

(b). (1125,5225)

(c). (0,0)

(d). (10,15)

Show Answer Answer: (a)

5. The equations of the transverse and conjugate axes of a hyperbola are x+2y3=0 and 2xy+4=0 respectively and their respective lengths are 2 and 23, equation of hyperbola is

(a). 2(2xy+4)23(x+2y3)2=1

(b). 2(x+2y3)23(2xy+4)2=1

(c). 2(2xy+4)23(x+2y3)2=5

(d). 2(x+2y3)23(2xy+4)2=5

Show Answer Answer: (c)

6. For all real values of m the straight line y=mx+9m24 is a tangent to the hyperbola

(a). 4x29y2=36

(b). 9x24y2=36

(c). x236y2=9

(d). 36x2y2=36

Show Answer Answer: (a)

7. The equation of tangents to the curve 4x29y2=1 which is parallel to 4y=5x+7 is

(a). 4y=5x30

(b). 4y=5x+24

(c). 24y30x=161

(d). 30x24y161=0

Show Answer Answer: (c)

8. If the line 5x+12y=9 touches the hyperbola x29y2=9 then point of contact is

(a). (5,4)

(b). (5,43)

(c). (5,43)

(d). (5,4)

Show Answer Answer: (b)

9. If y=mx+51 is a tangent to the hyperbola x2100y249=1, then m=

(a). 1

(b). 17

(c). 1

(d). 2

Show Answer Answer: (c)

10. The locus of the point of intersection of perpendicular tangents to x225y216=1 is:

(a). x2+y2=25

(b). x2+y2=16

(c). x2+y2=41

(d). x2+y2=9

Show Answer Answer: (d)