ELLIPSE-2
Examples
1. The equation $\frac{x^{2}}{10-a}+\frac{y^{2}}{4-a}=1$ represents an ellipse if
(a) $a<4$
(b) $a>4$
(c) $4<\mathrm{a}<10$
(d) $ \mathrm{a}>10$
Show Answer
Solution : Here equation of ellipse is
$\frac{\mathrm{x}^{2}}{10-\mathrm{a}}+\frac{\mathrm{y}^{2}}{4-\mathrm{a}}=1$
$\mathrm{a}^{2}=10-\mathrm{a}$ and $\mathrm{b}^{2}=4-\mathrm{a}$
$\therefore 10-\mathrm{a}>0$ and $4-\mathrm{a}>0$
$10>\mathrm{a}$ and $4>\mathrm{a}$
$\therefore \mathrm{a}<4$.
2. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre $(0,3)$ is
(a) 4
(b) 3
(c) $\sqrt{12}$
(d) $7 / 2$
Show Answer
Solution :
$ \begin{aligned} & \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \\ & a^{2}=16 b^{2}=9 \\ & a=4 \quad b=3 \quad a>b \\ & \therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}} \\ & =\sqrt{1-\frac{9}{16}} \\ & =\sqrt{\frac{7}{16}} \\ & =\frac{\sqrt{7}}{4} \end{aligned} $
Foci $=( \pm ae, 0) \therefore$ foci is $( \pm \sqrt{7}, 0)$
Radius of the circle through foci & centre $(0,3)$ is $\sqrt{(\sqrt{7})^{2}+3^{2}}=\sqrt{7+9}=\sqrt{16}=4$.
3. The equation of the ellipse whose focus is $(1,-1)$ directrix $x-y-3=0$ and eccentricity $\frac{1}{2}$ is
(a) $7 x^{2}+2 x y+7 y^{2}-10 x+10 y+7=0$
(c) $7 x^{2}+2 x y+7 y^{2}+10 x-10 y-7=0$
(b) $7 x^{2}+2 x y+7 y^{2}+7=0$
(d) None of these
Show Answer
Solution : Let $\mathrm{P}(\mathrm{x} y)$ be any point on the ellipse
Then by definition $\mathrm{SP}=\mathrm{ePM}$.
$\sqrt{(\mathrm{x}-1)^{2}+(\mathrm{y}+1)^{2}}=\frac{1}{2}\left|\frac{\mathrm{x}-\mathrm{y}-3}{\sqrt{2}}\right|$
$(x-1)^{2}+(y+1)^{2}=\frac{1}{8}\left(x^{2}+y^{2}+9-2 x y+6 y-6 x\right)$
$8 x^{2}-16 x+8+8 y^{2}+16 y+8=x^{2}+y^{2}-2 x y+6 y-6 x+9$
$7 x^{2}+7 y^{2}+2 x y-10 x+10 y+7=0$
4. The equation $(5 x-1)^{2}+(5 y-2)^{2}=\left(\lambda^{2}-2 \lambda+1\right)(3 x+4 y-1)^{2}$ represents an ellipse if $\lambda \in$.
(a) $(0,1)$
(b) $(0,2)-\{1\}$
(c) $(1,2)$
(d) $(-1,0)$
Show Answer
Solution :
$(5 x-1)^{2}+(5 y-2)^{2}=\left(\lambda^{2}-\lambda+1\right)(3 x+4 y-1)^{2}$
$25\left(\mathrm{x}-\frac{1}{5}\right)^{2}+25\left(\mathrm{y}-\frac{2}{5}\right)^{2}=(\lambda-1)^{2}(3 \mathrm{x}+4 \mathrm{y}-1)^{2}$
$\left(\mathrm{x}-\frac{1}{5}\right)^{2}+\left(\mathrm{y}-\frac{2}{5}\right)^{2}=(\lambda-1)^{2} \frac{(3 \mathrm{x}+4 \mathrm{y}-1)^{2}}{25}$
$\mathrm{Sp}^{2}=\mathrm{e}^{2}(\mathrm{PM})^{2}$
$\therefore \mathrm{e}=|\lambda-1|$
In ellipse $0<\mathrm{e}<1$
$ \begin{aligned} & \therefore 0<|\lambda-1|<1 \\ & 0<\lambda<2-\{1\} \\ & \therefore \lambda \in(0,2)-\{1\} \end{aligned} $
5. The eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose latus rectum is half of its major axis is
(a) $\frac{1}{\sqrt{2}}$
(b) $\sqrt{\frac{2}{3}}$
(c) $\frac{\sqrt{3}}{2}$
(d) None of these
Show Answer
Solution:
$ \begin{array}{ll} \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 \quad \mathrm{a}>\mathrm{b} \\ \text { major axis } & =2 \mathrm{a} \\ \text { latus rectum is } & =\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\mathrm{a} \end{array} $
$ \begin{aligned} & \text { According to question } ; \frac{2 b^{2}}{a}=a \\ & 2 b^{2}=a^{2} \\ & \text { eccentricity e }=\sqrt{1-\frac{b^{2}}{a^{2}}} \\ & =\sqrt{1-\frac{1}{2}} \\ & =\frac{1}{\sqrt{2}} \end{aligned} $
6. If $(5,12)$ and $(24,7)$ are the foci of an ellipse passing through the origin, then the eccentricity of the conic is
(a) $\frac{\sqrt{386}}{12}$
(b) $\frac{\sqrt{386}}{13}$
(c) $\frac{\sqrt{386}}{25}$
(d) $\frac{\sqrt{386}}{38}$
Show Answer
Solution :
$\mathrm{S}(5,12), \mathrm{S}^{\prime}(24,7)$
$ \begin{aligned} & \mathrm{SP}=\sqrt{5^{2}+12^{2}}=13 \\ & \begin{aligned} & \mathrm{S}^{\prime} \mathrm{P}=\sqrt{24^{2}+7^{2}}=25 \\ & \mathrm{~S}^{\prime}=2 \mathrm{ae}=\sqrt{19^{2}+5^{2}} \\ &=\sqrt{361+25} \\ &=\sqrt{386} \\ &=\frac{\sqrt{386}}{2} \\ & \mathrm{ae} \end{aligned} \\ & \begin{aligned} \mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P} & =2 \mathrm{a}=13+25 \\ 2 \mathrm{a} & =38 \\ \mathrm{a} & =19 \\ \mathrm{e} & =\frac{\mathrm{SS}^{\prime}}{\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}}=\frac{2 \mathrm{ae}}{2 \mathrm{a}} \\ & =\frac{\sqrt{386}}{38} \end{aligned} \end{aligned} $
7. Locus of the point which divides double ordinate of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the ratio 1:2 internally is
(a) $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
(b) $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{9 \mathrm{y}^{2}}{\mathrm{~b}^{2}}=\frac{1}{9}$
(c) $\frac{9 x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
(d) None of these.
Show Answer
Solution :
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point divides double ordinate in the ratio $1: 2$ internally
Let coordinates of ends of double ordinate $\left(h, y _{1}\right)$ and $\left(h,-y _{1}\right)$.
$\therefore$ By section formula $\mathrm{k}=\frac{-\mathrm{y} _{1}+2 \mathrm{y} _{1}}{3}=\frac{\mathrm{y} _{1}}{3}$
$ \mathrm{y} _{1}=3 \mathrm{k} $
Now the point $\left(\mathrm{h}, \mathrm{y} _{1}\right)=(\mathrm{h}, 3 \mathrm{k})$ lies on the ellipse
$\therefore \frac{\mathrm{h}^{2}}{\mathrm{a}^{2}}+\frac{9 \mathrm{k}^{2}}{\mathrm{~b}^{2}}=1$ or $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{9 \mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 \quad(\because(\mathrm{h}, \mathrm{k})$ are arbitrary $)$
8. If $\mathrm{C}$ is the centre of the ellipse $9 \mathrm{x}^{2}+16 \mathrm{y}^{2}=144$ and $\mathrm{S}$ is one focus. The ratio of $\mathrm{CS}$ to semi major axis is
(a) $\sqrt{7}: 16$
(b) $\sqrt{7}: 4$
(c) $\sqrt{5}: \sqrt{7}$
(d) None of these
Show Answer
Solution : Here equation of ellipse is
$9 x^{2}+16 y^{2}=144$
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
$16>9 \therefore a>b$
$\mathrm{e}=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}$
$=\sqrt{1-\frac{9}{16}}$
$=\sqrt{\frac{7}{16}}$
$\mathrm{e}=\frac{\sqrt{7}}{4}$
Foci is $( \pm \mathrm{ae}, 0)=( \pm \sqrt{7}, 0)$
Semi major axis is $=\frac{2 \mathrm{a}}{2}=\mathrm{a}=4$
$\mathrm{CS}=\sqrt{7}$ and semi major axis is 4.
$\therefore$ Required ratio is $\sqrt{7}: 4$.
Practice questions
1. The equation of the circle drawn with the two foci of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as the end points of a diameter is
(a) $x^{2}+y^{2}=a^{2}+b^{2}$
(b) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$
(c) $x^{2}+y^{2}=2 a^{2}$
(d) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$
Show Answer
Answer: (d)2. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$ and having its centre $(0,3)$ is
(a) $3 \sqrt{2}$
(b) $3$
(c) $\sqrt{12}$
(d) $\frac{7}{2}$
Show Answer
Answer: (a)3. $ \frac{\mathrm{x}^{2}}{\mathrm{r}^{2}-\mathrm{r}-6}+\frac{\mathrm{y}^{2}}{\mathrm{r}^{2}-6 \mathrm{r}+5}=1$ will represents the ellipse, if $\mathrm{r}$ lies in the interval
(a) $(-\infty, 2)$
(b) $(3, \infty)$
(c) $(5, \infty)$
(d) $(1, \infty)$
Show Answer
Answer: (c)4. The semi latus rectum of an ellipse is
(a) The AM of the segments of its focal chord.
(b) The GM of the segments of its focal chord
(c) The HM of the segments of its focal chord
(d) None of these
Show Answer
Answer: (c)5. The following equation represents an ellipse $25\left(x^{2}-6 x+9\right)+16 y^{2}=400$. How should the axes be transformed so that the ellipse is represented by the equation $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$______
Show Answer
Answer: (3, 0)6. Let $\mathrm{P}$ be a variable point on the ellipse $\frac{\mathrm{x}^{2}}{16}+\frac{\mathrm{y}^{2}}{25}=1$ with foci $\mathrm{S} _{1}$ and $\mathrm{S} _{2}$. It $\mathrm{A}$ be area of the triangle $\mathrm{PS} _{1} \mathrm{~S} _{2}$ then the maximum value of $\mathrm{A}$ is ________
Show Answer
Answer: (12)7. In an ellipse, if the lines joining a focus to the extremities of the minor axis make an equilateral triangle with the minor axis, the eccentricity of the ellipse is
(a) $3 / 4$
(b) $\sqrt{3} / 2$
(c) $1 / 2$
(d) $2 / 3$
Show Answer
Answer: (b)8. Column Matching:
For the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{4}=1$
Column I | Column II | ||
---|---|---|---|
1. | $\mathrm{x}=0$ | a. | a directrix |
2. | $\mathrm{y}=0$ | b. | a latus rectum |
3. | $\mathrm{x}=1$ | c. | minor axis |
4. | $\mathrm{x}=5$ | d. | major axis |
Show Answer
Answer: 1 $\rarr$ c; 2 $\rarr$ d; 3 $\rarr$ b; 4 $\rarr$ a9. The centre of the ellipse $14 x^{2}-4 x y+11 y^{2}-44 x-58 y+71=0$ is$……..$