COORDINATE GEOMETRY - 4 (Straight Line)
Topics Covered
1. General Equation of straight line
2. Reducing general equations to
i. Slope intercept form
ii. Intercept form
iii. Normal form
1. General Equation of straight line
First degree equation of the form $a x+b y+c=0$ where $a, b, c \in R$ and $b$ can be zerobut not both at the same time.
2. Reducing general equation to
i. Slope intercept form
Given equation is $a x+b y+c=0$
Rewrite the equation by $=-\mathrm{ax}-\mathrm{c}$
divide by $\mathrm{b}$ we get $-\frac{\mathrm{a}}{\mathrm{b}} \mathrm{x}-\frac{\mathrm{c}}{\mathrm{b}}$
It look like $y=m x+c$
slope $=\frac{-a}{b}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } y}=m$
$\mathrm{y}$ - intereept $=\frac{-\mathrm{c}}{\mathrm{b}}=-\frac{\text { Constant }}{\text { Coefficient of } \mathrm{y}}$
ii. Reducing to intercept form
Given equation is $a x+b y+c=0$
Rewrite the equation $a x+b y=-c$
$ \begin{aligned} & \frac{x}{-c / a}+\frac{y}{-c / b}=1 \\ & \frac{x}{a}+\frac{y}{b}=1 \end{aligned} $
So intercepts are -c/a & -c/b on x-axis and y-axis respectively.
iii. Reduce to normal form
Given equation be
Re write the equation
$ \begin{aligned} & a x+b y+c=0 \\ & a x+b y=-c \\ & -a x-b y=c \end{aligned} $
Keeping constant term postive
Divide by $\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$ we get $-\frac{a}{\sqrt{a^{2}+b^{2}}} x-\frac{b}{\sqrt{a^{2}+b^{2}}} y=\frac{c}{\sqrt{a^{2}+b^{2}}}$
It look like $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$
Where $\cos \alpha=\frac{-\ {a}}{\sqrt{\ {a}^{2}+\ {b}^{2}}}, \sin \alpha=\frac{-\ {b}}{\sqrt{\ {a}^{2}+\ {b}^{2}}}$ (or) $\tan \alpha=\frac{\ {b}}{\ {a}}$
distance of a line from the origin is always positive
$\therefore \frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}=\mathrm{p}$ is positive.
Practice questions
1. A triangle $\mathrm {ABC}$ with vertices $\mathrm{A}(-1,0), \mathrm{B}\left(-2, \frac{3}{4}\right) \& \mathrm{C}\left(-3,-\frac{7}{6}\right)$ has its orthocenter $\mathrm{H}$. Then the orthocentre of triangle $\mathrm{BCH}$ will be
(a) $(-1,0)$
(b) $(-3,-2)$
(c) $(1,3)$
(d) $(-1,2)$
Show Answer
Answer: (a)2. The points $\mathrm{A}(0,0), \mathrm{B}(\cos \alpha, \sin \alpha)$ and $\mathrm{C}(\cos \beta, \sin \beta)$ are the vertices of a right angled triangle if
(a) $ \sin \left(\frac{\alpha+\beta}{2}\right)=\frac{1}{\sqrt{2}}$
(b) $ \cos \left(\frac{\alpha+\beta}{2}\right)=\frac{1}{\sqrt{2}}$
(c) $ \cos \left(\frac{\alpha-\beta}{2}\right)=\frac{1}{\sqrt{2}}$
(d) $ \sin \left(\frac{\alpha+\beta}{2}\right)=-\frac{1}{\sqrt{2}}$
Show Answer
Answer: (c)3. Set of values of $\alpha$ for which the point $\left(\alpha, \alpha^{2}-2\right)$ lies inside the triangle formed by the lines $\mathrm{x}+\mathrm{y}=$ $1, \mathrm{y}=\mathrm{x}+1$ and $\mathrm{y}=-1$ is
(a) $\left(\frac{1-\sqrt{13}}{2},-1\right) \mathrm{U}\left(1, \frac{-1+\sqrt{13}}{2}\right)$
(b) $(1, \sqrt{13})$
(c) $(-\sqrt{13},-1)$
(d) None
Show Answer
Answer: (a)4. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x+1$ and $y=n x$ equals
(a) $\frac{|\mathrm{m}+\mathrm{n}|}{(\mathrm{m}-\mathrm{n})^{2}}$
(b) $\frac{2}{|m+n|}$
(c) $\frac{1}{|m+n|}$
(d) $\frac{1}{|m-n|}$
Show Answer
Answer: (d)5. $\mathrm{A}$ and $\mathrm{B}$ are fixed points. The vertex $\mathrm{C}$ of $\triangle \mathrm{ABC}$ moves such that $\cot \mathrm{A}+\cot \mathrm{B}=\operatorname{constant}$. The locus of $C$ is a straight line
(a) perpendicular to $\mathrm{AB}$
(b) parallel to $\mathrm{AB}$
(c) inclined at an angle (A-B) to AB
(d) None of these.
Show Answer
Answer: (b)6. The area of the figure formed by a|x $|+b| y \mid+c=0$ is
(a) $\frac{c^{2}}{|a b|}$
(b) $\frac{2 \mathrm{c}^{2}}{|\mathrm{ab}|}$
(c) $\frac{c^{2}}{2|a b|}$
(d) None of these
Show Answer
Answer: (b)7. The orthocentre, circumcentre, centroid and incentre of the triangle formed by the line $\mathrm{x}+\mathrm{y}=\mathrm{a}$ with the coordinate axes lie on
(a) $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
(b) $y=x$
(c) $y=2 x$
(d) $y=3 x$
Show Answer
Answer: (b)8. Two points $(a, 3)$ and $(5, b)$ are the opposite vertices of a rectangle. If the other two vertices lie on the line $y=2 x+c$ which passes through the point $(a, b)$ then the value of $c$ is
(a) $-7$
(b) $-4$
(c) $0$
(d) $7$