COMPLEX NUMBERS AND QUADRATIC EQUATIONS - 4 (Quadratic Equations)
Problem solving skills.
-
If one root of $a x^{2}+b x+c=0$ is $n$ times the other, then $(n+1)^{2} a c=n b^{2}$
-
If one root of $a x^{2}+b x+c=0$ is square of the other, then $\left(a^{2} c\right)^{1 / 3}+\left(a c^{2}\right)^{1 / 3}+b=0$
-
If $\alpha, \beta$ are roots of $a x^{2}+b x+c=0$ then
$\quad$ (i) $-\alpha,-\beta$ are roots of $\mathrm{ax}^{2}-\mathrm{bx}+\mathrm{c}=0$
$\quad$ (ii) $\frac{1}{\alpha}, \frac{1}{\beta}$ are roots of $\mathrm{cx}^{2}+\mathrm{bx}+\mathrm{a}=0 ; \mathrm{ac} \neq 0$
$\quad$ (iii) $\mathrm{k} \alpha, \mathrm{k} \beta$ are roots of $\mathrm{ax}^{2}+\mathrm{kbx}+\mathrm{k}^{2} \mathrm{c}=0$
$\quad$ (iv) $\alpha^{2}, \beta^{2}$ are roots of $a^{2} x^{2}-\left(b^{2}-2 a c\right) x+c^{2}=0$
- If the sum of the coefficient of $f(\mathrm{x})=0$ is 0 , then 1 is always a root of $f(\mathrm{x})=0$. Also $\mathrm{x}-1$ is a facter of $f(\mathrm{x})$.
In particular, for $a x^{2}+b x+c=0$ if
$a+b+c=0$, then 1 is always a root and the other $\operatorname{root}=\frac{c}{a}\left(\because\right.$ product of roots $\left.=\frac{c}{a}\right)$.
- $f(\mathrm{x})=\left(\mathrm{x}-\mathrm{a} _{1}\right)^{2}+\left(\mathrm{x}-\mathrm{a} _{2}\right)^{2}+\ldots \ldots \ldots \ldots \ldots \ldots . .+\left(\mathrm{x}-\mathrm{a} _{\mathrm{n}}\right)^{2}$, where $\mathrm{a} _{\mathrm{i}} \in \mathrm{R} \forall \mathrm{i}$.
$f(x)$ assumes its least value when $x=\frac{a _{1}+a _{2}+\ldots \ldots+a _{n}}{n}$
- While solving an equation, if you have to square, then additional roots will occur as the degree of the equation will change. In such cases, you have to check whether the roots satisfy the original equation or not.
Solved examples
1. If $\alpha, \beta$ are roots of the equation $\mathrm{x}^{2}-2 \mathrm{x}+3=0$
Then the equation whose roots are
$\alpha^{3}-3 \alpha^{2}+5 \alpha-2$ and $\beta^{3}-\beta^{2}+\beta+5$ is
(a) $x^{2}+3 x+2=0$
(b) $x^{2}-3 x-2=0$
(c) $x^{2}-3 x+2=0$
(d) None
Show Answer
Solutions :
$\alpha^{2}-2 \alpha+3=0$ and $\beta^{2}-2 \beta+3=0$
$\therefore \alpha^{3}=2 \alpha^{2}-3 \alpha$ and $\beta^{3}=2 \beta^{2}-3 \beta$
$\therefore \mathrm{P}=\alpha^{3}-3 \alpha^{2}+5 \alpha-2=2 \alpha^{2}-3 \alpha-3 \alpha^{2}+5 \alpha-2=-\alpha^{2}+2 \alpha-2$
$=3-2=1$
Similarly, we can show that $\mathrm{Q}=\beta^{3}-\beta^{2}+\beta+5=2$
$\therefore$ Sum $=1+2=3$ and product $=1 \times 2=2$
Hence $\mathrm{x}^{2}-3 \mathrm{x}+2=0$
Answer: (c)
2. If $\alpha, \beta$ are roots of the equatio $\mathrm{x}^{2}+\mathrm{px}-\frac{1}{2 \mathrm{p}^{2}}=0, \forall \mathrm{p} \in \mathrm{R}-\{0\}$, then the minimum value of $\alpha^{4}+\beta^{4}$ is
(a) $2 \sqrt{2}$
(b) $2-\sqrt{2}$
(c) $2$
(d) $2+\sqrt{2}$
Show Answer
Solutions :
$\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}=\left((\alpha+\beta)^{2}-2 \alpha \beta\right)^{2}-2(\alpha \beta)^{2}$
$=\left(\mathrm{p}^{2}+\frac{1}{\mathrm{p}^{2}}\right)^{2}-\frac{1}{2 \mathrm{p}^{4}}=\mathrm{p}^{4}+\frac{1}{2 \mathrm{p}^{4}}+2$
$=\left(\mathrm{p}^{2}-\frac{1}{\sqrt{2} \mathrm{p}^{2}}\right)^{2}+2+\sqrt{2}$
$\therefore$ Min value is $2+\sqrt{2}$.
Answer: (d)
3. Let $\mathrm{p}(\mathrm{x})$ be a polynomial of least possible degree with rational coefficients, having $7^{\frac{1}{3}}+49^{\frac{1}{3}}$ as one of its roots, then the product of all roots of $p(x)=0$ is
(a) 56
(b) 63
(c) 7
(d) 49
Show Answer
Solutions :
Let $\mathrm{x}=7^{\frac{1}{3}}+49^{\frac{1}{3}}$
Cubing $x^{3}=\left(7^{\frac{1}{3}}\right)^{3}+\left(49^{\frac{1}{3}}\right)^{3}+3.7^{\frac{1}{3}} \cdot 49^{\frac{1}{3}}\left(7^{\frac{1}{3}}+49^{\frac{1}{3}}\right)$
$\Rightarrow \mathrm{x}^{3}=7+49+3.7 \cdot\left(7^{\frac{1}{3}}+49^{\frac{2}{3}}\right)$
$\Rightarrow \mathrm{x}^{3}=56+21 \mathrm{x}$
$\Rightarrow \mathrm{x}^{3}+0 \mathrm{x}^{2}-21 \mathrm{x}-56=0$
$\therefore$ Product of roots is 56
Answer: (a)
4. If $\alpha, \beta, \gamma, \delta$ are roots of $x^{4}+4 x^{3}-6 x^{2}+7 x-9=0$, then the value of $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$ is
(a) 9
(b) 11
(c) 13
(d) 5
Show Answer
Solution :
$\begin{aligned} & x^4+4 x^3-6 x^2+7 x-9=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) \\ & \text { Put } x=i, i^4+4 i^3-6 i^2+7 i-9=(i-\alpha)(i-\beta)(i-\gamma)(i-\delta) \\ & \Rightarrow-2+3 i=(i-\alpha)(i-\beta)(i-\gamma)(i-\delta)\ldots \ldots \ldots……………(1)\\ &\text {Put} \mathrm{x}=-\mathrm{i}-2-3 \mathrm{i}=(-\mathrm{i}-\alpha)(-\mathrm{i}-\beta)(-\mathrm{i}-\gamma)(-\mathrm{i}-\delta) …….(2)\end{aligned}$
Multiply (1) & (2)
$4-9 \mathrm{i}^{2}=\left(\alpha^{2}-\mathrm{i}^{2}\right)\left(\beta^{2}-\mathrm{i}^{2}\right)\left(\gamma^{2}-\mathrm{i}^{2}\right)\left(\delta^{2}-\mathrm{i}^{2}\right)$
$\Rightarrow 13=\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$
Answer: (c)
5. If $\alpha, \beta, \gamma$, are roots of $8 x^{3}+1001 x+2008=0$, then the value of $(\alpha+\beta)^{3}+(\beta+\gamma)^{3}+(\gamma+\alpha)^{3}$ is
(a) 251
(b) 751
(c) 735
(d) 753
Show Answer
Solution :
$\alpha+\beta+\gamma=0$
$\therefore(\alpha+\beta)^{3}+(\beta+\alpha)^{3}+(\gamma+\alpha)^{3}=(-\gamma)^{3}+(-\alpha)^{3}+(-\beta)^{3}$
$=-3 \alpha \beta \gamma=-3\left(\frac{-2008}{8}\right)=753$
Answer: (d)
6. Total number of integral values of ’ $n$ ’ so that the equation $x^{2}+2 x-n=0(n \in N)$ and $n \in[5,100]$ has integral roots is
(a) 2
(b) 4
(c) 6
(d) 8 and $\mathrm{n} \in[5,100]$
Show Answer
Solution :
$\mathrm{x}^{2}+2 \mathrm{x}-\mathrm{n}=0$
$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+1=\mathrm{n}+1$
$\Rightarrow(\mathrm{x}+1)^{2}=\mathrm{n}+1$
$\mathrm{x}+1= \pm \sqrt{\mathrm{n}+1} \Rightarrow \mathrm{n}+1$ should be perfect square
$\mathrm{n} \in[5,100]$
$\therefore \mathrm{n}+1 \in[6,101]$
Perfect squares in the given interval are
$9,16,25,36,49,64,81,100$
8 values $\therefore$
Answer: (d)
7. If the equation $p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ has equal roots, then $\frac{2}{\mathrm{q}}$ is equal to
(a) $\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{r}}$
(b) $\mathrm{p}+\mathrm{r}$
(c) $\frac{1}{\mathrm{p}}+\mathrm{r}$
(d) $\mathrm{p}+\frac{1}{\mathrm{r}}$
Show Answer
Solution :
Clearly $x=1$ is one root and the other root is $\frac{r(p-q)}{p(q-r)} \because$ roots are equal, we have
$ \begin{aligned} & \frac{r(p-q)}{p(q-r)}=1 \quad\left(\because \text { Product of roots }=\frac{r(p-q)}{p(q-r)}\right) \\ & \Rightarrow \quad \begin{array}{l} r p-r q=p q-r q \\ 2r p=p q+r q \end{array} \end{aligned} $
$\Rightarrow \quad \frac{2}{\mathrm{q}}=\frac{1}{\mathrm{p}}+\frac{2}{\mathrm{r}}$
Answer: (a)
Practice questions
1. The largest interval for which $\mathrm{x}^{12}-\mathrm{x}^{9}+\mathrm{x}^{4}-\mathrm{x}+1>0$ is
(a) $-4<x \leq 0$
(b) $0<x<1$
(c) $-100<\mathrm{x}<100$
(d) $-\infty<\mathrm{x}<\infty$
Show Answer
Answer: (d)2. Read the following passage and answer the questions.
If a continuous function $f$ defined on the real line $\mathrm{R}$, assumes positive and negative values in $\mathrm{R}$, then the equation $f(\mathrm{x})=0$ has a root in $\mathrm{R}$, for example, if it is known that a continous function $f$ on $\mathrm{R}$ is positive at some point and its minimum value is negative, then the equations $f(x)=0$ has a root in $\mathrm{R}$. Consider $f(\mathrm{x})=\mathrm{ke}^{\mathrm{x}}-\mathrm{x}, \forall \mathrm{x} \in \mathrm{R}$ where $\mathrm{k} \in \mathrm{R}$ is a constant.
(i) The line $\mathrm{y}=\mathrm{x}$ meets $\mathrm{y}=\mathrm{ke}^{\mathrm{x}}$ for $\mathrm{k} \leq 0$ at
(a) no point
(b) one point
(c) two point
(d) more than two points
Show Answer
Answer: (b)(ii) The value of $k$ for which $\mathrm{ke}^{\mathrm{x}}-\mathrm{x}=0$ has only one root is
(a) $\frac{1}{\mathrm{e}}$
(b) $e$
(c) $\log _{\mathrm{e}} 2$
(d) $1$
Show Answer
Answer: (a)(iii) For $\mathrm{k}>0$, the set of all values of $\mathrm{k}$ for which $\mathrm{ke}^{\mathrm{x}-\mathrm{x}}=0$ has two distinct roots is
(a) $\left(0, \frac{1}{\mathrm{e}}\right)$
(b) $\left(\frac{1}{\mathrm{e}}, 1\right)$
(c) $\left(\frac{1}{\mathrm{e}}, \infty\right)$
(d) $(0, 1)$
Show Answer
Answer: (a)3. If $\frac{\sqrt{26-15 \sqrt{3}}}{5 \sqrt{2}-\sqrt{(38+5 \sqrt{3})}}=\mathrm{a}^{2}$, then $\mathrm{a}$ is
(a) $\frac{1}{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\sqrt{3}$
(d) None of these
Show Answer
Answer: (d)4. Solution of $2 \log _{x} a+\log _{a x} a+3 \log _{b} a=0$, where $a>0, b=a^{2} x$ is
(a) $\mathrm{a}^{-1 / 2}$
(b) $\mathrm{a}^{-4 / 3}$
(c) $\mathrm{a}^{1 / 2}$
(d) None of these
Show Answer
Answer: (a, b)5. Solution of the system of equations
$x+\frac{3 x-y}{x^{2}+y^{2}}=3, \quad y-\frac{x+3 y}{x^{2}+y^{2}}=0$ is $……….$or $……..$
Show Answer
Answer: $(2, 1), (+1, -1)$6. The number of ordered 4-tuple $(x, y, z, w)$ where $x, y, z, w \in[1,10]$, which satisfies the inequality $2^{\sin ^{2} x} 3^{\cos ^{2} y} 4^{\sin ^{2} z} 5^{\cos ^{2} w} \geq 120$ is
(a) 0
(b) 144
(c) 81
(d) infinite.
Show Answer
Answer: (c)7. The number of solutions of the following inequality
$2^{\frac{1}{\sin ^{2} x _{2}}} \cdot 3^{\frac{1}{\sin ^{2} x _{3}}} \cdot 4^{\frac{1}{\sin ^{2} x _{4}} \cdot \ldots \ldots \ldots . . .} n^{\frac{1}{\sin ^{2} x _{n}}} \leq n$ ! where
$\mathrm{x} _{\mathrm{i}} \in(0,2 \pi)$ for $\mathrm{i}=1,2,3 \ldots \ldots \ldots \ldots \ldots . \mathrm{n}$ is
(a) $1$
(b) $2^{\mathrm{n}-1}$
(c) $\mathrm{n}^{\mathrm{n}}$
(d) infinite
Show Answer
Answer: (b)8. The number of solutions of $|[x]-2 x|=4$ is
(a) infinite
(b) 4
(c) 3
(d) 2
Show Answer
Answer: (b)9. How many roots does the equation $3^{|x|}|2-| x||=1$ possess?
(a) 1
(b) 2
(c) 3
(d) 4
Show Answer
Answer: (d)10. Let $S$ be the set of values of ’ $a$ ’ for which 2 lie between the roots of the quadratic equation $x^{2}+(a+2) x-$ $(a+3)=0$, then $S$ is gives by
(a) $(-\infty,-5)$
(b) $(5, \infty)$
(c) $(-\infty,-5]$
(d) $[5, \infty)$
Show Answer
Answer: (a)11. Match the following
For what values of $m$, the equation $2 x^{2}-2(m+1) x+m(m+1)=0$ has $(m \in R)$
ColumnI | Columan II |
---|---|
(a) both roots are smaller than 2 | (p) $\{0,3\}$ |
(b) both roots are grater than 2 | (q) $(0,3)$ |
(c) both roots lie in the interval $(2,3)$ | (r) $(-\infty, 0) \cup(3, \infty)$ |
(d) exactly one root lie in the interval $(2, 3)$ | (s) $\phi$ |
(e) one root is smaller than 1 , the other root is greater than 1 | (t) $\left\{\frac{81+\sqrt{6625}}{32}, \frac{81-\sqrt{6625}}{32}\right\}$ |
(f) both $2 \& 3$ lie between the roots | (u) $(-\infty,-1) \cup[3, \infty)$ |
Show Answer
Answer: a $\rarr$ q; b $\rarr$ p; c $\rarr$ r; d $\rarr$ v; e $\rarr$ s; f $\rarr$ t12 The real roots of the equation
$ \sqrt{x+2 \sqrt{x+2 \sqrt{x+\ldots \ldots .+2 \sqrt{x+2 \sqrt{3 x}}}}}=x \text { is } $
(n radical signs)
(a) 0
(b) 3
(c) 1
(d) None of these
Show Answer
Answer: (a, b)13. Solution of the equation $1+3^{x / 2}=2^{x}$ is……
Show Answer
Answer: 214. The number of real solutions of the system of equations
$\mathrm{x}=\frac{2 \mathrm{z}^{2}}{1+\mathrm{z}^{2}}$, $\quad$ $y=\frac{2 x^{2}}{1+x^{2}}$, $\quad$ $\mathrm{z}=\frac{2 \mathrm{y}^{2}}{1+\mathrm{y}^{2}}$ is
(a) 1
(b) 2
(c) 3
(d) 4
Show Answer
Answer: (a)15. If $a, b, c>0, a^2=b c$ and $a+b+c=a b c$, then the least value of $a^4+a^2+7$ must be equal to
(a) 19
(b) 20
(c) 21
(d) 18