COMPLEX NUMBERS AND QUADRATIC EQUATIONS - 4 (Quadratic Equations)

Problem solving skills.

  • If one root of $a x^{2}+b x+c=0$ is $n$ times the other, then $(n+1)^{2} a c=n b^{2}$

  • If one root of $a x^{2}+b x+c=0$ is square of the other, then $\left(a^{2} c\right)^{1 / 3}+\left(a c^{2}\right)^{1 / 3}+b=0$

  • If $\alpha, \beta$ are roots of $a x^{2}+b x+c=0$ then

$\quad$ (i) $-\alpha,-\beta$ are roots of $\mathrm{ax}^{2}-\mathrm{bx}+\mathrm{c}=0$

$\quad$ (ii) $\frac{1}{\alpha}, \frac{1}{\beta}$ are roots of $\mathrm{cx}^{2}+\mathrm{bx}+\mathrm{a}=0 ; \mathrm{ac} \neq 0$

$\quad$ (iii) $\mathrm{k} \alpha, \mathrm{k} \beta$ are roots of $\mathrm{ax}^{2}+\mathrm{kbx}+\mathrm{k}^{2} \mathrm{c}=0$

$\quad$ (iv) $\alpha^{2}, \beta^{2}$ are roots of $a^{2} x^{2}-\left(b^{2}-2 a c\right) x+c^{2}=0$

  • If the sum of the coefficient of $f(\mathrm{x})=0$ is 0 , then 1 is always a root of $f(\mathrm{x})=0$. Also $\mathrm{x}-1$ is a facter of $f(\mathrm{x})$.

In particular, for $a x^{2}+b x+c=0$ if

$a+b+c=0$, then 1 is always a root and the other $\operatorname{root}=\frac{c}{a}\left(\because\right.$ product of roots $\left.=\frac{c}{a}\right)$.

  • $f(\mathrm{x})=\left(\mathrm{x}-\mathrm{a} _{1}\right)^{2}+\left(\mathrm{x}-\mathrm{a} _{2}\right)^{2}+\ldots \ldots \ldots \ldots \ldots \ldots . .+\left(\mathrm{x}-\mathrm{a} _{\mathrm{n}}\right)^{2}$, where $\mathrm{a} _{\mathrm{i}} \in \mathrm{R} \forall \mathrm{i}$.

$f(x)$ assumes its least value when $x=\frac{a _{1}+a _{2}+\ldots \ldots+a _{n}}{n}$

  • While solving an equation, if you have to square, then additional roots will occur as the degree of the equation will change. In such cases, you have to check whether the roots satisfy the original equation or not.

Solved examples

1. If $\alpha, \beta$ are roots of the equation $\mathrm{x}^{2}-2 \mathrm{x}+3=0$

Then the equation whose roots are

$\alpha^{3}-3 \alpha^{2}+5 \alpha-2$ and $\beta^{3}-\beta^{2}+\beta+5$ is

(a) $x^{2}+3 x+2=0$

(b) $x^{2}-3 x-2=0$

(c) $x^{2}-3 x+2=0$

(d) None

Show Answer

Solutions :

$\alpha^{2}-2 \alpha+3=0$ and $\beta^{2}-2 \beta+3=0$

$\therefore \alpha^{3}=2 \alpha^{2}-3 \alpha$ and $\beta^{3}=2 \beta^{2}-3 \beta$

$\therefore \mathrm{P}=\alpha^{3}-3 \alpha^{2}+5 \alpha-2=2 \alpha^{2}-3 \alpha-3 \alpha^{2}+5 \alpha-2=-\alpha^{2}+2 \alpha-2$

$=3-2=1$

Similarly, we can show that $\mathrm{Q}=\beta^{3}-\beta^{2}+\beta+5=2$

$\therefore$ Sum $=1+2=3$ and product $=1 \times 2=2$

Hence $\mathrm{x}^{2}-3 \mathrm{x}+2=0$

Answer: (c)

2. If $\alpha, \beta$ are roots of the equatio $\mathrm{x}^{2}+\mathrm{px}-\frac{1}{2 \mathrm{p}^{2}}=0, \forall \mathrm{p} \in \mathrm{R}-\{0\}$, then the minimum value of $\alpha^{4}+\beta^{4}$ is

(a) $2 \sqrt{2}$

(b) $2-\sqrt{2}$

(c) $2$

(d) $2+\sqrt{2}$

Show Answer

Solutions :

$\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}=\left((\alpha+\beta)^{2}-2 \alpha \beta\right)^{2}-2(\alpha \beta)^{2}$

$=\left(\mathrm{p}^{2}+\frac{1}{\mathrm{p}^{2}}\right)^{2}-\frac{1}{2 \mathrm{p}^{4}}=\mathrm{p}^{4}+\frac{1}{2 \mathrm{p}^{4}}+2$

$=\left(\mathrm{p}^{2}-\frac{1}{\sqrt{2} \mathrm{p}^{2}}\right)^{2}+2+\sqrt{2}$

$\therefore$ Min value is $2+\sqrt{2}$.

Answer: (d)

3. Let $\mathrm{p}(\mathrm{x})$ be a polynomial of least possible degree with rational coefficients, having $7^{\frac{1}{3}}+49^{\frac{1}{3}}$ as one of its roots, then the product of all roots of $p(x)=0$ is

(a) 56

(b) 63

(c) 7

(d) 49

Show Answer

Solutions :

Let $\mathrm{x}=7^{\frac{1}{3}}+49^{\frac{1}{3}}$

Cubing $x^{3}=\left(7^{\frac{1}{3}}\right)^{3}+\left(49^{\frac{1}{3}}\right)^{3}+3.7^{\frac{1}{3}} \cdot 49^{\frac{1}{3}}\left(7^{\frac{1}{3}}+49^{\frac{1}{3}}\right)$

$\Rightarrow \mathrm{x}^{3}=7+49+3.7 \cdot\left(7^{\frac{1}{3}}+49^{\frac{2}{3}}\right)$

$\Rightarrow \mathrm{x}^{3}=56+21 \mathrm{x}$

$\Rightarrow \mathrm{x}^{3}+0 \mathrm{x}^{2}-21 \mathrm{x}-56=0$

$\therefore$ Product of roots is 56

Answer: (a)

4. If $\alpha, \beta, \gamma, \delta$ are roots of $x^{4}+4 x^{3}-6 x^{2}+7 x-9=0$, then the value of $\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$ is

(a) 9

(b) 11

(c) 13

(d) 5

Show Answer

Solution :

$\begin{aligned} & x^4+4 x^3-6 x^2+7 x-9=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) \\ & \text { Put } x=i, i^4+4 i^3-6 i^2+7 i-9=(i-\alpha)(i-\beta)(i-\gamma)(i-\delta) \\ & \Rightarrow-2+3 i=(i-\alpha)(i-\beta)(i-\gamma)(i-\delta)\ldots \ldots \ldots……………(1)\\ &\text {Put} \mathrm{x}=-\mathrm{i}-2-3 \mathrm{i}=(-\mathrm{i}-\alpha)(-\mathrm{i}-\beta)(-\mathrm{i}-\gamma)(-\mathrm{i}-\delta) …….(2)\end{aligned}$

Multiply (1) & (2)

$4-9 \mathrm{i}^{2}=\left(\alpha^{2}-\mathrm{i}^{2}\right)\left(\beta^{2}-\mathrm{i}^{2}\right)\left(\gamma^{2}-\mathrm{i}^{2}\right)\left(\delta^{2}-\mathrm{i}^{2}\right)$

$\Rightarrow 13=\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\gamma^{2}\right)\left(1+\delta^{2}\right)$

Answer: (c)

5. If $\alpha, \beta, \gamma$, are roots of $8 x^{3}+1001 x+2008=0$, then the value of $(\alpha+\beta)^{3}+(\beta+\gamma)^{3}+(\gamma+\alpha)^{3}$ is

(a) 251

(b) 751

(c) 735

(d) 753

Show Answer

Solution :

$\alpha+\beta+\gamma=0$

$\therefore(\alpha+\beta)^{3}+(\beta+\alpha)^{3}+(\gamma+\alpha)^{3}=(-\gamma)^{3}+(-\alpha)^{3}+(-\beta)^{3}$

$=-3 \alpha \beta \gamma=-3\left(\frac{-2008}{8}\right)=753$

Answer: (d)

6. Total number of integral values of ’ $n$ ’ so that the equation $x^{2}+2 x-n=0(n \in N)$ and $n \in[5,100]$ has integral roots is

(a) 2

(b) 4

(c) 6

(d) 8 and $\mathrm{n} \in[5,100]$

Show Answer

Solution :

$\mathrm{x}^{2}+2 \mathrm{x}-\mathrm{n}=0$

$\Rightarrow \mathrm{x}^{2}+2 \mathrm{x}+1=\mathrm{n}+1$

$\Rightarrow(\mathrm{x}+1)^{2}=\mathrm{n}+1$

$\mathrm{x}+1= \pm \sqrt{\mathrm{n}+1} \Rightarrow \mathrm{n}+1$ should be perfect square

$\mathrm{n} \in[5,100]$

$\therefore \mathrm{n}+1 \in[6,101]$

Perfect squares in the given interval are

$9,16,25,36,49,64,81,100$

8 values $\therefore$

Answer: (d)

7. If the equation $p(q-r) x^{2}+q(r-p) x+r(p-q)=0$ has equal roots, then $\frac{2}{\mathrm{q}}$ is equal to

(a) $\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{r}}$

(b) $\mathrm{p}+\mathrm{r}$

(c) $\frac{1}{\mathrm{p}}+\mathrm{r}$

(d) $\mathrm{p}+\frac{1}{\mathrm{r}}$

Show Answer

Solution :

Clearly $x=1$ is one root and the other root is $\frac{r(p-q)}{p(q-r)} \because$ roots are equal, we have

$ \begin{aligned} & \frac{r(p-q)}{p(q-r)}=1 \quad\left(\because \text { Product of roots }=\frac{r(p-q)}{p(q-r)}\right) \\ & \Rightarrow \quad \begin{array}{l} r p-r q=p q-r q \\ 2r p=p q+r q \end{array} \end{aligned} $

$\Rightarrow \quad \frac{2}{\mathrm{q}}=\frac{1}{\mathrm{p}}+\frac{2}{\mathrm{r}}$

Answer: (a)

Practice questions

1. The largest interval for which $\mathrm{x}^{12}-\mathrm{x}^{9}+\mathrm{x}^{4}-\mathrm{x}+1>0$ is

(a) $-4<x \leq 0$

(b) $0<x<1$

(c) $-100<\mathrm{x}<100$

(d) $-\infty<\mathrm{x}<\infty$

Show Answer Answer: (d)

2. Read the following passage and answer the questions.

If a continuous function $f$ defined on the real line $\mathrm{R}$, assumes positive and negative values in $\mathrm{R}$, then the equation $f(\mathrm{x})=0$ has a root in $\mathrm{R}$, for example, if it is known that a continous function $f$ on $\mathrm{R}$ is positive at some point and its minimum value is negative, then the equations $f(x)=0$ has a root in $\mathrm{R}$. Consider $f(\mathrm{x})=\mathrm{ke}^{\mathrm{x}}-\mathrm{x}, \forall \mathrm{x} \in \mathrm{R}$ where $\mathrm{k} \in \mathrm{R}$ is a constant.

(i) The line $\mathrm{y}=\mathrm{x}$ meets $\mathrm{y}=\mathrm{ke}^{\mathrm{x}}$ for $\mathrm{k} \leq 0$ at

(a) no point

(b) one point

(c) two point

(d) more than two points

Show Answer Answer: (b)

(ii) The value of $k$ for which $\mathrm{ke}^{\mathrm{x}}-\mathrm{x}=0$ has only one root is

(a) $\frac{1}{\mathrm{e}}$

(b) $e$

(c) $\log _{\mathrm{e}} 2$

(d) $1$

Show Answer Answer: (a)

(iii) For $\mathrm{k}>0$, the set of all values of $\mathrm{k}$ for which $\mathrm{ke}^{\mathrm{x}-\mathrm{x}}=0$ has two distinct roots is

(a) $\left(0, \frac{1}{\mathrm{e}}\right)$

(b) $\left(\frac{1}{\mathrm{e}}, 1\right)$

(c) $\left(\frac{1}{\mathrm{e}}, \infty\right)$

(d) $(0, 1)$

Show Answer Answer: (a)

3. If $\frac{\sqrt{26-15 \sqrt{3}}}{5 \sqrt{2}-\sqrt{(38+5 \sqrt{3})}}=\mathrm{a}^{2}$, then $\mathrm{a}$ is

(a) $\frac{1}{3}$

(b) $\frac{1}{\sqrt{3}}$

(c) $\sqrt{3}$

(d) None of these

Show Answer Answer: (d)

4. Solution of $2 \log _{x} a+\log _{a x} a+3 \log _{b} a=0$, where $a>0, b=a^{2} x$ is

(a) $\mathrm{a}^{-1 / 2}$

(b) $\mathrm{a}^{-4 / 3}$

(c) $\mathrm{a}^{1 / 2}$

(d) None of these

Show Answer Answer: (a, b)

5. Solution of the system of equations

$x+\frac{3 x-y}{x^{2}+y^{2}}=3, \quad y-\frac{x+3 y}{x^{2}+y^{2}}=0$ is $……….$or $……..$

Show Answer Answer: $(2, 1), (+1, -1)$

6. The number of ordered 4-tuple $(x, y, z, w)$ where $x, y, z, w \in[1,10]$, which satisfies the inequality $2^{\sin ^{2} x} 3^{\cos ^{2} y} 4^{\sin ^{2} z} 5^{\cos ^{2} w} \geq 120$ is

(a) 0

(b) 144

(c) 81

(d) infinite.

Show Answer Answer: (c)

7. The number of solutions of the following inequality

$2^{\frac{1}{\sin ^{2} x _{2}}} \cdot 3^{\frac{1}{\sin ^{2} x _{3}}} \cdot 4^{\frac{1}{\sin ^{2} x _{4}} \cdot \ldots \ldots \ldots . . .} n^{\frac{1}{\sin ^{2} x _{n}}} \leq n$ ! where

$\mathrm{x} _{\mathrm{i}} \in(0,2 \pi)$ for $\mathrm{i}=1,2,3 \ldots \ldots \ldots \ldots \ldots . \mathrm{n}$ is

(a) $1$

(b) $2^{\mathrm{n}-1}$

(c) $\mathrm{n}^{\mathrm{n}}$

(d) infinite

Show Answer Answer: (b)

8. The number of solutions of $|[x]-2 x|=4$ is

(a) infinite

(b) 4

(c) 3

(d) 2

Show Answer Answer: (b)

9. How many roots does the equation $3^{|x|}|2-| x||=1$ possess?

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer Answer: (d)

10. Let $S$ be the set of values of ’ $a$ ’ for which 2 lie between the roots of the quadratic equation $x^{2}+(a+2) x-$ $(a+3)=0$, then $S$ is gives by

(a) $(-\infty,-5)$

(b) $(5, \infty)$

(c) $(-\infty,-5]$

(d) $[5, \infty)$

Show Answer Answer: (a)

11. Match the following

For what values of $m$, the equation $2 x^{2}-2(m+1) x+m(m+1)=0$ has $(m \in R)$

ColumnI Columan II
(a) both roots are smaller than 2 (p) $\{0,3\}$
(b) both roots are grater than 2 (q) $(0,3)$
(c) both roots lie in the interval $(2,3)$ (r) $(-\infty, 0) \cup(3, \infty)$
(d) exactly one root lie in the interval $(2, 3)$ (s) $\phi$
(e) one root is smaller than 1 , the other root is greater than 1 (t) $\left\{\frac{81+\sqrt{6625}}{32}, \frac{81-\sqrt{6625}}{32}\right\}$
(f) both $2 \& 3$ lie between the roots (u) $(-\infty,-1) \cup[3, \infty)$
Show Answer Answer: a $\rarr$ q; b $\rarr$ p; c $\rarr$ r; d $\rarr$ v; e $\rarr$ s; f $\rarr$ t

12 The real roots of the equation

$ \sqrt{x+2 \sqrt{x+2 \sqrt{x+\ldots \ldots .+2 \sqrt{x+2 \sqrt{3 x}}}}}=x \text { is } $

(n radical signs)

(a) 0

(b) 3

(c) 1

(d) None of these

Show Answer Answer: (a, b)

13. Solution of the equation $1+3^{x / 2}=2^{x}$ is……

Show Answer Answer: 2

14. The number of real solutions of the system of equations

$\mathrm{x}=\frac{2 \mathrm{z}^{2}}{1+\mathrm{z}^{2}}$, $\quad$ $y=\frac{2 x^{2}}{1+x^{2}}$, $\quad$ $\mathrm{z}=\frac{2 \mathrm{y}^{2}}{1+\mathrm{y}^{2}}$ is

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer Answer: (a)

15. If $a, b, c>0, a^2=b c$ and $a+b+c=a b c$, then the least value of $a^4+a^2+7$ must be equal to

(a) 19

(b) 20

(c) 21

(d) 18



Table of Contents