CIRCLE-9 (Co - Axial System of Circles)

Co - Axial System of Circles

A system of circles or family of circles, every pair of which have the same radical axis are called co-axial circles

1. The equation of family of co-axial circles when the equation of radical axis and one circle are given

$\mathrm{L}=\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

$\mathrm{S} \equiv \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$

Then equation of co-axial circle is $\mathrm{S}+\lambda \mathrm{L}=0$

2. The equation of co-axial system of a circles where the equation of any two circles of the system are

$\mathrm{S} _{1}=\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$

$\mathrm{S} _{2}=\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{~g} _{1} \mathrm{x}+2 \mathrm{f} _{1} \mathrm{y}+\mathrm{c} _{1}=0$

respectively is $\mathrm{S} _{1}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0$

and $\mathrm{S} _{2}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0(\lambda \neq-1)$

$S _{1}+\lambda S _{2}=0(\lambda \neq-1)$

3. The equation of a system of co-axial circles in the simplest form is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+\mathrm{c}=0$ where $\mathrm{g}$ is variable and $\mathrm{c}$ is a constant

The common radical axis is the $\mathrm{y}$-axis (centre on $\mathrm{x}$-axis)

The equation of system of co-axial circles in the simplest form is $x^{2}+y^{2}+2 f y+c=0$ where $f$ is a variable and $\mathrm{c}$ is a constant

The common radical axis is the $\mathrm{x}$-axis (centre on $\mathrm{y}$ axis)

Examples

1. Find the equation of the system of circles co-axial with the circles $x^{2}+y^{2}+4 x+2 y+1=0$ and $x^{2}+y^{2}-$ $2 x+6 y-6=0$. Also find the equation of that particular circles whose centre lies on radical axis.

Show Answer

Solution:

Given circles are

$ \begin{aligned} & S _{1} \equiv x^{2}+y^{2}+4 x+2 y+1=0 \\ & S _{2} \equiv x^{2}+y^{2}-2 x+6 y-6=0 \\ & S _{1}-S _{2}=0 \\ & 6 x-4 y+7=0 \end{aligned} $

System of co-axial circle is $\mathrm{S} _{1}+\lambda\left(\mathrm{S} _{1}-\mathrm{S} _{2}\right)=0$

$ \begin{aligned} & x^{2}+y^{2}+4 x+2 y+1+\lambda(6 x-4 y+7)=0 \\ & x^{2}+y^{2}+2 x(2+3 \lambda)+2 y(1-2 \lambda)+1+7 \lambda=0 \end{aligned} $

Centre of this circle is $(-(2+3 \lambda),-(1-2 \lambda))$

lies on radical axis

$ \begin{aligned} & \therefore 6(-2-3 \lambda)+4(1-2 \lambda)+7=0 \\ & -12-18 \lambda+4-8 \lambda+7=0 \\ & -1-26 \lambda=0 \\ & \lambda=\frac{-1}{26} \end{aligned} $

$\therefore$ Required particular member of co-axial circle is $26\left(x^{2}+y^{2}\right)+98 x+56 y+19=0$

2. If the circumference of the circle $x^{2}+y^{2}+8 x+8 y-b=0$ is bisected by the circle

$x^{2}+y^{2}-2 x+4 y+a=0$ then $a+b$ equal to

(a) $50$

(b) $56$

(c) $-56$

(d) $-34$

Show Answer

Solution: (c)

Equation of radical axis (common chord of these circles) is $10 x+4 y-b-a=0$

Centre of first circle is $(-4,-4)$

Since second circle bisects the first circle

Therefore centre of first circle must lie on common chord.

$ \begin{array}{ll} \therefore \quad & 10(-4)+4(-4)-b-a=0 \\ & -40-16-(a+b)=0 \end{array} $

$\therefore \quad \mathrm{a}+\mathrm{b}=-56$

3. The equation of the circle passing through the point of intersection of the circles $x^{2}+y^{2}-4 x-2 y=8$ and $x^{2}+y^{2}-2 x-4 y=8$ and the point $(-1,4)$ is

(a) $x^{2}+y^{2}+4 x+4 y-8=0$

(b) $x^{2}+y^{2}-3 x+4 y+8=0$

(c) $x^{2}+y^{2}+x+y-8=0$

(d) $x^{2}+y^{2}-3 x-3 y-8=0$

Show Answer

Solution: (d)

Equation of any circle passing through the point of intersection of the circles is $x^{2}+y^{2}-4 x-2 y-8+\lambda\left(x^{2}+y^{2}-2 x-4 y-8\right)=0$

This circle passes through the point $(-1,4$

$\therefore 1+16+4-8-8+\lambda(1+16+2-16-8)=0$

$5-5 \lambda=0$

$\lambda=1$

Required circle is $x^{2}+y^{2}-3 x-3 y-8=0$

4. If the common chord of the circles $x^{2}+(y-b)^{2}=16$ and $x^{2}+y^{2}=16$ subtends a right angle at the origin then $\mathrm{b}=$

(a) $4$

(b) $4 \sqrt{2}$

(c) $-4 \sqrt{2}$

(d) $8$

Show Answer

Solution:

The equation of common chord is

$\mathrm{S}-\mathrm{S} _{1}=0$

$(\mathrm{y}-\mathrm{b})^{2}-\mathrm{y}^{2}=0$

$\mathrm{b}^{2}-2 \mathrm{by}=0$

$\mathrm{b}(\mathrm{b}-2 \mathrm{y})=0 \quad \mathrm{~b} \neq 0$, so

$\therefore \mathrm{b}=2 \mathrm{y}$ or $1=\frac{2 \mathrm{y}}{\mathrm{b}}$

The combined equation of the straight lines joining the origin to the points if intersection of $\mathrm{y}=\mathrm{b} / 2$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=16\left(\frac{2 \mathrm{y}}{\mathrm{b}}\right)^{2} \Rightarrow \mathrm{b}^{2} \mathrm{x}^{2}+\left(\mathrm{b}^{2}-64\right) \mathrm{y}^{2}=0$

This equation represents a pair of perpendicular lines

$\therefore \mathrm{b}^{2}+\mathrm{b}^{2}-64=0 \Rightarrow \mathrm{b}= \pm 4 \sqrt{2}$



Table of Contents