CIRCLE-3 (Problem Solving)

1. The number of points $(\mathrm{x}, \mathrm{y})$ having integral coordinates satisfying the condition $\mathrm{x}^{2}+\mathrm{y}^{2}<25$ is

(a) 90

(b) 81

(c) 80

(d) 69

Show Answer

Solution :

Since $x^{2}+y^{2}<25$ and $x$ and $y$ are integers, the possible values of $x \& y \in(0, \pm 1, \pm 2, \pm 3, \pm 4)$, thus $x$ and $y$ can be chosen in 9 ways each and $\left(x _{1} y\right)$ can be $9 \times 9=81$ ways. But $( \pm 3, \pm 4)$ $( \pm 4, \pm 3)( \pm 4, \pm 4)$ does not satisfy so we must exclude these points $3 \times 4=12$ ways.

Hence the number of permissible values are $81-12=69$.

2. A point $P$ moves in such a way that the ratio of its distance form two coplanar points is always a fixed number $(\neq 1)$ then its locus is

(a) Straight line

(b) circle

(c) Parabola

(d) a pair of Straight lines

Show Answer

Solution :

Let two coplanar points be $(0,0)$ and $(a, 0)$ according to the question we get

$\frac{\mathrm{AP}}{\mathrm{BP}}=\lambda($ constant)

$\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{(x-a)^{2}+y^{2}}}=\lambda$

$\mathrm{x}^{2}+\mathrm{y}^{2}=\lambda^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ax}+\mathrm{a}^{2}\right)$

$\mathrm{x}^{2}+\mathrm{y}^{2}+\frac{\lambda^{2}}{1-\lambda^{2}}\left(2 \mathrm{ax}-\mathrm{a}^{2}\right)=0$

represents equation of a circle

3. The greatest distance of the point $P(10,7)$ from the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-2 \mathrm{y}-20=0$ is

(a) 10

(b) 15

(c) 5

(d) None of these

Show Answer

Solution :

Given equation of circle in $x^{2}+y^{2}-4 x-2 y-20=0$

$\mathrm{S} _{1}=10^{2}+7^{2}-40-14-20>0$

$\therefore \mathrm{P}(10,7)$ lies outside the circle.

$\mathrm{PB}=\mathrm{PC}+\mathrm{CB}$

$ \begin{aligned} & =r+\sqrt{8^{2}+6^{2}} \\ & =r+10 \\ & =\sqrt{4+1+20}+10 \\ & =5+10 \\ & =15 \end{aligned} $

4. If one end of a diameter of the circle $x^{2}+y^{2}-4 x-6 y+11=0$ be $(3,4)$, then the other end is

(a)$(0,0)$

(b)$(1,1)$

(c)$(1,2)$

(d) $(2,1)$.

Show Answer

Solution :

Centre of the circle is $(2,3)$ one end of the diameter is $(3,4)$. Since centre is the mid point of diameter

$\therefore \frac{\alpha+3}{2}=2 \& \frac{\beta+4}{2}=3$

$\alpha=1, \beta=2$

$\therefore$ Other end points is $(1,2)$.

5. $f(x, y)=x^{2}+y^{2}+2 a x+2 b y+c=0$ represents a circle. If $f(x, 0)=0$ has equal roots each being 2 and $f(0, y)=0$ has 2 and 3 as its roots then the centre of circle is

(a) $(2,5 / 2)$

(b) date are not sufficient

(c) $(-2,-5 / 2)$

(d) data are inconsistent

Show Answer

Solution :

$ \begin{aligned} f(x, 0)=0 \Rightarrow \quad x^{2}+2 a x+c=0 & =(x-2)^{2} \\ \therefore c=4 . & \& 2 a=-4 . \Rightarrow a=-2 \\ f(0, y)=0 \Rightarrow \quad y^{2}+2 b y+c=0 & =(y-2)(y-3) \\ & =y^{2}-5 y+6 \\ \therefore b=-5 / 2 \& c & =6 \end{aligned} $

$\therefore \mathrm{c}$ is not unique so data are inconsistent

6. If $\mathrm{p}$ and $\mathrm{q}$ are the largest distance and the shortest distance respectively of the point $(-7,2)$ from any point $(\alpha, \beta)$ on the curve whose equation is $x^{2}+y^{2}-10 x-14 y-51=0$ then G.M of $p$ and $q$ is equal to

(a) $2 \sqrt{11}$

(b) $5 \sqrt{5}$

(c) 13

(d) None of these

Show Answer

Solution :

The centre $\mathrm{C}$ of the circle is $(5,7)$ and the radius is $\sqrt{25+49+51}=\sqrt{125}=5 \sqrt{5}$

$ \begin{aligned} & \mathrm{PC}=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13 \\ & \begin{aligned} \therefore \mathrm{p}=\mathrm{PB} \quad \mathrm{PC}+\mathrm{CB} \quad \mathrm{q}=\mathrm{PA}=\mathrm{PC}-\mathrm{CA} \\ =13+5 \sqrt{5} \quad=13-5 \sqrt{5} \end{aligned} \\ & \begin{aligned} & \mathrm{GM} \text { of } \mathrm{p} \& \mathrm{q}=\sqrt{\mathrm{pq}} \quad=\sqrt{(13+5 \sqrt{5})(13-5 \sqrt{5})} \\ &=\sqrt{13^{2}-(5 \sqrt{5})^{2}} \\ &=\sqrt{169-125} \end{aligned} \end{aligned} $

$ \begin{aligned} & =\sqrt{44} \\ & =2 \sqrt{11} \end{aligned} $

Examples

7. If $(1+\alpha x)^{n}=1+8 x+24 x^{2}+………..$ and a line through $\mathrm{P}(\alpha, n)$ cuts the circle $x^{2}+y^{2}=4$ in A and B, then PA.PB is

(a) 4

(b) 8

(c) 16

(d) 32 .

Show Answer

Solution :

$(1+\alpha x)^{n}=1+8 x+24 x^{2}+\ldots \ldots \ldots \ldots \ldots $

$1+n \alpha x+n_{C_{2}}(\alpha x)^{2}+\ldots \ldots \ldots \ldots . . . . . .1+8 x+24 x^{2}+\ldots \ldots \ldots \ldots \ldots $

$n \alpha x=8 x n_{C_{2}}(\alpha x)^{2}=24 x^{2} $

$n \alpha=8 \frac{n(n-1)}{2} \alpha^{2}=24 $ $ \frac{n \alpha(n \alpha-\alpha)}{2}=24 $

$ \frac{(8-\alpha)}{2}=3$

$ \frac{8-\alpha=6}{\alpha=2} \therefore n=4$

$\mathrm{P}(\alpha, \mathrm{n})=\mathrm{P}(2,4)$ and $\mathrm{PT}$ is a tangent of length 4

We know that

$\mathrm{PT}^{2}=\mathrm{PA} . \mathrm{PB}=4^{2}=16$

(Secant tangent theorem)

8. If $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y}) \forall \mathrm{x}, \mathrm{y}, f(1)=2$ and $\alpha _{\mathrm{n}}=\mathrm{f}(\mathrm{n}), \mathrm{n} \in \mathrm{N}$ then the equation of the circle having $\left(\alpha _{1}, \alpha _{2}\right)$ and $\left(\alpha _{3}, \alpha _{4}\right)$ as the ends of its one diameter is

(a) $(x-2)(x-8)+(y-4)(y-16)=0$

(b) $(x-4)(x-8)+(y-2)(y-16)=0$

(c) $(\mathrm{x}-2)(\mathrm{x}-16)+(\mathrm{y}-4)(\mathrm{y}-8)=0$

(d) $(\mathrm{x}-6)(\mathrm{x}-8)+(\mathrm{y}-5)(\mathrm{y}-6)=0$

Show Answer

Solution :

$ \begin{aligned} & f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y}) \\ & f(2)=f(1+1)=f(1) f(1)=2^{2}=\alpha _{2} \\ & \alpha _{3}=f(3)=2^{3}, f(4)=2^{4}=\alpha _{4} \\ & \left(\alpha _{1}, \alpha _{2}\right)=(2,4) \&\left(\alpha _{3}, \alpha _{4}\right)=(8,16) \end{aligned} $

Equation of circle in diameter form

$ \begin{aligned} & \left(\mathrm{x}-\mathrm{x} _{1}\right)\left(\mathrm{x}-\mathrm{x} _{2}\right)+\left(\mathrm{y}-\mathrm{y} _{1}\right)\left(\mathrm{y}-\mathrm{y} _{2}\right)=0 \\ & (\mathrm{x}-2)(\mathrm{x}-8)+(\mathrm{y}-4)(\mathrm{y}-16)=0 \end{aligned} $

9. If $A$ and $B$ are two points on the circle $x^{2}+y^{2}-4 x+6 y-3=0$ which are farthest and nearest respectively from the point $(7,2)$ then

(a) $ \mathrm{A} \equiv(2-2 \sqrt{2},-3-2 \sqrt{2})$

(b) $ \mathrm{A} \equiv(2+2 \sqrt{2},-3+2 \sqrt{2})$

(c) $ \beta \equiv(2+2 \sqrt{2},-3+2 \sqrt{2})$

(d) $ \beta \equiv(2-2 \sqrt{2},-3+2 \sqrt{2})$

Show Answer

Solution :

$x^{2}+y^{2}-4 x+6 y-3=0$

Centre of the circle is $(2,-3)$

Radius of the circle is $=\sqrt{2^{2}+3^{3}+3}=\sqrt{16}=4$

$S _{1}=49+4-28+12-3$

$=65-31$

$=34>0$

$\therefore$ point $(7,2)$ lies outside the circle

$\mathrm{PC}=\sqrt{(7-2)^{2}+(2+3)^{2}}$

$=\sqrt{5^{2}+5^{2}}$

$=\sqrt{50}=5 \sqrt{2}$

$\mathrm{CA}=\mathrm{CB}=\mathrm{r}=4$

Farthest point

$\mathrm{PA}=\mathrm{PC}+\mathrm{CA}$

$ =5 \sqrt{2}+4 $

Nearest point

$\mathrm{PB}=\mathrm{PC}-\mathrm{CB}$

$ =5 \sqrt{2}-4 $

By tinding Point of pnteraction

$\therefore$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are

$\mathbf{A}((2-2 \sqrt{2}),(-3-2 \sqrt{2}))$ and $\mathrm{B}(2+2 \sqrt{2},-3+2 \sqrt{2})$

Practice questions

1. The points $A$ and $B$ in a plane are such that for all points $P$ lies on circle Satisfying $\frac{P A}{P B}=k$, then $k$ will not be equal to

(a) 0

(b) 1

(c) 2

(d) None of these

Show Answer Answer: (b)

2. If the line $h x+k y=1$ touches $x^{2}+y^{2}=a^{2}$ then the locus of the point $(h, k)$ is a circle of radius

(a) a

(b) $1 / \mathrm{a}$

(c) $\sqrt{\mathrm{a}}$

(d) $\frac{1}{\sqrt{\mathrm{a}}}$

Show Answer Answer: (b)

3. Equation of incircle of equilateral triangle $\mathrm{ABC}$ where $\mathrm{B}(2,0), \mathrm{C}(4,0)$ and $\mathrm{A}$ lies in the fourth quadrant is

(a) $x^{2}+y^{2}-6 x+\frac{2 y}{\sqrt{3}}+9=0$

(b) $x^{2}+y^{2}-6 x-\frac{2 y}{\sqrt{3}}+9=0$

(c) $x^{2}+y^{2}+6 x+\frac{2 y}{\sqrt{3}}+9=0$

(d) None of these

Show Answer Answer: (a)

4. A variable circle having chord of radius ’ $\mathrm{a}$ ’ passes through origin meets the coordinate axes in points $\mathrm{A}$ and $\mathrm{B}$. locus of centroid of triangle $\mathrm{OAB}$, ’ $\mathrm{O}$ ’ being the origin is

(a) $9\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=4 \mathrm{a}^{2}$

(b) $9\left(x^{2}+y^{2}\right)=a^{2}$

(c) $\quad 9\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=2 \mathrm{a}^{2}$

(d) $9\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=8 \mathrm{a}^{2}$

Show Answer Answer: (a)

5. The locus of the centre of the circle which cuts a chord of length 2a from the positive $x$-axis and passes through a point on positive $y$-axis distant $b$ from the origin is

(a) $x^{2}+2 b y=b^{2}+a^{2}$

(b) $ x^{2}-2 b y=b^{2}+a^{2}$

(c) $x^{2}+2 b y=a^{2}-b^{2}$

(d) $ x^{2}-2 b y=b^{2}-a^{2}$

Show Answer Answer: (c)

6. The number of circle having radius 5 and passing through the points $(-2,0)$ and $(4,0)$ is

(a) one

(b) two

(c) four

(d) infinite

Show Answer Answer: (b)

7. The equation of the smallest circle passing through the intersection of the line $x+y=1$ and the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ is

(a) $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}+\mathrm{y}-8=0$

(b) $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-\mathrm{y}-8=0$

(c) $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-\mathrm{y}+8=0$

(d) None of these

Show Answer Answer: (b)

8. The number of the points on the circle $x^{2}+y^{2}-4 x-10 y+13=0$ which are at a distance 1 from the point $(-3,2)$ is

(a) 1

(b) 2

(c) 3

(d) None of these

Show Answer Answer: (d)

9. The locus of the mid-point of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origin is

(a) $x+y=2$

(b) $x^{2}+y^{2}=1$

(c) $x^{2}+y^{2}=2$

(d) $x+y=1$

Show Answer Answer: (c)

10. The area of the triangle formed by joining the origin to the points of intersection of the line $x \sqrt{5}+2 y$ $=3 \sqrt{5}$ and circle $x^{2}+y^{2}=10$ is

(a) 3

(b) 4

(c) 5

(d) 6

Show Answer Answer: (c)

11. If $(-3,2)$ lies on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ which is concentric with the circle $x^{2}+y^{2}+6 x+8 y-$ $5=0$ then $\mathrm{c}$ is

(a) $11$

(b) $-11$

(c) $24$

(d) None of these

Show Answer Answer: (b)

12. A variable circle passes through the fixed point $A(p, q)$ and touches $x$-axis. The locus of the other end of the diameter through A is

(a) $(x-p)^{2}=4 q y$

(b) $(x-q)^{2}=4 q y$

(c) $(\mathrm{y}-\mathrm{p})^{2}=4 \mathrm{qx}$

(d) $(\mathrm{y}-\mathrm{q})^{2}=4 \mathrm{px}$

Show Answer Answer: (a)

13. If the lines $2 x+3 y+1=0$ and $3 x-y-4=0$ lie along diameters of a circle of circmference $10 \pi$, then the equation of the circle is

(a) $x^{2}+y^{2}-2 x+2 y-23=0$

(b) $x^{2}+y^{2}+2 x+2 y-23=0$

(c) $x^{2}+y^{2}-2 x-2 y-23=0$

(d) $x^{2}+y^{2}+2 x-2 y-23=0$

Show Answer Answer: (a)

14. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are diameters of a circle having area as 154 sq.unit, then the equation of the circle is

(a) $x^{2}+y^{2}+2 x-2 y=62$

(b) $x^{2}+y^{2}+2 x-2 y=47$

(c) $x^{2}+y^{2}-2 x+2 y=47$

(d) $ x^{2}+y^{2}-2 x+2 y=62$

Show Answer Answer: (c)

15. The equation of circle which passes through the origin and cuts off intercepts 5 and 6 from the positive parts of the axes respectively, is

(a) $(x+5 / 2)^{2}+(y+3)^{2}=\frac{61}{4}$

(b) $(x-5 / 2)^{2}+(y-3)^{2}=\frac{61}{4}$

(c) $(x-5 / 2)^{2}-(y-3)^{2}=\frac{61}{4}$

(d) $(x-5 / 2)^{2}+(y+3)^{2}=\frac{61}{4}$

Show Answer Answer: (b)


Table of Contents