UNIT - 3 Electrochemistry
Electrochemistry in concerned with the interrelation of electrical and chemical effects. i.e. production of chemical change by electrical energy (electrolysis) and conversion of chemical energy into electrical energy. The reactions involve transfer of electrons and are therefore redox reactions.
Substances that allow the flow of electrons as electric current through them are called electrical conductors. These substances obey ohm’s law and are of two types:
Matallic / electronic Conductor
-
Flow of electricity due to movement of electrons
-
No chemical change as there is no transfer of matter.
-
Faraday’s law is not followed
-
Conduction decreases with temperature because kernels start vibrating which interfere in the flow of electrons
-
Depends upon nature, structure of metal and number of valence electrons per atom.
Electrolytic conductor
-
Flow of electricity due to movement of ions
-
Ions are oxidised or reduced at the electrodes, hence involve transfer of matter .
-
Faraday’s law is followed
-
Conduction increases with temperature because dissociation increases and viscosity decreases
-
Depends upon nature of electrolyte (weak or strong), size of ions and their solvation, nature of solvent and viscosity.
Electrochemistry I : Electrolytic cells
The device in which conversion of electrical energy into chemical energy is done is known as electrolytic cell. An electrolytic cell consists of a vessel for electrolytic solution or molten electrolyte in which two metallic electrodes connected to a source of electric current are immersed.
If an electrolytic solution consists of more than two ions then during electrolysis all the ions are not discharged simultaneously but certain ions are liberated at the electrode in preference to the others. This is based on the principle of preferential discharged theory which states that the ion which requires least energy is discharged first. The discharge potential of $\mathrm{H}^{+}$ions is lower than $\mathrm{Na}^{+}$ ions, similarly discharge potential of $\mathrm{Cl}^{-}$ion is lower than that of $\mathrm{OH}^{-}$ions. This can be explained by a few examples:
- Electrolysis of $\mathrm{CuSO} _{4}$ solution using Pt electrodes
Possible reactions at :
Cathode
$ \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e} \longrightarrow \mathrm{Cu}(\mathrm{s}) \hspace{4cm} \mathrm{E}^\circ_{\mathrm{cu}^{2+}\mid\mathrm{cu}}=0.34 \mathrm{V} $
$2\mathrm{H_2O(I) + 2e^-} \longrightarrow \mathrm{H_2(g) + 2 OH^{-} (aq)} \hspace{1.8cm} \mathrm{E}^\circ_{\mathrm{H_2O}\mid\mathrm{H_2}}=0.83 \mathrm{V}$
Anode
$2\mathrm{SO_4^{2-} (aq)} \longrightarrow \mathrm{S_2 O_8 ^{2-}(aq) + 2e^-} \hspace{2.7cm} \mathrm{E}^\circ_{\mathrm{SO_4}^{2-}\mid\mathrm{S_2O_8^{2-}}}=-2.9 \mathrm{V}$
$2 \mathrm{H_2O(I) \longrightarrow O_2(g) + 4H^+ (aq) + 4e^-} \hspace{2.1cm} \mathrm{E}^\circ_{\mathrm{H_2O}\mid\mathrm{O^{2+}}}=-1.23 \mathrm{V}$
$\mathrm{Cu(s) \longrightarrow Cu^{2+} (aq) + 2e^-} \hspace{3.7cm} \mathrm{E}^\circ_{\mathrm{cu}\mid\mathrm{cu}^{2+}}=-0.34 \mathrm{V}$
On comparing electrode discharge potential, it can be said that when $\mathrm{CuSO} _{4}$ is electrolysed using Cu electrodes. $\mathrm{Cu}$ is dissolved at $\mathrm{Cu}$ anode and $\mathrm{Cu}$ is deposited at $\mathrm{Cu}$ cathode
- Aqueous $\mathrm{H} _{2} \mathrm{SO} _{4}$ solution
Possible reactions at :
Cathode
$2 \mathrm{H} _{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}-\longrightarrow \mathrm{H} _{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ $\qquad \mathrm{E} _{\mathrm{H} _{2} \mathrm{O} \mathrm{H} _{2}}^{0}=-0.83 \mathrm{~V}$
$2 \mathrm{SO} _{4}{ }^{2 \cdot}(\mathrm{aq}) \longrightarrow \mathrm{S} _{2} \mathrm{O} _{8}{ }^{2} \cdot(\mathrm{aq})+2 \mathrm{e}^{-}$ $\qquad \qquad \mathrm{E} _{\mathrm{SO} _{4}{ }^{2}-\mathrm{s} \mathbf{s}^{2} \mathrm{e}^{2}}^{0}=-2.01 \mathrm{~V}$
Anode
$2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{O} _{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}$ $\qquad \mathrm{E} _{\mathrm{H} _{2} \mathrm{O} \mathrm{O} _{2}}^{0}=-1.23 \mathrm{~V}$
On electrolysis, $\mathrm{H} _{2}$ gas is evolved at cathode and $\mathrm{O} _{2}$ gas is evolved at anode. It has been observed that at high current density or for highly concentrated $\mathrm{H} _{2} \mathrm{SO} _{4}$ solution, $\mathrm{SO} _{4}{ }^{2}$ ions get oxidised to $\mathrm{S} _{2} \mathrm{O} _{8}{ }^{2 \cdot}$.
- Aqueous $\mathrm{NaCl}$ solution
Possible reactions at :
Cathode :
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(\mathrm{s}) \hspace{4cm} \mathrm{E} _{\mathrm{Na}^{+} \mid \mathrm{Na}}^{0}=-2.71 \mathrm{~V}$
$2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l})+\mathrm{O} _{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow \mathrm{H} _{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \quad \mathrm{E} _{\mathrm{H} _{2} \mathrm{O} \mathrm{H} _{2}}^{0}=-0.83 \mathrm{~V}$
Anode:
$2 \mathrm{Cl}(\mathrm{aq}) \longrightarrow \mathrm{Cl} _{2}(\mathrm{~g})+2 \mathrm{e}^{-}$ $\hspace{3.5cm}\mathrm{E} _{\mathrm{Cl}^{-} \mid \mathrm{Cl} _{2}}^{0}=-1.36 \mathrm{~V}$
$2 \mathrm{H} _{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{O} _{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$ $\hspace{2.5cm} \mathrm{E} _{\mathrm{H} _{2} \mathrm{O} \mathrm{O} _{2}}^{0}=-1.23 \mathrm{~V}$
During electrolysis using Pt electrodes $\mathrm{H} _{2}(\mathrm{~g})$ at cathode and $\mathrm{O} _{2}(\mathrm{~g})$ at anode are evolved. But when $\mathrm{Hg}$ electrodes are used instead of $\mathrm{Pt}, \mathrm{Na}^{+}(\mathrm{aq})$ gets deposited which further reacts with $\mathrm{Hg}$ to form sodium - amalgam.
Quantitative analysis of Electrolysis - Faraday’s Laws
Faraday’s first law of electrolysis
Mass of substance deposited or liberated at any electrode is directly proportional to the quantity of electricity passed through the electrolyte.
$m=z l t$
$z=$ electrochemical equivalent $=\dfrac{\text { atomic mass }}{\mathrm{nF}}$
$F=$ Faraday constant $=96500 \mathrm{ ~ C } \mathrm{ ~ moL }^{-1}$
$I=$ Current in Ampere
$t=$ time in seconds
Electrochemical equivalent
if $\quad I=I A, T=I S$
$m=z$
It is the mass of substance deposited when a current of $1 \mathrm{~A}$ is passed for 1 second.
Faraday’s second law of electrolysis
When the same quantity of electricity is passed through solutions of different electrolytes connected is series, masses of substances produced at electrodes is directly proportional to their equivalent masses. $\dfrac{m _{1}}{m _{2}}=\dfrac{E _{1}}{E _{2}}$
Solved Examples:
Question 1. During electrolysis of aq. $\mathrm{CuSO} _{4}$, a current of $2 \mathrm{~A}$ is passed for exactly 2 hours. Write the reactions involved at cathode and anode. What is the amount of the product being formed at the respective electrodes at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}$ pressure?
Show Answer
Solution-
Since, the nature of electrodes is not given, we assume it to be inert and reactions at cathode and anode are
Cathode $\quad \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$
Anode $\quad \quad 2 \mathrm{H} _{2} \mathrm{O} \longrightarrow \mathrm{O} _{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$\Rightarrow$ Cu gets deposited at cathode and $\mathrm{O} _{2}$ gas is evolved at anode.
No. of faraday passed during reaction $=\dfrac{\mathrm{It}}{96500}=0.14 \mathrm{~F}$
Amount of copper deposited
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
$\Rightarrow 2 \mathrm{~F} \equiv 1$ mole of $\mathrm{Cu}$
$0.14 \mathrm{~F} \equiv \dfrac{1}{2} \times 0.14$ moles of $\mathrm{Cu}$
$=0.07 \times 63.5 \mathrm{~g}$ of $\mathrm{Cu}$
$=4.45 \mathrm{~g}$ of Cu has been deposited at cathode
Amount of $\mathrm{O} _{2}$ gas evolved
$2 \mathrm{H} _{2} \mathrm{O} \rightarrow \mathrm{O} _{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$4 \mathrm{~F} \equiv 1$ mole of $\mathrm{O} _{2}$
$0.14 \mathrm{~F} \equiv 1 / 4 \times 0.14=0.035$ mole of $\mathrm{O} _{2}$
using gas equation ; $\mathrm{PV}=\mathrm{nRT}$
$\mathrm{V}=\dfrac{\mathrm{nRT}}{\mathrm{P}}=0.85 \mathrm{~L}$ of $\mathrm{O} _{2}$ evolved at anode
Question 2. I $\mathrm{L}$ buffer solution $\left(0.3 \mathrm{M} \mathrm{NaH} \mathrm{HO} _{4}\right.$ and $\left.0.3 \mathrm{M} \mathrm{Na} _{2} \mathrm{HPO} _{4}\right)$ was taken in each of the two compartments of an electrolytic cell, with Pt electrodes. The only reaction that can occur is electrolysis of $\mathrm{H} _{2} \mathrm{O}$. The current of $0.965 \mathrm{~A}$ is passed for exactly $2 \mathrm{hrs}$. What is the $\mathrm{pH}$ at cathode and anode? (pKa for $\mathrm{NaH} _{2} \mathrm{PO} _{4}=7.2$ )
Show Answer
Solution-
Here, in buffer solution $\mathrm{NaH} _{2} \mathrm{PO} _{4}$ acts as acid and $\mathrm{Na} _{2} \mathrm{HPO} _{4}$ as salt
Number of Faradays passed during electrolysis
$=\dfrac{\mathrm{It}}{96500}=\dfrac{0.965 \times 2 \times 3600}{96500}=0.072 \mathrm{~F}$
Reaction at cathode
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H} _{2}$
$\Rightarrow 1 \mathrm{~F}$ electricity $=1 \mathrm{~mol} \mathrm{H}^{+}$consumed
$0.072 \mathrm{~F}=0.072 \mathrm{~mol} \mathrm{H}^{+}$consumed
$\Rightarrow \quad 0.072 \mathrm{~mol} \mathrm{OH}^{-}$left in excess
After $2 \mathrm{hrs},\left[\mathrm{OH}^{-}\right]=\dfrac{0.072}{\mid}=0.072 \mathrm{M}$.
These $\mathrm{OH}^{-}$will react with $\mathrm{H} _{2} \mathrm{PO} _{4}^{-}$and the net amount of salt and acid present can be determined
$\mathrm{H} _{2} \mathrm{PO} _{4}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{HPO} _{4}{ }^{2-}+\mathrm{H} _{2} \mathrm{O}$
$\begin{array}{lll}0.3 & 0.072 & 0.3\end{array}$
$0.228 \quad 0.372$
$\mathrm{pH} _{\text {sol }}=\mathrm{pK} _{\mathrm{a}}+\log _{10} \dfrac{[\text { salt }]}{[\text { Acid] }}$
$$ =7.2+\log _{10} \dfrac{0.372}{0.228}=7.2+0.22=7.42 $$
similarly $\mathrm{pH}$ at anode can be determined.
Electrochemistry II : Electrolytic Conductance
-
Conductance- It is the reciprocal of resistance, i.e. $G=\dfrac{1}{R}$ Its units are $\mathrm{hm}^{-1}$ or $\Omega^{-1}$ or mho or Siemen(S).
-
Specific resistance or Resistivity- If ’ $I$ ’ is the length of a conductor and ’ $A$ ’ is its area of cross section, $R \propto \dfrac{1}{A}$ or $R=\rho \dfrac{1}{A}$ where $\rho$ is called specific resistance or resistivity.
-
The units of resistivity are $\Omega \mathrm{cm}$ or $\Omega \mathrm{m}$.
$(1 \Omega \mathrm{m}=100 \Omega \mathrm{cm}$ or $\Omega \mathrm{cm}=0.01 \Omega \mathrm{m}$ ).
- Specific conductivity (or simply called conductivity)- It is the reciprocal of specific resistance,
i.e., $\kappa=\dfrac{1}{A}$ Hence, from $R=\rho \dfrac{1}{A}, \dfrac{1}{G}=\dfrac{1}{\kappa} \dfrac{1}{A}$ or $\kappa=G \times \dfrac{1}{A}$.
If $I=1 \mathrm{~cm}$ and $a=1 \mathrm{~cm}^{2}, \kappa=G$. Hence, conductivity is the conductance of $1 \mathrm{~cm}^{3}$ of the conductor. Units of $\kappa=0 \mathrm{hm}^{-1} \mathrm{~cm}^{-1}$ or $\mathrm{SI}$ units are $\Omega^{-1} \mathrm{~m}^{-1}$ or $\mathrm{S} \mathrm{m} \mathrm{m}^{-1}\left(1 \mathrm{~cm}^{-1}=100 \mathrm{Sm}^{-1}\right)$.
- Molar conductivity $\left(\Lambda _{m}\right)$ - of a solution is the conductance of all the ions produced from one mole of the electrolyte dissolved in a given volume of the solution when the electrodes are one $\mathrm{cm}$ apart and the area of the electrodes is so large that the whole of the solution is contained between them.
$\Lambda _{\mathrm{m}}=\dfrac{\kappa \times 1000}{\text { Molarity }}$
Sl unit $=\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$
- Equivalent Conductivity $\left(\Lambda _{\mathrm{eq}}\right)$ - Of a solution is defined as the conductance of all the ions produced from one gram equivalent of the electrolyte dissolved in a given volume of the solution when the distance between the electrodes is one $\mathrm{cm}$ and the area of the electrodes is so large that whole of the solution is contained between them.
$\Lambda _{\mathrm{eq}}=\dfrac{\kappa \times 1000}{\text { Normality }}$
Unit $=S \mathrm{~m}^{2}$ eqvt $^{-1}$
Variation of Conductance, Conductivity, Equivalent and Molar conductivities with Dilution
-
Effect of dilution- Conductance increases (because total no. of ions increase), specific conductivity decreases (because no. of ions/cc decrease), equivalent and molar conductivity increase with dilution (because it is product of $\kappa$ and $V$ and $V$ increases much more than decrease in the value of $\kappa$ ).
-
Variation of molar conductivity with concentration- For a strong electrolyte, it is given by Debye - Huckel - Onsager equation. viz. $\Lambda _{m}=\Lambda _{m}{ }^{\alpha}-A \sqrt{c}$ where $A$ is a constant depending upon the nature of the solvent and temperature, $\Lambda _{\mathrm{m}}{ }^{\circ}$ is the molar conductivity at infinite dilution (called limiting molar conductivity). Thus, a plot of $\Lambda _{\mathrm{m}} \mathrm{v} . \sqrt{c}$ will be linear with slope $=-A$. However, some deviation is observed at higher concentration as shown in the fig. (1) below. Further, for a weak electrolyte, $\Lambda _{\mathrm{m}}$ is much less and the increase with dilution is slow in the beginning and then very steep at large dilutions.
-
Reasons for increase of $\Lambda _{\mathrm{m}}$ with dilution- Molar conductivity of a strong electrolyte increases with dilution because interionic attractions decrease with dilution. Small deviations at higher concentration are due to large interionic attractions. Molar conductivity of a weak electrolyte increases with dilution because dissociation increases with dilution.
Fig : Variation of $\Lambda _{\mathrm{m}}$ with $\sqrt{\mathrm{C}}$ for strong and weak electrolyte
-
Inability to determine $\Lambda _{\mathrm{m}}{ }^{0}$, experimentally for a weak electrolyte- Molar conductivity at infinite dilution $\left(\Lambda _{\mathrm{m}}{ }^{\circ}\right.$ or $\Lambda _{\mathrm{m}}{ }^{\circ}$ ) for a strong electrolyte can be found by extrapolation to zero concentration but that of weak electrolyte cannot be thus found.
- Moreover, at infinite dilution though the dissociation is complete, concentration of ions per unit volume is so low that conductivity cannot be measured accurately.
- Moreover, at infinite dilution though the dissociation is complete, concentration of ions per unit volume is so low that conductivity cannot be measured accurately.
-
Kohlrausch’s Law-
It states that “Equivalent conductivity of any electrolyte at infinite dilution is the sum of the equivalent conductivities of its cations and anions at infinite dilution”.
ie., $\Lambda _{e q}{ }^{0} \equiv \lambda _{\mathrm{c}}{ }^{0}+\lambda _{\mathrm{a}}{ }^{0}$
or “molar conductivity of an electrolyte at infinite dilution is the sum of the ionic conductivities of the cations and the anions at infinite dilution each multiplied by the number of ions present per formula unit
$\Lambda _{m}{ }^{0}=v _{a} \lambda _{a}{ }^{0}+v _{c} \lambda _{c}{ }^{0}$
Applications of Kohlrausch’s Law
a). In calculation of $\Lambda _{\mathrm{m}}{ }^{0}$ or $\Lambda _{\mathrm{eq}}{ }^{0}$ for weak electrolytes, e.g., $\Lambda^{\circ}{ } _{\mathrm{CH} _{3} \mathrm{COOH}}=\lambda _{\mathrm{CH} _{3} \mathrm{COO}^{-}}^{0}+\lambda^{0} \mathrm{H}^{+}=$ $\Lambda _{\mathrm{CH} _{\mathrm{S}} \mathrm{CONa} \mathrm{a}}^{\circ}+\Lambda _{\mathrm{HCl}}^{\circ}-\Lambda _{\mathrm{NaCl}}^{\circ}$
b). In calculation of degree of dissociation, i.e., $\alpha=\Lambda _{m}{ }^{c} / \Lambda _{m}^{0}$ c). In calculation of dissociation constant by using value of $\alpha$ calculated above $\mathrm{K} _{\mathrm{c}}=\dfrac{c \alpha^{2}}{1-\alpha}$
d). In calculation of solubility of sparingly soluble salts using the relation, solubility $=1000 \kappa / \Lambda _{m}^{\circ}$.
Solved Examples
Question 3. An aqueous solution of ’ $A$ ’ is slowly added to an aqueous solution of ’ $B$ ‘. The variation in conductivity of these reactions is given below
Match the list I & II,
List I | List II |
---|---|
(i) $\underset{\text{‘A’}}{CH_3 COOH} + \underset{\text{‘B’}}{KOH}$ | (a) Conductivity increases initially and then doesn’tchange much |
(ii) $\underset{\text{‘A’}}{NaOH} + \underset{\text{‘B’}}{HI}$ | (b) Conductivity does not change much & then increases |
(iii) $\underset{\text{‘A’}}{KI(0.2M)} + \underset{\text{‘B’}}{AgNO_3 (0.02M)}$ | (c) Conductivity decreases initially and then doesn’t change much |
(iv) $\underset{\text{‘A’}}{(C_2 H_5)_3 N} + \underset{\text{‘B’}}{CH_3 COOH}$ | (d) Conductivity decreases initially and then increases |
Show Answer
Solution-
i - c; $\quad$ ii - d; $\quad$ iii - b; $\quad$ iv - a
Question 4. When $4 \mathrm{~A}$ of current is passed through $0.1 \mathrm{M} \mathrm{Fe}^{34}(\mathrm{aq})$ solution $(\mathrm{V}=1 \mathrm{~L})$ for $1 \mathrm{hr}$. it is partly reduced to $\mathrm{Fe}(\mathrm{s})$ and partly to $\mathrm{Fe}^{2+}(\mathrm{aq})$. How much of $\mathrm{Fe}^{2+}(\mathrm{aq})$ is present in solution.
Show Answer
Solution-
Quantity of electricity passed $=\dfrac{4 \times 1 \times 3600}{96500}=0.15 \mathrm{~F}$
Initial moles of $\mathrm{Fe}^{3+}=0.1 \times 1=0.1 \mathrm{~mol}$
First, $\mathrm{Fe}^{3+}$ will get reduced to $\mathrm{Fe}^{2+}$
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$
$1 \mathrm{~F} \equiv 1 \mathrm{~mol} \mathrm{Fe} e^{3+}$ reduced
$0.15 \mathrm{~F} \equiv 0.15 \mathrm{~mol} \mathrm{Fe^{3+ }}$ reduced
In the second step
$ \begin{aligned} & \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} \\ & \Rightarrow 2 \mathrm{~F} \equiv 1 \mathrm{~mol} \mathrm{Fe}^{2+} \text { reduced } \end{aligned} $
Initial moles of $\mathrm{Fe}^{3+}$ present $=0.1$
$\Rightarrow 0.1 \mathrm{~F}$ electricity used in first step
and $0.05 \mathrm{~F}$ available for reduction of $\mathrm{Fe}^{2+}$ to $\mathrm{Fe}$
$\Rightarrow \dfrac{0.05}{2}$ moles $\mathrm{Fe}^{2+}$ reduced $=0.025$ mol Fe deposited
$F e^{2+}$ left $=0.1-0.025=0.075 \mathrm{~mol}$.
Question 5. What mass of peroxysulphuric acid is formed from electrolytic oxidation of sulphuric acid if the volumes of $\mathrm{H}_2$ and $\mathrm{O}_2$ gases collected from electrodes at NTP $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$ are $6.72 \mathrm{~L}$ and $2.24 \mathrm{~L}$, respectively. Also, write the reactions occurring at two electrodes.
Show Answer
Solution-
Possible reactions at
Anode : $\quad 2 \mathrm{H} _{2} \mathrm{SO} _{4} \longrightarrow \mathrm{H} _{2} \mathrm{~S} _{2} \mathrm{O} _{8}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\hspace{1.5cm} 2 \mathrm{H} _{2} \mathrm{O} \longrightarrow 4 \mathrm{H}^{+}+\mathrm{O} _{2}+2 \mathrm{e}^{-}$
Cathode : $\quad 2 \mathrm{H} _{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{OH}^{-}+\mathrm{H} _{2}$
$\Rightarrow$ Total equivalents of $\mathrm{H} _{2} \mathrm{~S} _{2} \mathrm{O} _{8}+$ Total equivalents of $\mathrm{O} _{2}=$ Total equivalents of $\mathrm{H} _{2}$
For $\mathrm{H} _{2}$, molar mass $=2 \mathrm{~g} / \mathrm{mol}$, equivalent mass $=1 \mathrm{~g} / \mathrm{mol}$
$2 \mathrm{~g} \mathrm{H} _{2} \equiv 22.4 \mathrm{~L}$ at NTP
$1 \mathrm{~g} \mathrm{H} _{2} \equiv 11.2 \mathrm{~L}$ at NTP
$\therefore \quad \mathrm{V} _{\mathrm{e}}$ of $\mathrm{H} _{2}=11.2 \mathrm{~L}$ at NTP
$6.72 \mathrm{~L} \mathrm{H} _{2}=\dfrac{6.72}{11.2}=0.6$ equivalents
For $\mathrm{O} _{2}$, molar mass $=32 \mathrm{~g} / \mathrm{mol}$
$32 \mathrm{~g} \equiv 22.4 \mathrm{~L}$ at NTP
$8 \mathrm{~g} \equiv \dfrac{22.4}{32}=5.6 \mathrm{~L}$ at NTP $\therefore \quad \mathrm{V} _{\mathrm{e}}$ of $\mathrm{O} _{2}=5.6 \mathrm{~L}$
$2.24 \mathrm{LO} _{2}=\dfrac{2.24}{5.6}=0.4$ equivalents
equivalents of $\mathrm{H} _{2} \mathrm{~S} _{2} \mathrm{O} _{8}=0.6-0.4=0.2$
Mass of $\mathrm{H} _{2} \mathrm{~S} _{2} \mathrm{O} _{8}=0.2 \times \dfrac{194}{2}=19.4 \mathrm{~g}$
Question 6. The resistance of a conductivity cell filled with a solution of an electrolyte of concentration $0.1 \mathrm{M}$ is $100 \Omega$. The conductivity of this solution is $1.25 \mathrm{~S} \mathrm{~m}^{-1}$. Resistance of the same cell when filled with $0.2 \mathrm{M}$ of the same solution is $500 \Omega$. What is the molar conductivity of 0.02 M solution of the electrolyte.
Show Answer
Solution-
$\Lambda _{\mathrm{m}}=\dfrac{1000 \kappa}{C}=\dfrac{1000}{C}\left(\dfrac{1}{R} \times \dfrac{1}{A}\right)$
Cell constant, $\dfrac{1}{\mathrm{~A}}$ is independent of concentration of the electrolyte
$\kappa=\left(\dfrac{1}{R}\right)\left(\dfrac{1}{A}\right)$
$\Rightarrow\left(\dfrac{1}{A}\right)=\kappa \times \mathrm{R}$
$=1.25 \times 100=125 \mathrm{~m}^{-1}$
Molar conductivity of $0.02 \mathrm{M}$ solution $\left(0.02 \times 10^{-6} \mathrm{~mol} \mathrm{~m}^{-3}\right)$
$\begin{aligned} \Lambda _{\mathrm{m}} & =\dfrac{1}{0.02 \times 10^{3}} \times \dfrac{1}{500} \times 125 \\ & \\ & =125 \times 10^{-4} \mathrm{ ~Sm }^{2} \mathrm{~mol}^{-1} \end{aligned}$
Electrochemistry III : Electrochemical Cells
Difference between electrolytic and galvanic cell
Electrolytic Cell | Galvanic Cell / Electrochemical Cell |
---|---|
Electrical energy is converted into chemical energy | Chemical energy is converted into electrical energy |
Anode = +ve | Anode = -ve |
Cathode = -ve | Cathode = +ve |
$\Delta$G = +ve | $\Delta$G = -ve |
No salt bridge is used | Salt bridge may be used |
Note: The role of salt bridge is to complete the internal circuit and maintain electroneutrality. Even in the absence of salt bridge, the chemical reactions at respective electrodes continue to occur, provided the internal circuit is complete.
Type of Electrodes:
Whether a given electrode acts as anode or cathode depends upon the other electrode with which it is coupled within an electrochemical cell.
In electrochemical series, different half cells have been arranged in the order of increasing standard reduction potential with respect to standard hydrogen electrode.
The measure of ability of an electrode to undergo oxidation is referred to as it oxidation potential.
The measure of ability of an electrode to undergo reduction is referred to as its reduction potential.
A cell can be constructed by coupling two electrodes.
$(\bullet)$ Metal - Metal ion electrode $\mathrm{M}^{n+} / \mathrm{M}$ : metal in contact with solution of its ions
$\mathrm{M} _{(\mathrm{aq})}^{\mathrm{n+}}+\mathrm{ne} \rightarrow \mathrm{M}(\mathrm{s})$
Highly reactive metal are taken in the form of amalgam and electrode is referred to as metal (amalgam) - metal ion electrode $\mathrm{M}^{n+} \mid \mathrm{M}(\mathrm{Hg})$
$(\bullet)$ Gas - ion electrode : $\mathrm{H}^{+} \mid \mathrm{H} _{2}, \mathrm{Pt}$
$(\bullet)$ Redox electrode : insert metal in contact with the solution of ions of an element in two different oxidation states.
$\mathrm{Pt} \mid \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}$
The only organic electrode known as an example of redox electrode is (Quinhydrone) electrode : an equimolar mixture of quinone and hydroquinone
$\mathrm{Pt} \mid \mathrm{H} _{2} \mathrm{Q}, \mathrm{Q}, \mathrm{H}^{+}$
$(\bullet)$ Metal - Insoluble salt - ion electrode : metal coated with insoluble salt and in contact with solution of its anion. Three most important examples of this category are:
(i) Calomel electrode $\mathrm{Hg} \mid \mathrm{Hg} _{2} \mathrm{Cl} _{2} \mid \mathrm{Cl}^{-}$
Paste of $\mathrm{Hg~ } \& \mathrm{~ Hg} _{2} \mathrm{Cl} _{2}$ is known as calomel
(ii) Silver - Silver chloride electrode $\mathrm{Ag} \mid \mathrm{AgCl} \mid Cl{ }^{-}$
(iii) mercury - mercurous sulphate electrode $\mathrm{Hg} \mid \mathrm{Hg} _{2} \mathrm{SO} _{4} \mid \mathrm{SO} _{4}{ }^{2-}$
Effect of Electrolytic Concentration on Electrode Potential and EMF of a cell : Nernst equation for Electrode Potential:
(i) Write electrode reaction as reduction reaction
$ \mathrm{M}^{n+}+n \mathrm{e}^{+} \longrightarrow \mathrm{M} $
(ii) Apply Nernst equation,
$ E _{\text {electrode }}=E _{\text {electrode }}^{0}-\dfrac{2 \cdot 303 R T}{n F} \log \dfrac{1}{\left[\mathrm{M}^{n+}\right]} $
At $298 \mathrm{~K}$,
$ E _{\text {electode }}=E _{\text {electrode }}^{0}-\dfrac{0.0591}{n} \log \dfrac{1}{\left[\mathrm{M}^{n+}\right]} $
Nernst equation for EMF of a cell
(i) Write cell reaction
$ \text { e.g., } \quad a A+b B \longrightarrow x X+y Y $
(ii) Apply Nernst equation,
$ E _{\text {cell }}=E _{\text {cell }}^{0}-\dfrac{2.303 R T}{n F} \log \dfrac{[\mathrm{X}]^{\mathrm{x}}[\mathrm{Y}]^{\mathrm{y}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}} $
At $298 \mathrm{~K}$,
$ E _{\text {cell }}=E _{\text {cell }}^{0}-\dfrac{0.0591}{n} \log \dfrac{[X]^{x}[Y]^{y}}{[A]^{2}[B]^{b}} $
Molar concentration of pure solids, pure liquids and gases at one bar pressure are taken as 1
$(\bullet)$ Relationship between standard EMF ( $\left.E _{\text {cell }}^{0}\right)$ and Equilibrium constant $(K)$
For the cell reaction at equilibrium, e.g.,
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
$E _{\text {cell }}=0$. Hence,
$0=E _{\text {cell }}^{0}-\dfrac{2.303 R T}{n F} \log K _{\mathrm{c}}$
or $E _{\text {cell }}^{\circ}=\dfrac{2.303 R T}{n F} \log K _{c}$
$ =\dfrac{0.0591}{n} \log K _{\mathrm{c}} \text { at } 298 \mathrm{~K} $
where $K _{c}$ is equilibrium constant.
$(\bullet)$ On calculation, if $\log K _{\mathrm{c}}=x$, then $K _{c}=10^{x}$
$(\bullet)$ In terms of natural logarithm, at $298 \mathrm{~K}$,
$E _{\text {cell }}^{0}=\dfrac{0.0257}{n} \ln K _{\mathrm{c}}\left(\therefore \ln K _{\mathrm{c}}=2.303 \log K _{\mathrm{c}}\right)$
On calculation if $\operatorname{In} K _{\mathrm{c}}=x$, then $K _{\mathrm{c}}=e^{\mathrm{x}}$.
$(\bullet)$ Relation between Gibbs energy change $\left(\Delta G^{0}\right)$ and $\operatorname{EMF}\left(E _{\text {cell }}^{0}\right)$
$-\Delta G=n F E _{\text {cell }}$ or $\Delta G^{0}=(-) n F E _{\text {cell }}^{0}$
Relation between the cell reaction and the Gibb’s energy change : $\Delta G^{0}=-n F E^{0}$
$E _{\text {cel }}^{0}$ is an intensive property and thus its value does not depend upon the size of the cell and the extent to which the cell reaction is carried out. If the overall reaction
$\mathrm{Fe}^{3+}+\mathrm{e}^-{\rightleftharpoons} \mathrm{Fe}^{2+}$
is written as
$2 \mathrm{Fe}^{3+}+2 \mathrm{e}^- \rightleftharpoons 2 \mathrm{Fe}^{2+}$
Then $E^{0}$ remains the same but $\Delta G^{0}$ changes as there is a change in the number of electrons involved in the two reactions.
Putting $E _{\text {cell }}^{0}=\dfrac{R T}{n F} \ln K$
$\Delta G^{0}=-R T$ in $K=-2.303 R T \log K$.
Further, decrease in Gibb’s energy = Maximum electrical work done. Hence, maximum electrical work done $=-n F E _{\text {cell }}$
Concentration cell- If two half cells are of the same type differing only in the concentration of ions, it is called electrolyte concentration cell,
e.g., $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\left(\mathrm{c} _{1}\right) | \mathrm{Zn}^{2+}\left(\mathrm{c} _{2}\right)\right| \mathrm{Zn}$,
For such a cell, $E _{\text {cell }}=\dfrac{0.0591}{n} \log \dfrac{c _{2}}{c _{1}}$ where $c _{2}>c _{1}$.
Commercial cell / batteries- These are of three types
(i) Primary cells which cannot be recharged.
(ii) Secondary cells which can be recharged
(iii) Fuel cells in which redox reaction is combustion of a fuel (e.g. $\mathrm{H} _{2}, \mathrm{CH} _{4}$ )
I Primary cells
(a) Dry cell :
Anode $=$ zinc cylinder,
Cathode $=$ Graphite rod surrounded by $\mathrm{MnO} _{2}+\mathrm{C}+\mathrm{NH} _{4} \mathrm{Cl}+\mathrm{ZnCl} _{2}$ acting as electrolyte.
Anode reaction : $\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}$,
Cathode reaction : $2 \mathrm{MnO} _{2}+2 \mathrm{NH} _{4}^{+}+2 \mathrm{e} \longrightarrow \mathrm{Mn} _{2} \mathrm{O} _{3}+2 \mathrm{NH} _{3}+\mathrm{H} _{2} 0 . E _{\text {cell }}=1.25-1.50 \mathrm{~V}$.
They do not have long life because $\mathrm{NH} _{4} \mathrm{Cl}$ corrodes zinc container
(b) Mercury Cell :
Anode $=\mathrm{Zn}$ container, Cathode $=$ Carbon rod.
Electrolyte $=$ Paste of $\mathrm{HgO}+\mathrm{KOH}$.
Cell reaction : $\mathrm{Zn}+\mathrm{HgO} \longrightarrow \mathrm{ZnO}+\mathrm{Hg}$. $E _{\text {cel }}=1.35 \mathrm{~V}$.
These are used in hearing aids and watches.
II Secondary Cells
a) Lead stroage battery :
Anode $=$ Lead, Cathode $=$ grid of $\mathrm{Pb}$ packed with $\mathrm{PbO} _{2}$
Electrolyte $=\mathrm{H} _{2} \mathrm{SO} _{4}(38 \%) . E _{\text {een }}=2 \mathrm{~V}$
During discharge, Anode reaction : $\mathrm{Pb}+\mathrm{SO} _{4}^{2 \cdot} \longrightarrow \mathrm{PbSO} _{4}+2 \mathrm{e}^{-}(\mathrm{ox})$
Cathode reaction: $\mathrm{PbO} _{2}+\mathrm{SO} _{4}{ }^{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{PbSO} _{4}+2 \mathrm{H} _{2} \mathrm{O}$ (red)
During recharging, Cathode reaction : $\mathrm{PbSO} _{4}+2 \mathrm{e} \longrightarrow \mathrm{Pb}+\mathrm{SO} _{4}{ }^{2-}$ (red)
Anode reaction : $\mathrm{PbSO} _{4}+2 \mathrm{H} _{2} \mathrm{O} \longrightarrow \mathrm{PbO} _{2}+\mathrm{SO} _{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}(\mathrm{ox})$
Note : Nature of an electrode of a secondary cell is opposite during discharge and recharge. The negative electrode which acts as anode during discharge but becomes cathode during recharge. Similarly, the positive electrode acts as cathode during discharge but becomes anode during recharge.
b) Ni-Cd storage cell :
Anode $=\mathrm{Cd}$, Cathode $=\mathrm{NiO} _{2}$,
Electrolyte $=\mathrm{KOH}$ sol. $E _{\text {ceu }}=1.4 \mathrm{~V}$.
Anode reaction : $\mathrm{Cd}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cd}(\mathrm{OH}) _{2}+2 \mathrm{e}^{-}$
Cathode reaction: $\mathrm{NiO} _{2}+2 \mathrm{H} _{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(\mathrm{OH}) _{2}+2 \mathrm{OH}^{-}$
III Fuel Cells,
e.g., $\mathrm{H} _{2}-\mathrm{O} _{2}$ fuel cell,
Electrolyte $=$ conc. $\mathrm{KOH}$ sol. $E _{\text {cell }}=1.23 \mathrm{~V}$ (theoretical)
Anode reaction : $2 \mathrm{H} _{2}+4 \mathrm{OH}^{-} \longrightarrow 4 \mathrm{H} _{2} \mathrm{O}+4 \mathrm{e}^{-}$,
Cathode reaction: $\mathrm{O} _{2}+2 \mathrm{H} _{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}$,
Efficiency of fuel cell $=\dfrac{\Delta G}{\Delta H} \times 100=\dfrac{-n \mathrm{EF} _{\text {cell }}}{\Delta \mathrm{H}} \times 100=\dfrac{-2 \times 96500 \times 1.231 \mathrm{~J}}{-285800 \mathrm{~J}} \times 100=83 \%$
Corrosion
Corrosion is the process of oxidation which results in change of metal surface into salts like oxides, sulphides, carbonates etc. due to attack of atmospheric gases.
Rust- Chemically, it is hydrated ferric oxide, $\mathrm{Fe} _{2} \mathrm{O} _{3} \bullet \times \mathrm{H} _{2} \mathrm{O}$
Theory of rusting: Rusting of iron can be explained on the basis of Electrochemical theory as follows :-
$\underset{\text{(layer on the surface)}}{\mathrm{H} _{2} \mathrm{O}}+\underset{\text{(from air)}}{\mathrm{CO} _{2}} \longrightarrow \mathrm{H} _{2} \mathrm{CO} _{3}$
$\mathrm{H} _{2} \mathrm{CO} _{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{CO} _{3}{ }^{2-}$
At Anode:
$2 \mathrm{Fe} \longrightarrow 2 \mathrm{Fe}^{2+}+2 \mathrm{e}$
At Cathode:
$\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{H}$
$4 \mathrm{H}+\underset{\text { (Dissolved) }}{\mathrm{O} _{2}} 2 \mathrm{H} _{2} \mathrm{O}$
or $4 \mathrm{H}^{+}+\mathrm{O} _{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H} _{2} \mathrm{O}$
Further, ferrous ions formed at the anode react with the dissolved $\mathrm{O} _{2}$ to from $\mathrm{Fe} _{2} \mathrm{O} _{3}$.
$4 \mathrm{Fe}^{2+}+\underset{\text { (Dissolved) }}{\mathrm{O} _{2}+4 \mathrm{H} _{2} \mathrm{O}} \longrightarrow \mathrm{Fe} _{2} \mathrm{O} _{3}+8 \mathrm{H}^{+}$
$\mathrm{Fe} _{2} \mathrm{O} _{3}+\mathrm{xH} _{2} \mathrm{O} \longrightarrow \mathrm{Fe} _{2} \mathrm{O} _{3} . \mathrm{H} _{2} \mathrm{O}$
Factors which enhance corrosion-
(i) Presence of impurities in the metal (pure metals do not corrode)
(ii) Presence of moisture (e.g., in rainy season)
(iii) Presence of electrolytes (e.g., saline water)
Prevention of corrosion-
Corrosion can be prevented by the following methods:
(i) Barrier protection by oil/grease layer, paints or electroplating.
(ii) Sacrificial protection by coating the metal with more electropositive metal e.g., Zn (called galvanisation)
(iii) Electrical protection by connecting the iron pipe to a more electropositive metal (like $\mathrm{Mg}$ ) with a wire.
Question 6. The following electrochemical cell has been set up
Pt (1) | $\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}(\mathrm{a}=1) |\left|\mathrm{Ce}^{4+}, \mathrm{Ce}^{3+}(a=1)\right| \mathrm{Pt}(2)$
Predict the direction of flow of current
(given : $\mathrm{E} _{\mathrm{Ce}^{4+1} 1 \mathrm{Ce}^{3+}}^{0}=1.61 \mathrm{~V} ; \mathrm{E} _{\mathrm{Fe}^{3+} \mathrm{Fe}^{2+}}^{0}=0.77 \mathrm{~V}$ )
Show Answer
Solution-
The electrode reactions :
Anode: $\quad \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}$
Cathode: $\quad \mathrm{Ce}^{4+}+\mathrm{e} \longrightarrow \mathrm{Ce}^{3+}$
Cell reaction: $\mathrm{Fe}^{2+}+\mathrm{Ce}^{4+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Ce}^{3+}$
Cell potential is
$E _{\text {cell }}^{0}=E _{\text {cathode }}^{0}-E _{\text {anode }}^{0}$
$=1.61-0.77=0.84 \mathrm{~V}$
Since $E _{\text {cell }}^{0}$ is positive, the cell reaction is spontaneous.
The current will flow from Pt(2) to Pt (1)
Flow of e from Anode to Cathode; by convention, direction of current flow from Cathode to Anode.
With the passage of time, EMF of cell decrease and so does the current flow.
Question 7. Which of the following reactions are possible:
a) Reduction of $\mathrm{Fe}^{3+}$ to $\mathrm{Fe}^{2+}$ by $\mathrm{Fe}$
b) Reduction of $\mathrm{Fe}^{3+}$ to $\mathrm{Fe}^{2+}$ by $\mathrm{Mn}^{2+}$
given $E _{\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+} \mathrm{Pt}^{-1}}^{0}=0.77 \mathrm{I} \mathrm{V}, E _{\mathrm{Fe}^{2+} \mathrm{Fe}^{\mathrm{Fe}}}^{0}=-0.440 \mathrm{~V}$
$E _{\mathrm{Mn} _{4} ; \mathrm{Mn}^{2+}, \mathrm{H}^{+} \mid \mathrm{Pt}}^{0}=1.51 \mathrm{~V}$
Show Answer
Solution-
(a) The reactions would be:
Reduction: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$
Oxidation : $\mathrm{Fe} \rightleftharpoons \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$
This cell can be represented as:
$\mathrm{Fe}\left|\mathrm{Fe}^{2}\right| \mathrm{Fe} \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}$
$\begin{aligned} & E _{\mathrm{cell}}^{0}=E _{\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}}^{0}-E _{\mathrm{Fe}}^{0}{ } _{\mathrm{Fe}} \mathrm{Fe}^{2} \\ & =0.771-(-0.440)=1.211 \mathrm{~V} \end{aligned}$
Since $E _{\text {cell }}^{0}$ is positive, the reduction of $\mathrm{Fe}^{3+}$ to $\mathrm{Fe}^{2+}$ by $\mathrm{Fe}$ is possible
(b) Reduction : $5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-} \rightleftharpoons 5 \mathrm{Fe}^{2+}$
Oxidation: $\mathrm{Mn}^{2+}+4 \mathrm{H} _{2} \mathrm{O} \rightleftharpoons \mathrm{MnO} _{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$
The cell can be represented as:
$\mathrm{Pt}\left|\mathrm{Mn}^{2+}, \mathrm{MnO} _{4}^{-}, \mathrm{H}^{+}\right|\left|\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right| \mathrm{Pt}$
$\mathrm{E} _{\mathrm{cell}}^{0}=\mathrm{E} _{\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}+\mathrm{Pt}}^{0}-\mathrm{E}^{0} \mathrm{MnO} _{4}^{-}, \mathrm{Mn}^{2+}, \mathrm{H}^{+} \mathrm{Pt}$
$=0.771-1.51=-0.739 \mathrm{~V}$
$\mathrm{E} _{\text {cell }}^{0}$ is negative, the reduction of $\mathrm{Fe}^{3+}$ to $\mathrm{Fe}^{2+}$ by $\mathrm{Mn}^{2+}$ is not possible.
Question 8. Compute $\mathrm{E}^{0}$ for the reaction
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$
Given that
$\begin{array}{ll} \mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe} & E _{\mathrm{Fe}^{3+} \mid {\mathrm{Fe}}}^{0}=-0.036 \mathrm{~V} \\ \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe} & E _{\mathrm{Fe}^{2+}{ } _{\mathrm{Fe}}}^{0}=-0.440 \mathrm{~V} \end{array}$
Show Answer
Solution-
The half cell reaction can be obtained by subtracting the two given half cell reactions and $\Delta G^{0}$ for this reaction can be obtained by subtracting the $\Delta G^{0}$ of the two given reaction.
(i) $\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \rightharpoonup \mathrm{Fe} ; \quad \Delta \mathrm{G} _{1}^{0}=-3 \mathrm{~F} _{\mathrm{Fe}^{0}+{ } _{\mathrm{Fe}}}=(0.108 \mathrm{~V}) \mathrm{F}$
(ii) $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe} ; \quad \Delta \mathrm{G} _{2}^{0}=-2 \mathrm{FE} _{\mathrm{Fe}^{2}+\mathrm{Fe}}^{0}=(0.880 \mathrm{~V}) \mathrm{F}$
subtracting (ii) from (I), we get
$\mathrm{Fe}^{3+}+\mathrm{e} \rightleftharpoons \mathrm{Fe}^{2+}$
$\Delta G^{0}=\Delta G _{1}{ }^{0}-\Delta G _{2}^{0}$
$\Delta G^{0}=(0.108 \mathrm{VF}-0.880 \mathrm{VF})=-0.772 \mathrm{VF}$
$\Delta G^{0}=-n F E^{\circ}$
hence, $\mathrm{n}=1$
$\therefore \Delta \mathrm{G}^{0}=-\mathrm{F} \mathrm{E} _{\mathrm{Fe}^{0}+\mathrm{Fe}}^{0}+\mathrm{Fet}=-0.772 \mathrm{~V}$
here, $\mathrm{E} _{\mathrm{Fe}^{3}+\mathrm{Fe}^{2}+\mathrm{Pt} \mathrm{Pt}}^{0}=0.772 \mathrm{~V}$
Question 9. A silver electrode is immersed in saturated $\mathrm{Ag}_2 \mathrm{SO}_4 (\mathrm{aq})$.
The potential difference between silver and standard hydrogen electrode is found to be $0.711 \mathrm{V}$. Determine $\mathrm{K}_{\mathrm{sp}}\left(\mathrm{Ag}_2 \mathrm{SO}_4\right)$.
(Given $E_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}^{\circ}=0.799 \mathrm{~V}$ )
Show Answer
Solution-
The cell may be represented as:
Pt $\left(\mathrm{H} _{2} 1\right.$ bar) $\left|\mathrm{H}^{+}(1 \mathrm{M}) | \mathrm{Ag}^{+}\right| \mathrm{Ag}(\mathrm{s})$
$E _{\text {cell }}^{0}=0.799-0=0.799 \mathrm{~V}$
given that $E=0.711 \mathrm{~V}$
Applying Nernst equation
$E=E^{0}-\dfrac{0.0591}{n} \log _{10} Q$
for the above cell, possible reaction is
$\mathrm{H} _{2}+2 \mathrm{Ag}^{+} \longrightarrow 2 \mathrm{Ag}+2 \mathrm{H}^{+}$
$Q=\dfrac{[\mathrm{Ag}]^{2}\left[\mathrm{H}^{+}\right]^{2}}{\left.\left[\mathrm{H} _{2}\right][\mathrm{Ag}]^{2}\right]^{2}}=\dfrac{1}{\left.[\mathrm{Ag}]^{2}\right]^{2}} \cdots$
and $n=2$
Substituting in equation (1)
$0.711=0.799-\dfrac{0.0591}{2} \log _{10} \dfrac{1}{\left[\mathrm{Ag}^{+}\right]^{2}}$
$\left[\mathrm{Ag}^{+}\right]=0.03243 \mathrm{~mol} \mathrm{~L}^{-1}$
For,
$\mathrm{Ag} _{2} \mathrm{SO} _{4} \rightleftharpoons 2 \mathrm{Ag}^{+}+\mathrm{SO} _{4}^{2-}$
$K _{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO} _{4}{ }^{2 \cdot}\right]$
$=(0.03243)^{2}(0.0162)$
$K _{\mathrm{sp}}=1.705 \times 10^{-5} \mathrm{~mol}^{3} \mathrm{~L}^{-3}$
Question 10. During the discharge of a lead storage battery, density of $\mathrm{H}_2 \mathrm{SO}_4$ fell from 1.29 to $1.14 \mathrm{~g} / \mathrm{mL}$. The initial solution of sulphuric acid is $39 % \quad \mathrm{H}_2 \mathrm{SO}_4$ by weight and later it becomes $20 % \mathrm{H}_2 \mathrm{SO}_4$ by weight. The battery holds $3 \mathrm{~L}$ of the acid and volume remains practically constant during discharge. Calculate ampere-hour for which battery must have been used.
Show Answer
Solution-
The reaction involved during the charging and discharging of lead storage battery are
Charging : $\mathrm{Pb}+\mathrm{SO} _{4}{ }^{2 \cdot} \rightarrow \mathrm{PbSO} _{4}+2 \mathrm{e}^{-}$
Discharging: $\mathrm{PbO} _{2}+4 \mathrm{H}^{+}+\mathrm{SO} _{4}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO} _{4}+2 \mathrm{H} _{2} \mathrm{O}$
weight of solution before discharge $=3000 \times 1.29$
$$ =3870 \mathrm{~g} $$
weight of $\mathrm{H} _{2} \mathrm{SO} _{4}$ before dischrage $=\dfrac{39}{100} \times 3870=1509.3 \mathrm{~g}$
Similarly,
weight of $\mathrm{H} _{2} \mathrm{SO} _{4}$ after discharge $=684.0 \mathrm{~g}$
Loss in mass of $\mathrm{H} _{2} \mathrm{SO} _{4}$ during discharge $=1509.3-684.0=825.3 \mathrm{~g}$
From Faraday’s first law of electrolysis
$\begin{aligned} & W=z I t=z Q \\ & \\ & =\dfrac{E Q}{96500} \\ & \\ & Q=\dfrac{96500 \times w}{E} \\ & \\ & W=\text { Loss in mass of } \mathrm{H} _{2} \mathrm{SO} _{4}=825.3 \mathrm{~g} \\ & \\ & E=\text { Equivalent mass of } \mathrm{H} _{2} \mathrm{SO} _{4}=49 \\ & \\ & \therefore Q=812667.85 \text { Coulomb } \\ & \\ & \text { Ampere }- \text { Hour }=\dfrac{\text { Coulomb }}{3600}=225.74 \text { ampere }- \text { hour. } \end{aligned}$
PRACTICE QUESTIONS
Question 1- Given that the dissociation contant of acetic is $1.8 \times 10^{-5}$ and its molar conductivity at infinite dilution is $390.7 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The molar conductivity of $0.01 \mathrm{M}$ acetic acid solution will be
a) $1.657 \Omega^{-1} \mathrm{~cm}^{2}$
b) $16.57 \Omega^{-1} \mathrm{~cm}^{2}$
c) $165.7 \Omega^{-1} \mathrm{~cm}^{2}$
d) $33.04 \Omega^{-1} \mathrm{~cm}^{2}$
Show Answer
Answer:- bQuestion 2- The equivalent conductances at infinite dilution $\left(\Lambda^{\circ}\right)$ for electrolytes BA and CA are 140 and $120 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$. The equivalent conductance at infinite dilution for $\mathrm{BX}$ is $198 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$. The $\Lambda^{\circ}$ (in $\mathrm{S} \mathrm{cm}^{2} \mathrm{eq}^{-1}$ ) of $\mathrm{CX}$ is
a) $178$
b) $198$
c) $218$
d) $130$
Show Answer
Answer:- aQuestion 3- The conductivity of $0.01 \mathrm{~mol} / \mathrm{dm}^{3}$ aqueous acetic acid at $300 \mathrm{~K}$ is $19.5 \times 10^{-5} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and the limiting molar conductivity of acetic acid at the same temperature is $390 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The degree of dissociation of acetic acid is.
a) $0.5$
b) $0.05$
c) $5 \times 10^{-3}$
d) $5 \times 10^{-7}$
Show Answer
Answer:- bQuestion 4- Given $\wedge _{\dfrac{1}{3} \mathrm{Al}^{3+}}=63 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $\Lambda^{\circ}{ } _{1 / 504 _{4}}{ }^{2 .}=80 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
The value of $\Lambda^{\circ}{ } _{\mathrm{Al} _{2}\left(\mathrm{SO} _{4}\right) _{3}}$ would be
a) $143 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
b) $206 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
c) $286 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
d) $858 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
Show Answer
Answer:- dQuestion 5- $2 \mathrm{Hg} \rightarrow \mathrm{Hg} _{2}{ }^{2+}+2 \mathrm{e}^{-}, \mathrm{E}^{0}=-0.799 \mathrm{~V}$
$\mathrm{Hg} \rightarrow \mathrm{Hg}^{2+}+2 \mathrm{e}^{-}, \mathrm{E}^{0}=-0.855 \mathrm{~V}$
Equilibrium constant for the reaction
$\mathrm{Hg}+\mathrm{Hg}^{2+} \rightarrow \mathrm{Hg} _{2}^{2+}$ at $27^{\circ} \mathrm{C}$ is
a) $89$
b) $82.3$
c) $79$
d) none of these
Show Answer
Answer:- cQuestion 6- The standard electrode potential $\left(E^{0}\right)$ for $\mathrm{OCl}^{-} \mid \mathrm{Cl}^{-}$and $\mathrm{Cl}^{-} \mid 1 / 2 \mathrm{Cl} _{2}$ respectively are $0.94 \mathrm{~V}$ and $1.36 \mathrm{~V}$. The $E^{0}$ value for $\mathrm{OCl}^{-} \left\lvert, \dfrac{1}{2} \mathrm{Cl} _{2}\right.$ will be
a) $-0.42 \mathrm{~V}$
b) $-2.20 \mathrm{~V}$
c) $\quad 0.52 \mathrm{~V}$
d) $\quad 1.04 \mathrm{~V}$
Show Answer
Answer:- cQuestion 7- Standard electrode potentials of the half reaction are given below:
$\mathrm{F} _{2}(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=+2.85 \mathrm{~V}$
$\mathrm{Cl} _{2}(\mathrm{~g})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=+1.36 \mathrm{~V}$
$\mathrm{Br} _{2}(\mathrm{I})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=+1.06 \mathrm{~V}$
$\mathrm{I} _{2}(\mathrm{~s})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{l}^{-}(\mathrm{aq}) ; \mathrm{E}^{0}=+0.53 \mathrm{~V}$
The strongest oxidising and reducing agents respectively are :
a) $\mathrm{Cl} _{2}$ and $\mathrm{Br}^{-}$
b) $\mathrm{Cl} _{2}$ and $\mathrm{I}^{-}$
c) $\mathrm{F} _{2}$ and $\mathrm{I}^{-}$
d) $\mathrm{Br} _{2}$ and $\mathrm{Cl}^{-}$
Show Answer
Answer:- cQuestion 8- The standard electrode potentials for $\mathrm{Zn}^{2+}\left|\mathrm{Zn}, \mathrm{Ni}^{2+}\right| \mathrm{Ni}$, and $\mathrm{Fe}^{2+} \mid \mathrm{Fe}$ are $0.76,-0.23$ and - $0.44 \mathrm{~V}$ respectively. The reaction $X+Y^{2+} \longrightarrow X^{2+}+Y$ will be spontaneous when:
a) $X=Z n, Y=N i$
b) $X=\mathrm{Ni}, \mathrm{Y}=\mathrm{Fe}$
c) $X=N i, Y=Z n$
d) $X=\mathrm{Fe}, \mathrm{Y}=\mathrm{Zn}$
Show Answer
Answer:- aQuestion 9- $E _{\text {cell }}^{0}$ for the reaction, $\mathrm{Fe}+\mathrm{Zn}^{2+} \rightleftharpoons \mathrm{Fe}^{2+}+\mathrm{Zn}$ is $-0.32 \mathrm{~V}$. The equilibrium concentration of $\mathrm{Fe}^{2+}$ when a piece of iron is placed in $1 \mathrm{M} \mathrm{Zn}^{2+}$ solution is
a) $1.4 \times 10^{-11} \mathrm{M}$
b) $1.5 \times 10^{-10} \mathrm{M}$
c) $3.5 \times 10^{-11} \mathrm{M}$
d) $3.5 \times 10^{-10} \mathrm{M}$
Show Answer
Answer:- aQuestion 10- The cell, $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1 \mathrm{M}) | \mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu},\left(E _{\text {cell }}=1.10 \mathrm{~V}\right)$ was allowed to completely discharged at $298 \mathrm{~K}$. The relative concentration of $\mathrm{Zn}^{2+}$ to $\mathrm{Cu}^{2+},\left(\dfrac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)$ is
a) $9.65 \times 10^{4}$
b) antilog 24.08
c) 37.3
d) $10^{37.3}$
Show Answer
Answer:- dQuestion 11- $E _{1}, E _{2}$ and $E _{3}$ are the emf values of the following three galvanic cells respectively
i) $\mathrm{Zn} \mid \mathrm{Zn}^{2+}(1 \mathrm{M}) | \mathrm{Cu}^{2+}(0.1 \mathrm{M})$ I $\mathrm{Cu}$
ii) $\mathrm{Zn} I \mathrm{Zn}^{2+}(1 \mathrm{M}) | \mathrm{Cu}^{2+}(1 \mathrm{M}) \mid \mathrm{Cu}$
iii) $\mathrm{Zn} I \mathrm{Zn}^{2+}(0.1 \mathrm{M}) | \mathrm{Cu}^{2+}(1 \mathrm{M}) \mathrm{ICu}$
Which one of the following is true?
a) $E _{2}>E _{3}>E _{1}$
b) $\mathrm{E} _{3}>\mathrm{E} _{2}>\mathrm{E} _{1}$
c) $\mathrm{E} _{1}>\mathrm{E} _{2}>\mathrm{E} _{3}$
d) $\mathrm{E} _{1}>\mathrm{E} _{3}>\mathrm{E} _{2}$
Show Answer
Answer:- bQuestion 12- The emf of the cell
$\mathrm{Zn} \mid \mathrm{Zn}^{2+}(0.1 \mathrm{M})$ II Fe $\mathrm{Fe}^{2+}(0.01 \mathrm{M})$ | Fe at $298 \mathrm{~K}$ is 0.2905 volt. The value of equilibrium constant for the cell reaction is
a) $e^{\dfrac{0.32}{0.0295}}$
b) $10^{\dfrac{0.32}{0.0295}}$
c) $10 \dfrac{0.26}{0.0295}$
d) $10 \dfrac{0.32}{0.0591}$
Show Answer
Answer:- bQuestion 13- Give $E _{Z n^{2}+\mathrm{Zn}}^{0}=-0.764 \mathrm{~V}$ and $E _{\mathrm{Cd}^{*}+\mathrm{Cd}}^{0}=-0.403 \mathrm{~V}$, the emf of the cell
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(a=0.04) | \mathrm{Cd}^{2+}(a=0.2)\right| \mathrm{Cd}$
will be given by
a) $E=-0.36+(0.059 / 2) \log (0.004 / 2)$
b) $E=+0.36+(0.059 / 2) \log (0.004 / 2)$
c) $E=-0.36+(0.059 / 2) \log (0.2 / 0.004)$
d) $E=+0.36+(0.059 / 2) \log (0.2 / 0.004)$
Show Answer
Answer:- dQuestion 14- A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{I}^{-}$ions. This solution was treated with iodine at $35^{\circ} \mathrm{C}$. $\mathrm{E}^{0}$ for $\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}$ is $+0.77 \mathrm{~V}$ and for $\mathrm{I} _{2} \mid 2 l^{\circ}$ is $0.536 \mathrm{~V}$. The favourable redox reaction is
a) $\mathrm{I} _{2}$ will be reduced to $\mathrm{I}$
b) There will be no redox reaction
c) I will be reduced to $I _{2}$
d) $\mathrm{Fe}^{2+}$ will be oxidized to $\mathrm{Fe}^{3+}$
Show Answer
Answer:- cQuestion 15- Given i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}, E^{0}=0.337 \mathrm{~V}$
ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}, \mathrm{E}^{0}=0.153 \mathrm{~V}$
Electrode potential, $E^{\circ}$ for the reaction, $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \longrightarrow$ Cu, will be
a) $0.90 \mathrm{~V}$
b) $0.30 \mathrm{~V}$
c) $0.38 \mathrm{~V}$
d) $0.52 \mathrm{~V}$
Show Answer
Answer:- dQuestion 16- On the basis of the following $E^{0}$ values, the strongest oxidizing agent is
$[\mathrm{Fe}(\mathrm{CN} _{6}]^{4-} \longrightarrow [\mathrm{Fe}(\mathrm{CN} _{6}]^{3-}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.35 \mathrm{~V}.$ $\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-} ; \mathrm{E}^{0}=-0.77 \mathrm{~V}$
a) $[\mathrm{Fe}(\mathrm{CN} _{6}]^{4-}$
b) $\mathrm{Fe}^{2+}$
c) $\mathrm{Fe}^{3+}$
d) $\left[\mathrm{Fe}(\mathrm{CN} _{6}\right]^{3-}.$
Show Answer
Answer:- cQuestion 17- If $\mathrm{Zn}^{2+} \mid \mathrm{Zn}$ electrode is diluted 100 times, then the change in emf is
a) increase of $59 \mathrm{mV}$
b) decrease of $59 \mathrm{mV}$
c) increase of $29.5 \mathrm{mV}$
d) decrease of $29.5 \mathrm{mV}$
Show Answer
Answer:- bQuestion 18- $\mathrm{Cr} _{2} \mathrm{O} _{7}^{2+}+\mathrm{I}^{\mathrm{L}} \longrightarrow \mathrm{I} _{2}+\mathrm{Cr}^{3+}, \mathrm{E} _{\mathrm{Cr} _{2} \mathrm{O} _{7}^{2}-1 \mathrm{Co}^{3+}}^{0}=1.33 \mathrm{~V}$
$E^{0}$ cell $=0.79 \mathrm{~V}$, Calculate $E _{{ } _{2}}^{0}{ }^{11}$
a) $0.54 \mathrm{~V}$
b) $-0.54 \mathrm{~V}$
c) $+0.18 \mathrm{~V}$
d) $-0.18 \mathrm{~V}$
Show Answer
Answer:- aQuestion 19- The standard reduction potential values of the three metallic cation $X, Y$ and $Z$ are $0.52,-3.03$ and $-1.18 \mathrm{~V}$ respectively. The order of reducing power of the corresponding metals is
a) $Y>Z>X$
b) $X>Y>Z$
c) $Z>Y>X$
d) $Z>X>Y$
Show Answer
Answer:- aQuestion 20- The potential of the cell containing two hydrogen electrodes, as represented below, $\mathrm{Pt}, \mathrm{H} _{2}(\mathrm{~g}) \mathrm{I}$ $\mathrm{H}^{+}\left(10^{-6} \mathrm{M}\right)|| \mathrm{H}^{+}\left(10^{-4} \mathrm{M}\right) \mid \mathrm{H} _{2}(\mathrm{~g})$, Pt at $298 \mathrm{~K}$ is
a) $-0.118 \mathrm{~V}$
b) $-0.0591 \mathrm{~V}$
c) $0.118 \mathrm{~V}$
d) $0.0591 \mathrm{~V}$
Show Answer
Answer:- cELECTRO CHEMISRY (ADVANCED) PRACTICE QUESTIONS
SUBJECTIVE QUESTIONS
Question 1- Given $\mathrm{H} _{2} \mathrm{O} _{2} \longrightarrow \mathrm{O} _{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \quad-\quad \mathrm{E}^{0}=-0.69 \mathrm{~V}$
$ \hspace{1cm} \begin{array}{ll} \mathrm{H} _{2} \mathrm{O} _{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H} _{2} \mathrm{O} & E^{0}=1.77 \mathrm{~V} \\ \mathrm{I}^{-} \longrightarrow \mathrm{I} _{2}+2 \mathrm{e}^{-} & E^{0}=-0.535 \mathrm{~V} \end{array} $
Predict whether $\mathrm{H} _{2} \mathrm{O} _{2}$ behaves as oxidant or reductant for $\mathrm{I} _{2} \mid \mathrm{I}^{-}$
Show Answer
Answer:-
$\mathrm{O} _{2}$ will act as the $\mathrm{OA}$ for $\mathrm{I} _{2} \mid \mathrm{I}^{-} $ electrode
Question 2- Peroxodisulphate salts (e.g., $\mathrm{Na} _{2} \mathrm{~S} _{2} \mathrm{O} _{8}$ ) are strong oxidising agents used as bleaching agents for fats, oils, and fabrics. Can oxygen gas oxidise sulphate ion to peroxodisulphate ion $\left(\mathrm{S} _{2} \mathrm{O} _{8}{ }^{2-}\right)$ in acidic solution with the $\mathrm{O} _{2}(\mathrm{~g})$ being reduced to water?
$\begin{aligned} & \text { Given : } \mathrm{O} _{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H} _{2} \mathrm{O}(\mathrm{l}) \\ & E^{0}=1.23 \mathrm{~V} \\ & \mathrm{~S} _{2} \mathrm{O} _{8}^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{SO} _{4}^{2-}(\mathrm{aq}) \\ & E^{0}=2.01 \mathrm{~V} \end{aligned}$
Show Answer
Answer:-
$\mathrm{O} _{2}$ will not oxidise $\mathrm{SO} _{4}{ }^{2 .}$
Question 3- Calculate $\mathrm{pH}$ of LHE in the following cell:
$\underset{\text{I bar}}{\mathrm{Pt}\left(\mathrm{H} _{2}\right)}\left|\mathrm{H}^{+}(\mathrm{x} \mathrm{M}) | \mathrm{H}^{+}(1 \mathrm{M})\right|\underset{\text{I bar}}{\left(\mathrm{H} _{2}\right)}$ Pt if $E _{\text {cell }}=0.2364 \mathrm{~V}$
Show Answer
Answer:-
$\mathrm{pH}=4.0$
Question 4- At what $\left[\mathrm{OH}^{-}\right]$does the following half-reaction has a potential of $0 \mathrm{~V}$ when other species are at $1 \mathrm{M}$ ?
$\mathrm{NO} _{3}^{-}+\mathrm{H} _{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{NO} _{2}^{-}+2 \mathrm{OH}, \quad E _{\text {cell }}^{0}=0.01 \mathrm{~V}$
Show Answer
Answer:-
$[\mathrm{OH}]=1.476 \mathrm{M}$
Question 5- (a) What is the e.m.f. of the following concentration cell at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(0.024 \mathrm{M})\right| \mid \mathrm{Zn}^{2+}(0.480 \mathrm{M})$ I Zn(s)
(b) If water is added to the solution in LHE, so that the $\left[\mathrm{Zn}^{2+}\right]$ is reduced to 0.012 . M. Will the cell voltage increase, decrease, or remain the same?
Show Answer
Answer:-
(a) $E=0.0384 \vee$
(b) $E=0.047 \mathrm{~V}$
Question 6- Given the following half-reactions and $E^{0}$ values
$\mathrm{Mn}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq}) E^{0}=1.54 \mathrm{~V}$
$\mathrm{MnO} _{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{3+}(\mathrm{aq})+2 \mathrm{H} _{2} \mathrm{O} \quad \mathrm{E}^{0}=0.95 \mathrm{~V}$
Does $\mathrm{Mn}^{3+}(\mathrm{aq})$ undergo disproportionation ?
Show Answer
Answer:-
Yes
Question 7- If $0.224 \mathrm{~L}$ of $\mathrm{H} _{2}$ gas is formed at the cathode of one cell at N.T.P., how much of $\mathrm{Mg}$ is formed at the cathode of the other electrolytic cell if the other cell is arranged in series?
Show Answer
Answer:-
$0.24 \mathrm{~g}$
Question 8- A certain amount of charge is passed through acidulated water. A total of $168 \mathrm{~mL}$ of hydrogen and oxygen were collected at STP. Find the magnitude of charge (in coulombs) passed during electrolysis.
Show Answer
Answer:-
$965 \mathrm{C}$
Question 9- A current passed through $500 \mathrm{~mL}$ of an aqueous solution of $\mathrm{Cal} _{2}$. After sometime, it is observed that 50 millimoles of $\mathrm{I} _{2}$ have been formed.
(a) How many faradays or charge have passed through the solution?
(b) What volume of dry $\mathrm{H} _{2}$ at NTP has been formed?
(c) What is the $\mathrm{pH}$ of the solution?
Show Answer
Answer:-
(a) $0.1 \mathrm{~F}$
(b) $1120 \mathrm{~mL}$
(c) $13.3$
Question 10- Electrolysis of a solution of $\mathrm{MnSO} _{4}$ in aqueous solution of sulphuric acid is a method for the preparation of $\mathrm{MnO} _{2}$. On passing a current of $25 \mathrm{~A}$ for 25 hours gives $1.0 \mathrm{Kg}$ of $\mathrm{MnO} _{2}$. (Molar mass of $\mathrm{MnO} _{2}=87$ )
(a) Find the current efficiency.
(b) Also find volume of $\mathrm{H} _{2}$ evolved at NTP during electrolysis.
Show Answer
Answer:-
(a) $98.66 \%$,
(b) $260.96 \mathrm{~L}$
OBJECTIVE QUESTIONS
Question 1- The standard electrode potential volues of three metallic cations, $X, Y, Z$ are $0.52,-3.03$ and $-1.18 \mathrm{~V}$, respectively. The order of reducing power of the corresponding metals is
(a) $Y>Z>X$
(b) $X>Y>Z$
(c) $Z>Y>X$
(d) $Z>X>Y$
Show Answer
Answer:- aQuestion 2- $A$ gas $Y$ at 1 bar is bubbled through a solution containing a mixture of $1 M X$ and $1 M Z$ at $25^{\circ} \mathrm{C}$. If the reduction potential of $Z>Y>X$, than
(a) $\mathrm{Y}$ will oxidise $\mathrm{X}$ and not $\mathrm{Z}$
(b) $Y$ will oxidise $Z$ and not $X$
(c) $\mathrm{Y}$ will oxidise both $\mathrm{X}$ and $\mathrm{Z}$
(d) $Y$ will reduce both $X$ and $Z$
Show Answer
Answer:- aQuestion 3- For the electrochemical cell, $\mathrm{M}\left|\mathrm{M}^{+} | \mathrm{X}\right| \mathrm{X}, E _{\mathrm{M}^{+} \mid \mathrm{M}}^{0}=0.44 \mathrm{~V}$ and $E^{0}{ } _{\mathrm{X} \mid \mathrm{X}^{-}}=0.33 \mathrm{~V}$. From this data one can deduct that
(a) $\mathrm{M}+\mathrm{X} \longrightarrow \mathrm{M}^{+}+\mathrm{X}$ is the spontaneous reaction
(b) $\mathrm{M}^{+}+\mathrm{X} \longrightarrow \mathrm{M}+\mathrm{X}$ is the spontaneous reaction
(c) $E _{\text {cell }}=0.77 \mathrm{~V}$
(d) $E _{\text {cell }}=-0.77 \mathrm{~V}$
Show Answer
Answer:- bQuestion 4- The reaction $1 / 2 \mathrm{H} _{2}(\mathrm{~g})+\mathrm{AgCl}(\mathrm{s}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$ occurs in the galvanic cell
(a) $\mathrm{Ag}|\mathrm{AgCl}(\mathrm{s})| \mathrm{KCl}(\mathrm{aq})|| \mathrm{AgNO} _{3}(\mathrm{aq}) \mid \mathrm{Ag}$
(b) $\mathrm{Pt}\left|\mathrm{H} _{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{aq}) | \mathrm{AgNO} _{3}(\mathrm{aq}) \mid \mathrm{Ag}$
(c) Pt $\left|\mathrm{H} _{2}(\mathrm{~g})\right| \mathrm{HCl}(\mathrm{aq}) | \mathrm{AgCl}(\mathrm{s}) \mid \mathrm{Ag}$
(d) Pt $\left|\mathrm{H} _{2}(\mathrm{~g})\right| \mathrm{KCl}(\mathrm{aq}) | \mathrm{AgCl}(\mathrm{s}) \mid \mathrm{Ag}$
Show Answer
Answer:- cQuestion 5- The standard reduction potentials, $\mathrm{E}^{0}$, for the half reaction are
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn} \quad \mathrm{E}^{0}=-0.76 \mathrm{~V} \quad$ and $\quad \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} \quad \mathrm{E}^{0}=-0.41 \mathrm{~V}$
The standard emf of the cell involving the reaction $\mathrm{Fe}^{2+}+\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$ is
(a) $-0.35 \mathrm{~V}$
(b) $+1.17 \mathrm{~V}$
(c) $+0.35 \mathrm{~V}$
(d) $-1.17 \mathrm{~V}$
Show Answer
Answer:- cQuestion 6- The value of $\mathrm{E} _{\mathrm{H}, 0 \mathrm{O} \mathrm{H} _{2}(\text { lara }) \mathrm{Pt}}$ at 298 would be
(a) $0.207 \mathrm{~V}$
(b) $-0.414 \mathrm{~V}$
(c) $-0.207 \mathrm{~V}$
(d) $0.414 \mathrm{~V}$
Show Answer
Answer:- bQuestion 7- The reduction potential $\mathrm{H}^{+}\left|\mathrm{H} _{2}\right| \mathrm{Pt}$ in $1 \mathrm{M} \mathrm{NaOH}$ solution at $25^{\circ} \mathrm{C}$ will be about
(a) $0.412 \mathrm{~V}$
(b) $0.828 \mathrm{~V}$
(c) $-0.414 \mathrm{~V}$
(d) $-0.828 \mathrm{~V}$
Show Answer
Answer:- dQuestion 8- The pressure of $\mathrm{H} _{2}$ required to make the potential of the hydrogen electrode in water equal to zero
(a) $10^{-7} \mathrm{bar}$
(b) $10^{-14}$ bar
(c) $10^{-5} \mathrm{bar}$
(d) $10^{-10} \mathrm{bar}$
Show Answer
Answer:- bQuestion 9- On diluting the concentration of mecurous chloride ten times, the change in potential of mercuric to mercurous at $298 \mathrm{~K}$ is
(a) increased by $0.059 \mathrm{~V}$
(b) decreased by $0.059 \mathrm{~V}$
(c) increased by $0.02915 \mathrm{~V}$
(d) decreased by $0.02915 \mathrm{~V}$
Show Answer
Answer:- cQuestion 10- The cell potential of $\mathrm{Ag}|\mathrm{AgBr}(\mathrm{s})| \mathrm{HBr}(0.02 \mathrm{M})\left|\mathrm{H} _{2}(0.5 \mathrm{~atm})\right| \mathrm{Pt}$ (Given $\mathrm{E} _{\text {Brr A A B }}^{0} \mathrm{ACQ}=0.071$ $\mathrm{V}$ ) is
(a) $0.26 \mathrm{~V}$
(b) $-0.26 \mathrm{~V}$
(c) $0.16 \mathrm{~V}$
(d) $-0.16 \mathrm{~V}$
Show Answer
Answer:- bQuestion 11- The standard reduction potentials of $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$ and $\mathrm{Cu}^{2+} \mid \mathrm{Cu}^{+}$are $0.337 \mathrm{~V}$ and $0.153 \mathrm{~V}$, respectively. The standard electrode potential of $\mathrm{Cu}^{+} \mathrm{I}$ Cu half cell is
(a) $0.184 \mathrm{~V}$
(b) $0.827 \mathrm{~V}$
(c) $0.521 \mathrm{~V}$
(d) $0.490 \mathrm{~V}$
Show Answer
Answer:- cQuestion 12- Given is the Latimer diagram in acidic medium $\left(\mathrm{H}^{+}=1 \mathrm{M}\right)$ :
The value of $\mathrm{E}^{0}$ would be
(a) $2.586 \mathrm{~V}$
(b) $0.594 \mathrm{~V}$
(c) $1.293 \mathrm{~V}$
(d) $-1.293 \mathrm{~V}$
Show Answer
Answer:- cQuestion 13- In acid medium, the standard reduction potential of $\mathrm{NO}$ converted to $\mathrm{N} _{2} \mathrm{O}$ is $1.59 \mathrm{~V}$. Its standard potential in alkaline medium would be
(a) $-1.59 \mathrm{~V}$
(b) $0.764 \mathrm{~V}$
(c) $-0.764 \mathrm{~V}$
(d) $0.062 \mathrm{~V}$
Show Answer
Answer:- bQuestion 14- For the cell, $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1 \mathrm{M}) | \mathrm{Sn}^{2+}(1 \mathrm{M})\right| \mathrm{Sn}, \mathrm{E}^{0}=0.6264 \mathrm{~V}$. The value of $\mathrm{K} _{\text {eq }}^{0}$ for the reaction $\mathrm{Sn}+\mathrm{Zn}^{2+} \rightleftharpoons \mathrm{Zn}+\mathrm{Sn}^{2+}$ will be given by the expression
(a) $\log K _{\text {eq }}^{0}=21.23$
(b) $\log K _{\text {eq }}^{0}=-21.23$
(c) $\operatorname{In} \mathrm{K} _{\text {eq }}^{0}=21.23$
(d) $\operatorname{In} K _{\text {eq }}^{0}=-21.23$
Show Answer
Answer:- bQuestion 15- At $25^{\circ} \mathrm{C}, \mathrm{E}^{0}$ for the reaction $\mathrm{Cu}^{2+}+\mathrm{Sn}(\mathrm{s}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Sn}^{2+}$ is $0.48 \mathrm{~V}$, the standard equilibrium constant for the reaction is
(a) $1.3 \times 10^{8}$
(b) $6.8 \times 10^{4}$
(c) $4.9 \times 10^{20}$
(d) $1.8 \times 10^{16}$
Show Answer
Answer:- dQuestion 16- The ionic product of water at $298 \mathrm{~K}$ is $10^{-14} \mathrm{M}^{2}$. The standard emf of the cell producing the reaction $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H} _{2} \mathrm{O}(\mathrm{I})$ will be
(a) $\quad 0.723 \mathrm{~V}$
(b) $-0.723 \mathrm{~V}$
(c) $\quad 0.82 \mathrm{~V}$
(d) $-0.82 \mathrm{~V}$
Show Answer
Answer:- bQuestion 17- For the reaction $\mathrm{MnO} _{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H} _{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$, it is given that $\mathrm{E} _{\mathrm{MnO} _{4} ; \mathrm{H}^{+}, \mathrm{Mn}^{2+} / \mathrm{Pt}}^{0}=$ $1.51 \mathrm{~V}$ and $\mathrm{E} _{\mathrm{Fe}^{3}+\mathrm{Fe}}^{0} \mathrm{eq}^{2+1 \mathrm{Pt}}=0.77 \mathrm{~V}$.
(i) The contribution made to the standard emf of the cell by the oxidation half cell is
(a) $\quad 0.77 \mathrm{~V}$
(b) $-0.77 \mathrm{~V}$
(c) $\quad 1.51 \mathrm{~V}$
(d) $-1.51 \mathrm{~V}$
Show Answer
Answer:- b(ii) The contribution made to the standard emf of the cell by the reduction half cell is
(a) $\quad 0.77 \mathrm{~V}$
(b) $-0.77 \mathrm{~V}$
(c) $\quad 1.51 \mathrm{~V}$
(d) $-1.51 \mathrm{~V}$
Show Answer
Answer:- c(iii) Increasing $\mathrm{pH}$ of the solution causes
(a) increase in cell potential
(b) decrease in cell potential
(c) no change in cell potential
(d) change in cell potential which cannot be predicted
Show Answer
Answer:- bQuestion 18- For the reaction $\mathrm{MnO} _{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H} _{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$, it is given that $\mathrm{E} _{\mathrm{MnO} _{4}-\mathrm{H}^{+} / \mathrm{Pt}^{-}}^{0}=$ $1.51 \mathrm{~V}$ and $\mathrm{E} _{\mathrm{Fe}^{3}+\mathrm{Fe}}^{0} \mathrm{e}^{2+1 \mathrm{Pt}}=0.77 \mathrm{~V}$
(i) the cell emf could be increased above the standard emf by
(a) increasing $\left[\mathrm{Mn}^{2+}\right]$
(b) increasing $\left[\mathrm{Fe}^{3+}\right]$
(c) decreasing $\left[\mathrm{MnO} _{4}\right]$
(d) decreasing $\mathrm{pH}$ of the solution
Show Answer
Answer:- d(ii) Reduction of $\left[\mathrm{Fe}^{3+}\right]$ to $0.50 \mathrm{M}$ keeping all other concentrations at unity, the emf of the cell will be changed by
(a) $-0.059 \mathrm{~V}$
(b) $-0.0178 \mathrm{~V}$
(c) $\quad 0.059 \mathrm{~V}$
(d) $\quad 0.0178 \mathrm{~V}$
Show Answer
Answer:- d(iii) Reduction of $\left[\mathrm{MnO} _{4}\right]$ to $0.50 \mathrm{M}$ keeping all other concentrations at unity, the emf of the cell will be changed by
(a) $-0.018 \mathrm{~V}$
(b) $\quad 0.0036 \mathrm{~V}$
(c) $\quad 0.018 \mathrm{~V}$
(d) $-0.0036 \mathrm{~V}$
Show Answer
Answer:- dQuestion 19- Given is the following data.
(i) What is the change in Gibbs energy when $\mathrm{Cu}^{2+}$ is converted into $\mathrm{Cu}^{+}$under standard condition?
(a) $-17370 \mathrm{~J} \mathrm{~mol}^{-1}$
(b) $-82990 \mathrm{~J} \mathrm{~mol}^{-1}$
(c) $-15440 \mathrm{~J} \mathrm{~mol}^{-1}$
(d) $-67550 \mathrm{~J} \mathrm{~mol}^{-1}$
Show Answer
Answer:- c(ii) The value of $E^{0}$ shown in the above
(a) $0.18 \mathrm{~V}$
(b) $0.86 \mathrm{~V}$
(c) $0.36 \mathrm{~V}$
(d) $0.16 \mathrm{~V}$
Show Answer
Answer:- d(iii) Which of the following can show disproportionation reaction?
(a) $\mathrm{Cu}^{2+}$
(b) $\mathrm{Cu}^{+}$
(c) $\mathrm{Cu}$
(d) none of these