Unit 4 Chemical Kinetics (Intext Questions-4)
Intext Questions
4.7 What will be the effect of temperature on rate constant ?
Show Answer
Answer
The rate constant of a reaction is nearly doubled with a $10^{\circ}$ rise in temperature. However, the exact dependence of the rate of a chemical reaction on temperature is given by Arrhenius equation,
$k=\mathrm{Ae}^{-E \mathrm{a} / R T}$
Where,
$A$ is the Arrhenius factor or the frequency factor
Tis the temperature
Ris the gas constant
$E_{a}$ is the activation energy
4.8 The rate of the chemical reaction doubles for an increase of $10 \mathrm{~K}$ in absolute temperature from 298K. Calculate $E_{\text {a }}$.
Show Answer
Answer
It is given that $T_{1}=298 \mathrm{~K}$
$\therefore T_{2}=(298+10) \mathrm{K}$
$=308 \mathrm{~K}$
We also know that the rate of the reaction doubles when temperature is increased by $10^{\circ}$.
Therefore, let us take the value of $k_{1}=k$ and that of $k_{2}=2 k$
Also, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Now, substituting these values in the equation:
$\log \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$
We get:
$\log \frac{2 k}{k}=\frac{E_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]$
$\Rightarrow \log 2=\frac{E_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]$
$\Rightarrow E_{\mathrm{a}}=\frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}$
$=52897.78 \mathrm{~J} \mathrm{~mol}^{-1}$
$=52.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Note: There is a slight variation in this answer and the one given in the NCERT textbook.
4.9 The activation energy for the reaction $ 2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H_2}+\mathrm{I_2}(\mathrm{~g}) $ is $209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $581 \mathrm{~K}$.Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?
Show Answer
Answer
In the given case:
$E_{\mathrm{a}}=209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}=209500 \mathrm{~J} \mathrm{~mol}^{-1}$
$T=581 \mathrm{~K}$
$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as: $x=e-E a / R T \Rightarrow \operatorname{In} x=-E$