Unit 2 Solutions (Intext Questions-2)
Intext Questions
2.6 $\mathrm{H_2} \mathrm{~S}$, a toxic gas with rotten egg like smell, is used for the qualitative analysis. If the solubility of $\mathrm{H_2} \mathrm{~S}$ in water at STP is $0.195 \mathrm{~m}$, calculate Henry’s law constant.
Show Answer
Answer
It is given that the solubility of $\mathrm{H_2} \mathrm{~S}$ in water at STP is $0.195 \mathrm{~m}$, i.e., 0.195 mol of $\mathrm{H_2} \mathrm{~S}$ is dissolved in $1000 \mathrm{~g}$ of water.
Moles of water $=\frac{1000 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}$
$=55.56 \mathrm{~mol}$
$$ =\frac{0.195}{0.195+55.56} $$
$$ =\frac{\text { Moles of } \mathrm{H_2} \mathrm{~S}}{\text { Moles of } \mathrm{H_2} \mathrm{~S}+\text { Moles of water }} $$
$=0.0035$
At STP, pressure $(p)=0.987$ bar
According to Henry’s law:
$p=\mathrm{K_\mathrm{H}} X$
$\Rightarrow \mathrm{K_\mathrm{H}}=\frac{p}{x}$
$$ =\frac{0.987}{0.0035} \text { bar } $$
$=282$ bar
2.7 Henry’s law constant for $\mathrm{CO_2}$ in water is $1.67 \times 10^{8} \mathrm{~Pa}$ at $298 \mathrm{~K}$. Calculate the quantity of $\mathrm{CO_2}$ in $500 \mathrm{~mL}$ of soda water when packed under $2.5 \mathrm{~atm}$ $\mathrm{CO_2}$ pressure at $298 \mathrm{~K}$.
Show Answer
Answer
It is given that:
$\mathrm{K_\mathrm{H}}=1.67 \times 10^{8} \mathrm{~Pa}$
$$ p_{\mathrm{CO_2}}=2.5 \mathrm{~atm}=2.5 \times 1.01325 \times 10^{5} \mathrm{~Pa} $$
$=2.533125 \times 10^{5} \mathrm{~Pa}$
According to Henry’s law:
$$ \begin{aligned} p_{\mathrm{CO_2}} & =\mathrm{K_\mathrm{H}} x \\ \Rightarrow x & =\frac{p_{\mathrm{CO_2}}}{\mathrm{~K_\mathrm{H}}} \\ & =\frac{2.533125 \times 10^{5}}{1.67 \times 10^{8}} \end{aligned} $$
$=0.00152$
We can write,
$$ x=\frac{n_{\mathrm{CO_2}}}{n_{\mathrm{CO_2}}+n_{\mathrm{H_2} \mathrm{O}}} \approx \frac{n_{\mathrm{CO_2}}}{n_{\mathrm{H_2} \mathrm{O}}} $$
[Since, $n_{\mathrm{CO_2}}$ is negligible as compared to ${ }^{n_{\mathrm{H_2} \mathrm{O}}}$ ]
In $500 \mathrm{~mL}$ of soda water, the volume of water $=500 \mathrm{~mL}$
[Neglecting the amount of soda present]
We can write:
$500 \mathrm{~mL}$ of water $=500 \mathrm{~g}$ of water
$=\frac{500}{18} \mathrm{~mol}$ of water
$=27.78 \mathrm{~mol}$ of water
Now, $\frac{n_{\mathrm{CO_2}}}{n_{\mathrm{H_2} \mathrm{O}}}=x$
$\frac{n_{\mathrm{CO_2}}}{27.78}=0.00152$
$n_{\mathrm{CO_2}}=0.042 \mathrm{~mol}$
Hence, quantity of $\mathrm{CO_2}$ in $500 \mathrm{~mL}$ of soda water $=(0.042 \times 44) \mathrm{g}$
$=1.848 \mathrm{~g}$