Unit 2 Solutions (Intext Questions-1)
Intext Questions
2.1 Calculate the mass percentage of benzene $\left(\mathrm{C_6} \mathrm{H_6}\right)$ and carbon tetrachloride $\left(\mathrm{CCl_4}\right)$ if $22 \mathrm{~g}$ of benzene is dissolved in $122 \mathrm{~g}$ of carbon tetrachloride.
Show Answer
Answer
Mass percentage of $\mathrm{C_6} \mathrm{H_6}$
$$ =\frac{\text { Mass of } \mathrm{C_6} \mathrm{H_6}}{\text { Total mass of the solution }} \times 100 \% $$
$$ \begin{aligned} & =\frac{\text { Mass of } \mathrm{C_6} \mathrm{H_6}}{\text { Mass of } \mathrm{C_6} \mathrm{H_6}+\text { Mass of } \mathrm{CCl_4}} \times 100 \% \\ & =\frac{22}{22+122} \times 100 \% \\ & =15.28 \% \end{aligned} $$
Mass percentage of $\mathrm{CCl_4} \quad$ Total mass of the solution
$$ =\frac{\text { Mass of } \mathrm{CCl_4}}{\text { Total mass of the solution }} \times 100 \% $$
$$ =\frac{\text { Mass of } \mathrm{CCl_4}}{\text { Mass of } \mathrm{C_6} \mathrm{H_6}+\text { Mass of } \mathrm{CCl_4}} \times 100 \% $$
$=\frac{122}{22+122} \times 100 \%$
$=84.72 \%$
Alternatively,
Mass percentage of $\mathrm{CCl_4}=(100-15.28) \%$
$=84.72 \%$
2.2 Calculate the mole fraction of benzene in solution containing $30 \%$ by mass in carbon tetrachloride.
Show Answer
Answer
Let the total mass of the solution be $100 \mathrm{~g}$ and the mass of benzene be $30 \mathrm{~g}$.
$\therefore$ Mass of carbon tetrachloride $=(100-30) \mathrm{g}$
$=70 \mathrm{~g}$
Molar mass of benzene $\left(\mathrm{C_6} \mathrm{H_6}\right)=(6 \times 12+6 \times 1) \mathrm{g} \mathrm{mol}^{-1}$
$=78 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore$ Number of moles of
$$ \mathrm{C_6} \mathrm{H_6}=\frac{30}{78} \mathrm{~mol} $$
$=0.3846 \mathrm{~mol}$
Molar mass of carbon tetrachloride $\left(\mathrm{CCl_4}\right)=1 \times 12+4 \times 355$
$=154 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore$ Number of moles of $\mathrm{CCl_4}=\frac{70}{154} \mathrm{~mol}$
$=0.4545 \mathrm{~mol}$
Thus, the mole fraction of $\mathrm{C_6} \mathrm{H_6}$ is given as:
Number of moles of $\mathrm{C_6} \mathrm{H_6}$
Number of moles of $\mathrm{C_6} \mathrm{H_6}+$ Number of moles of $\mathrm{CCl_4}$
$=\frac{0.3846}{0.3846+0.4545}$
$=0.458$
2.3 Calculate the molarity of each of the following solutions:
(a) $30 \mathrm{~g}$ of $\mathrm{Co}\left(\mathrm{NO_3}\right)_{2} .6 \mathrm{H_2} \mathrm{O}$ in $4.3 \mathrm{~L}$ of solution
(b)30 $\mathrm{mL}$ of $0.5 \mathrm{M} \mathrm{H_2} \mathrm{SO_4}$ diluted to $500 \mathrm{~mL}$.
Show Answer
Answer
Molarity is given by:
$$ \text { Molarity }=\frac{\text { Moles of solute }}{\text { Volume of solution in litre }} $$
(a) Molar mass of $\mathrm{Co}\left(\mathrm{NO_3}\right)_{2} \cdot 6 \mathrm{H_2} \mathrm{O}=59+2(14+3 \times 16)+6 \times 18$
$=291 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore$ Moles of $\mathrm{Co}\left(\mathrm{NO_3}\right)_{2} \cdot 6 \mathrm{H_2} \mathrm{O}=\frac{30}{291} \mathrm{~mol}$
$=0.103 \mathrm{~mol}$
Therefore, molarity $=\frac{0.103 \mathrm{~mol}}{4.3 \mathrm{~L}}$
$=0.023 \mathrm{M}$
(b) Number of moles present in $1000 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{H_2} \mathrm{SO_4}=0.5 \mathrm{~mol}$ $\therefore$ Number of moles present in $30 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{H_2} \mathrm{SO_4}=\frac{0.5 \times 30}{1000} \mathrm{~mol}$
$=0.015 \mathrm{~mol}$
Therefore, molarity
$$ =\frac{0.015}{0.5 \mathrm{~L}} \mathrm{~mol} $$
$=0.03 \mathrm{M}$
2.4 Calculate the mass of urea $\left(\mathrm{NH_2} \mathrm{CONH_2}\right)$ required in making $2.5 \mathrm{~kg}$ of 0.25 molal aqueous solution.
Show Answer
Answer
Molar mass of urea $\left(\mathrm{NH_2} \mathrm{CONH_2}\right)=2(1 \times 14+2 \times 1)+1 \times 12+1 \times 16$
$=60 \mathrm{~g} \mathrm{~mol}^{-1}$
0.25 molar aqueous solution of urea means:
$1000 \mathrm{~g}$ of water contains $0.25 \mathrm{~mol}=(0.25 \times 60) \mathrm{g}$ of urea
$=15 \mathrm{~g}$ of urea
That is,
$(1000+15) \mathrm{g}$ of solution contains $15 \mathrm{~g}$ of urea
Therefore, $2.5 \mathrm{~kg}(2500 \mathrm{~g})$ of solution contains
$$ =\frac{15 \times 2500}{1000+15} \mathrm{~g} $$
$=36.95 \mathrm{~g}$
$=37 \mathrm{~g}$ of urea (approximately)
Hence, mass of urea required $=37 \mathrm{~g}$
Note:There is a slight variation in this answer and the one given in the NCERT textbook.
2.5 Calculate (a)molality (b)molarity and (c)mole fraction of $\mathrm{KI}$ if the density of $20 \%$ (mass/mass) aqueous $\mathrm{KI}$ is $1.202 \mathrm{~g} \mathrm{~mL}^{-1}$.
Show Answer
Answer
(a) Molar mass of $\mathrm{KI}=39+127=166 \mathrm{~g} \mathrm{~mol}^{-1}$
$20 \%$ (mass/mass) aqueous solution of $\mathrm{KI}$ means $20 \mathrm{~g}$ of $\mathrm{KI}$ is present in $100 \mathrm{~g}$ of solution.
That is, $20 \mathrm{~g}$ of KI is present in $(100-20) \mathrm{g}$ of water $=80 \mathrm{~g}$ of water
Therefore, molality of the solution
$$ =\frac{\text { Moles of KI }}{\text { Mass of water in } \mathrm{kg}} $$
$=\frac{\frac{20}{166}}{0.08} \mathrm{~m}$
$=1.506 \mathrm{~m}$
$=1.51 \mathrm{~m}$ (approximately)
(b) It is given that the density of the solution $=1.202 \mathrm{~g} \mathrm{~mL}^{-1}$
$=\frac{100 \mathrm{~g}}{1.202 \mathrm{~g} \mathrm{~mL}^{-1}}$
$$ =\frac{\text { Mass }}{\text { Density }} $$
$=83.19 \mathrm{~mL}$
$=83.19 \times 10^{-3} \mathrm{~L}$
Therefore, molarity of the solution
$$ =\frac{\frac{20}{166} \mathrm{~mol}}{83.19 \times 10^{-3} \mathrm{~L}} $$
$=1.45 \mathrm{M}$
(c) Moles of KI
$$ =\frac{20}{166}=0.12 \mathrm{~mol} $$
Moles of water
$$ =\frac{80}{18}=4.44 \mathrm{~mol} $$
Therefore, mole fraction of $\mathrm{KI}$
$$ =\frac{\text { Moles of KI }}{\text { Moles of KI }+ \text { Moles of water }} $$
$$ =\frac{0.12}{0.12+4.44} $$
$=0.0263$