Unit 13 Amines (Intext Questions-3)
Intext Questions
13.4 Arrange the following in increasing order of their basic strength:
(i) $\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}, \mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}, \mathrm{NH_3}, \mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}$ and $\left(\mathrm{C_2} \mathrm{H_5}\right)_{2} \mathrm{NH}$
(ii) $\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2},\left(\mathrm{C_2} \mathrm{H_5}\right)_2 \mathrm{NH},\left(\mathrm{C_2} \mathrm{H_5}\right)_3 \mathrm{~N}, \mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$
(iii) $\mathrm{CH_3} \mathrm{NH_2},\left(\mathrm{CH_3}\right)_2 \mathrm{NH},\left(\mathrm{CH_3}\right)_3 \mathrm{~N}, \mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}, \mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}$.
Show Answer
Answer
(i) Considering the inductive effect of alkyl groups, $\mathrm{NH_3}, \mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}$, and $\left(\mathrm{C_2} \mathrm{H_5}\right)_{2} \mathrm{NH}$ can be arranged in the increasing order of their basic strengths as:
$ \mathrm{NH_3}<\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}<\left(\mathrm{C_2} \mathrm{H_5}\right)_{2} \mathrm{NH} $
Again, $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$ has proton acceptability less than $\mathrm{NH_3}$. Thus, we have:
$ \mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}<\mathrm{NH_3}<\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}<\left(\mathrm{C_2} \mathrm{H_5}\right)_{2} \mathrm{NH} $
Due to the - I effect of $\mathrm{C_6} \mathrm{H_5}$ group, the electron density on the $\mathrm{N}$-atom in $\mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}$ is lower than that on the $\mathrm{N}$-atom in $\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}$, but more than that in $\mathrm{NH_3}$. Therefore, the given compounds can be arranged in the order of their basic strengths as:
$ \mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}<\mathrm{NH_3}<\mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}<\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}<\left(\mathrm{C_2} \mathrm{H_5}\right)_{2} \mathrm{NH} $
(ii) Considering the inductive effect and the steric hindrance of the alkyl groups, $\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}$, $\left(\mathrm{C_2} \mathrm{H_5}\right)_{2} \mathrm{NH_2}$ and their basic strengths as follows:
$ \mathrm{C _2} \mathrm{H _5} \mathrm{NH _2}<\left(\mathrm{C _2} \mathrm{H _5}\right) _{3} \mathrm{~N}<\left(\mathrm{C _2} \mathrm{H _5}\right) _{2} \mathrm{NH} $
Again, due to the - $\mathrm{R}$ effect of $\mathrm{C_6} \mathrm{H_5}$ group, the electron density on the $\mathrm{N}$ atom in $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$ is lower than that on the $\mathrm{N}$ atom in $\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}$. Therefore, the basicity of $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$ is lower than that of $\mathrm{C_2} \mathrm{H_5} \mathrm{NH_2}$. Hence, the given compounds can be arranged in the increasing order of their basic strengths as follows:
$ \mathrm{C _6} \mathrm{H _5} \mathrm{NH _2}<\mathrm{C _2} \mathrm{H _5} \mathrm{NH _2}<\left(\mathrm{C _2} \mathrm{H _5}\right) _{3} \mathrm{~N}<\left(\mathrm{C _2} \mathrm{H _5}\right) _{2} \mathrm{NH} $
(iii) Considering the inductive effect and the steric hindrance of alkyl groups, $\mathrm{CH _3} \mathrm{NH _2}$, $\left(\mathrm{CH _3}\right) _{2} \mathrm{NH}$, and $\left(\mathrm{CH _3}\right) _{3} \mathrm{~N}$ can be arranged in the increasing order of their basic strengths as:
$ \left(\mathrm{CH _3}\right) _{3} \mathrm{~N}<\mathrm{CH _3} \mathrm{NH _2}<\left(\mathrm{CH _3}\right) _{2} \mathrm{NH} $
In $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}, \mathrm{~N}$ is directly attached to the benzene ring. Thus, the lone pair of electrons on the $\mathrm{N}$ atom is delocalized over the benzene ring. In $\mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}, \mathrm{~N}$ is not directly attached to the benzene ring. Thus, its lone pair is not delocalized over the benzene ring. Therefore, the electrons on the $\mathrm{N}$ atom are more easily available for protonation in $\mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}$ than in $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$ i.e., $\mathrm{C_6} \mathrm{H_5} \mathrm{CH_2} \mathrm{NH_2}$ is more basic than $\mathrm{C_6} \mathrm{H_5} \mathrm{NH_2}$.
Again, due to the - I effect of $\mathrm{C _6} \mathrm{H _5}$ group, the electron density on the $\mathrm{N}$ - atom in $\mathrm{C _6} \mathrm{H _5} \mathrm{CH _2} \mathrm{NH_2}$ is lower than that on the $\mathrm{N}$ - atom in $\left(\mathrm{CH _3}\right) _{3} \mathrm{~N}$. Therefore, $\left(\mathrm{CH _3}\right) _{3} \mathrm{~N}$ is more basic than $\mathrm{C _6} \mathrm{H _5} \mathrm{CH _2} \mathrm{NH_2}$. Thus, the given compounds can be arranged in the increasing order of their basic strengths as follows.
$ \mathrm{C _6} \mathrm{H _5} \mathrm{NH _2}<\mathrm{C _6} \mathrm{H _5} \mathrm{CH _2} \mathrm{NH _2}<\left(\mathrm{CH _3}\right) _{3} \mathrm{~N}<\mathrm{CH _3} \mathrm{NH _2}<\left(\mathrm{CH _3}\right) _{2} \mathrm{NH} $
13.5 Complete the following acid-base reactions and name the products:
(i) $\mathrm{CH_3} \mathrm{CH_2} \mathrm{CH_2} \mathrm{NH_2}+\mathrm{HCl} \rightarrow$
(ii) $\left(\mathrm{C_2} \mathrm{H_5}\right)_{3} \mathrm{~N}+\mathrm{HCl} \rightarrow$
Show Answer
Answer
(i) $ \underset{n-\text{Propylamine}}{\mathrm{CH_3} \mathrm{CH_2} \mathrm{CH_2} \mathrm{NH_2}}+\mathrm{HCl} \longrightarrow \underset{n-\text{Propylammoniumchloride}}{\mathrm{CH_3} \mathrm{CH_2} \mathrm{CH_2} \mathrm{NH_3} \stackrel{+}{\mathrm{Cl}}} $
(ii)
$\underset{\text { Triethylamine }}{\left(\mathrm{C}_2 \mathrm{H}_5\right)_3 \mathrm{~N}}+\mathrm{HCl} \longrightarrow \underset{\text { Triemethylammoniumchloride }}{\left(\mathrm{C}_2 \mathrm{H}_5\right)_3 \mathrm{\stackrel{+}{N}H_3} \stackrel{-}{\mathrm{Cl}}}$
13.6 Write reactions of the final alkylation product of aniline with excess of methyl iodide in the presence of sodium carbonate solution.
Show Answer
Answer
Aniline reacts with methyl iodide to produce N, N-dimethylaniline.
With excess methyl iodide, in the presence of $\mathrm{Na} 2 \mathrm{CO} 3$ solution, $\mathrm{N}, \mathrm{N}$-dimethylaniline produces $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylanilinium carbonate.
13.7 Write chemical reaction of aniline with benzoyl chloride and write the name of the product obtained.
Show Answer
Answer
13.8 Write structures of different isomers corresponding to the molecular formula, $\mathrm{C_3} \mathrm{H_9} \mathrm{~N}$. Write IUPAC names of the isomers which will liberate nitrogen gas on treatment with nitrous acid.
Show Answer
Answer
The structures of different isomers corresponding to the molecular formula, $\mathrm{C_3} \mathrm{H_9} \mathrm{~N}$ are given below:
(a) $\mathrm{CH_3}-\mathrm{CH_2}-\mathrm{CH_2}-\mathrm{NH_2}$
Propan-1-amine $\left(1^{\circ}\right)$
(b)
Propan-2-amine $\left(1^{\circ}\right)$
(c)
$\mathrm{CH_3}-\mathrm{NH}-\mathrm{C_2} \mathrm{H_5}$
$\mathrm{N}$-Methylethanamine $\left(2^{0}\right)$
(d)
N,N-Dimethylmethanamine $\left(3^{0}\right)$
$\left(1^{0}\right)$ amines, (a) propan-1-amine, and (b) Propan-2-amine will liberate nitrogen gas on treatment with nitrous acid.
$ \underset{\text{Propan-1-amine}}{\mathrm{CH_3} \mathrm{CH_2} \mathrm{CH_2} \mathrm{NH_2}}+\mathrm{HNO_2} \longrightarrow \underset{\text{Propan-1-ol}}{\mathrm{CH_3} \mathrm{CH_2} \mathrm{CH_2} \mathrm{OH}}+\mathrm{N_2}+\mathrm{HCl} $