Thermodynamics

Exercise

6.1 Choose the correct answer.

A thermodynamic state function is a quantity

(i) used to determine heat changes

(ii) whose value is independent of path

(iii) used to determine pressure volume work

(iv) whose value depends on temperature only.

Show Answer

Answer

A thermodynamic state function is a quantity whose value is independent of a path.

Functions like $p, V$, Tetc. depend only on the state of a system and not on the path.

Hence, alternative (ii) is correct.

6.2 For the process to occur under adiabatic conditions, the correct condition is:

(i) $\Delta T=0$

(ii) $\Delta p=0$

(iii) $q=0$

(iv) $\mathrm{w}=0$

Show Answer

Answer

A system is said to be under adiabatic conditions if there is no exchange of heat between the system and its surroundings. Hence, under adiabatic conditions, $q=0$.

Therefore, alternative (iii) is correct.

6.3 The enthalpies of all elements in their standard states are:

(i) unity

(ii) zero

(iii) $<0$

(iv) different for each element

Show Answer

Answer

The enthalpy of all elements in their standard state is zero.

Therefore, alternative (ii) is correct.

6.4 $\Delta U^{\ominus}$ of combustion of methane is $-\mathrm{X} \mathrm{kJ} \mathrm{mol}^{-1}$. The value of $\Delta H^{\ominus}$ is

(i) $=\Delta U^{\ominus}$

(ii) $>\Delta U^{\ominus}$

(iii) $<\Delta U^{\ominus}$

(iv) $=0$

Show Answer

Answer

Since $ \Delta H^{\ominus} = \Delta U^{\ominus} + \Delta n_gRT \text{ and } \Delta U^{\ominus} = -X KJmol^{-1} $

$\Delta H^{\ominus}=(-X)+\Delta n_g R T$.

$\Rightarrow \Delta H^{\ominus}<\Delta U^{\ominus}$

Therefore, alternative (iii) is correct.

6.5 The enthalpy of combustion of methane, graphite and dihydrogen at $298 \mathrm{~K}$ are, $-890.3 \mathrm{~kJ} \mathrm{~mol}^{-1}-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Enthalpy of formation of $\mathrm{CH_4}(\mathrm{~g})$ will be

(i) $\quad-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

(ii) $-52.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$

(iii) $+74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

(iv) $+52.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Show Answer

Answer

According to the question, (i) $\quad CH _{4(g)}+2 O _{2(g)} \longrightarrow CO _{2(g)}+2 H_2 O _{(g)}$

$ \Delta H=-890.3 kJ mol^{-1} $

(ii) $C _{(s)}+O _{2(g)} \longrightarrow CO _{2(g)}$

$ \Delta H=-393.5 kJ mol^{-1} $

(iii) $2 H _{2(g)}+O _{2(g)} \longrightarrow 2 H_2 O _{(g)}$

$ \Delta H=-285.8 kJ mol^{-1} $

Thus, the desired equation is the one that represents the formation of $CH_4$ (g).e.,

$C _{(s)}+2 H _{2(g)} \longrightarrow CH _{4(g)}$

$\Delta_f H _{CH_4}=\Delta_c H_c+2 \Delta_c H _{H_2}-\Delta_c H _{CO_2}$

$=[-393.5+2(-285.8)-(-890.3)] kJ mol^{-1}$

$=-74.8 kJ mol^{-1}$

$\therefore$ Enthalpy of formation of $CH _{4(g)}=- 74.8 kJ$ mol

Hence, alternative (i) is correct.

6.6 A reaction, $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{q}$ is found to have a positive entropy change. The reaction will be

(i) possible at high temperature

(ii) possible only at low temperature

(iii) not possible at any temperature

(v) possible at any temperature

Show Answer

Answer

For a reaction to be spontaneous, $\Delta G$ should be negative.

$\Delta G=\Delta H-T \Delta S$

According to the question, for the given reaction,

$\Delta S=$ positive

$\Delta H=$ negative (since heat is evolved)

$\Rightarrow \Delta G=$ negative

Therefore, the reaction is spontaneous at any temperature.

Hence, alternative (iv) is correct.

6.7 In a process, $701 \mathrm{~J}$ of heat is absorbed by a system and $394 \mathrm{~J}$ of work is done by the system. What is the change in internal energy for the process?

Show Answer

Answer

According to the first law of thermodynamics,

$\Delta U=q+W(i)$

Where,

$\Delta U=$ change in internal energy for a process

$q=$ heat

$W=$ work

Given,

$q=+701 J$ (Since heat is absorbed)

W= $-394 J$ (Since work is done by the system)

Substituting the values in expression (i), we get

$\Delta U=701 J+(-394 J)$

$\Delta U=307 J$

Hence, the change in internal energy for the given process is $307 J$.

6.8 The reaction of cyanamide, $\mathrm{NH_2} \mathrm{CN}$ (s), with dioxygen was carried out in a bomb calorimeter, and $\Delta U$ was found to be $-742.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $298 \mathrm{~K}$. Calculate enthalpy change for the reaction at $298 \mathrm{~K}$.

$\mathrm{NH_2} \mathrm{CN}(\mathrm{g})+\frac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{N_2}(\mathrm{~g})+\mathrm{CO_2}(\mathrm{~g})+\mathrm{H_2} \mathrm{O}(\mathrm{l})$

Show Answer

Answer

Enthalpy change for a reaction $(\Delta H)$ is given by the expression,

$\Delta H=\Delta U+\Delta n_g R T$

Where,

$\Delta U=$ change in internal energy

$\Delta n_g=$ change in number of moles

For the given reaction,

$\Delta n_g=\sum n_g$ (products) - $\sum n_g$ (reactants)

=(2 - 1.5) moles

$\Delta n_g=0.5$ moles

And,

$\Delta U=-742.7 kJ mol^{-1}$

$T=298 K$

$R=8.314 \times 10^{-3} kJ mol^{-1} K^{-1}$

Substituting the values in the expression of $\Delta H$ :

$\Delta H=(-742.7 kJ mol^{-1})+(0.5 mol)(298 K)(8.314 \times 10^{-3} kJ mol^{-1} K^{-1})$

$=-742.7+1.2$

$\Delta H=-741.5 kJ mol^{-1}$

6.9 Calculate the number of $\mathrm{kJ}$ of heat necessary to raise the temperature of $60.0 \mathrm{~g}$ of aluminium from $35^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Molar heat capacity of $\mathrm{Al}$ is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

Show Answer

Answer

From the expression of heat $(q)$,

$q=m . c . \Delta T$

Where,

$c=$ molar heat capacity

$m=$ mass of substance

$\Delta T=$ change in temperature

Substituting the values in the expression of $q$ :

$q=(\frac{60}{27} mol)(24 J mol^{-1} K^{-1})(20 K)$

$q=1066.7 J$

$q=1.07 kJ$

6.10 Calculate the enthalpy change on freezing of $1.0 \mathrm{~mol}$ of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10.0^{\circ} \mathrm{C}$. $\Delta_{\text {fus }} H=6.03 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $0^{\circ} \mathrm{C}$.

$$ \begin{aligned} & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\ & C_p\left[\mathrm{H}_2 \mathrm{O}(\mathrm{s})\right]=36.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \end{aligned} $$

Show Answer

Answer

Total enthalpy change involved in the transformation is the sum of the following changes: (a) Energy change involved in the transformation of $1 mol$ of water at $10^{\circ} C$ to $1 mol$ of water at $0^{\circ} C$.

(b) Energy change involved in the transformation of $1 mol$ of water at $0^{\circ}$ to $1 mol$ of ice at $0^{\circ} C$.

(c) Energy change involved in the transformation of $1 mol$ of ice at $0^{\circ} C$ to $1 mol$ of ice at $-10^{\circ} C$.

Total $\Delta H=C_p[H_2 OCl] \Delta T+\Delta H _{\text{freezing }}+C_p[H_2 O _{(s)}] \Delta T$

=$ (75.3 J mol^{-1}K^{-1})(0-10)K + (-6.03 \times 10^3J mol^{-1} ) + (36.8 Jmol^{-1}K^{-1})(-10-0)K $

=$ 75.3 J mol^{-1}-6.03 \times 10^3J mol^{-1} -36.8 Jmol^{-1}$

$=-7151 Jmol^{-1}$

Hence, the enthalpy change involved in the transformation is -$7.151 kJ mol^{- 1}$.

6.11 Enthalpy of combustion of carbon to $\mathrm{CO_2}$ is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the heat released upon formation of $35.2 \mathrm{~g}$ of $\mathrm{CO_2}$ from carbon and dioxygen gas.

Show Answer

Answer

Formation of $CO_2$ from carbon and dioxygen gas can be represented as:

$C _{(s)}+O _{2(g)} \longrightarrow CO _{2(g)} \quad \Delta_f H=-393.5 kJ mol^{-1}$

$(1$ mole $=44 g)$

Heat released on formation of $44 g CO_2=- 393.5 kJmol^{-1}$

$\therefore$ Heat released on formation of $35.2 g CO_2$

$=\frac{-393.5 kJ mol^{-1}}{44 g} \times 35.2 g$

$=- 314.8 kJ mol^{-1}$

6.12 Enthalpies of formation of $\mathrm{CO}(\mathrm{g}), \mathrm{CO_2}(\mathrm{~g}), \mathrm{N_2} \mathrm{O}(\mathrm{g})$ and $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g})$ are $-110,-393,81$ and $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Find the value of $\Delta_{r} H$ for the reaction: $\mathrm{N_2} \mathrm{O_4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N_2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO_2}(\mathrm{~g})$

Show Answer

Answer

$\Delta_i H$ for a reaction is defined as the difference between $\Delta_i$ Hvalue of products and $\Delta_i H$ value of reactants.

$\Delta_r H=\sum \Delta_f H$ (products) $-\sum \Delta_f H$ (reactants)

For the given reaction,

$N_2 O _{4(g)}+3 CO _{(g)} \longrightarrow N_2 O _{(g)}+3 CO _{2(g)}$

$\Delta_r H=[{\Delta_f H(N_2 O)+3 \Delta_f H(CO_2)}-{\Delta_f H(N_2 O_4)+3 \Delta_f H(CO)}]$

Substituting the values of $\Delta_4 H$ for $N_2 O, CO_2, N_2 O_4$ and $CO$ from the question, we get:

$\Delta_r H=[{81 kJ mol^{-1}+3(-393) kJ mol^{-1}}-{9.7 kJ mol^{-1}+3(-110) kJ mol^{-1}}]$

$\Delta_r H=-777.7 kJ mol^{-1}$

Hence, the value of $\Delta_r H$ for the reaction is $-777.7 kJ mol^{-1}$.

6.13 Given $\mathrm{N_2}(\mathrm{~g})+3 \mathrm{H_2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH_3}(\mathrm{~g}) ; \Delta_{r} H^{\ominus}=-92.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ What is the standard enthalpy of formation of $\mathrm{NH_3}$ gas?

Show Answer

Answer

Standard enthalpy of formation of a compound is the change in enthalpy that takes place during the formation of 1 mole of a substance in its standard form from its constituent elements in their standard state.

Re-writing the given equation for 1 mole of $NH _{3(g)}$.

$\frac{1}{2} N _{2(g)}+\frac{3}{2} H _{2(g)} \longrightarrow NH _{3(g)}$

$\therefore$ Standard enthalpy of formation of $NH _{3(g)}$

$=1 / 2 \Delta_r H^{\theta}$

$=1 / 2(-92.4 kJ mol^{- 1})$

$=- 46.2 kJ mol^{-1}$

6.14 Calculate the standard enthalpy of formation of $\mathrm{CH_3} \mathrm{OH}(1)$ from the following data:

$\mathrm{CH_3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g})+2 \mathrm{H_2} \mathrm{O}(\mathrm{l}) ; \Delta_{r} H^{\ominus}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\mathrm{C}$ (graphite) $+\mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{CO_2}(\mathrm{~g}) ; \Delta_{c} H^{\ominus}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\mathrm{H_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{H_2} \mathrm{O}(1) ; \Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Show Answer

Answer

The reaction that takes place during the formation of $CH_3 OH _{(1)}$ can be written as:

$C _{(s)}+2 H_2 O _{(g)}+\frac{1}{2} O _{2(g)} \longrightarrow CH_3 OH _{()(1)}$

The reaction (1) can be obtained from the given reactions by following the algebraic calculations as:

Equation (ii) $+2 \times$ equation (iii) - equation (i)

$ \Delta _f H^{\ominus} [CH_3OH _{(l)}] = \Delta _cH^{\ominus} + 2\Delta _fH^{\ominus} [H _2O _{(l)}] - \Delta _r H^{\ominus} $

$ = (-393 KJmol^{-1})+2(-286 KJ mol^{-1})- (-726 KJ mol^{-1}) $

$=(-393$ -$572+726) kJ mol^{-1}$

$\therefore \Delta_i H^{\oplus}[CH_3 OH _{(0)}]=-239 kJmol^{-1}$

6.15 Calculate the enthalpy change for the process $\mathrm{CCl_4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{Cl}(\mathrm{g})$ and calculate bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ in $\mathrm{CCl_4}(\mathrm{~g})$.

$\Delta_{\text {vap }} H^{\ominus}\left(\mathrm{CCl_4}\right)=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$\Delta_{f} H^{\ominus}\left(\mathrm{CCl_4}\right)=-135.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$\Delta_{a} H^{\ominus}(\mathrm{C})=715.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, where $\Delta_{a} H^{\ominus}$ is enthalpy of atomisation

$\Delta_{a} H^{\ominus}\left(\mathrm{Cl_2}\right)=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Show Answer

Answer

The chemical equations implying to the given values of enthalpies are:

(i) $CCl _{4(l)} \longrightarrow CCl _{4(g)} \Delta _{vap} H^{ \ominus }=30.5 kJ mol^{-1 }$

(ii) $C _{(s)} \longrightarrow C _{(g)} \Delta _a H^{ \ominus }=715.0 kJ mol^{-1}$

(iii) $Cl _{2(g)} \longrightarrow 2 Cl _{(g)} \Delta _a H^{ \ominus }=242 kJ mol^{{-1}}$

(iv) $C _{(g)}+4 Cl _{(g)} \longrightarrow CCl _{4(g)} \Delta_i H=- 135.5 kJ mol^{{-1}}$

Enthalpy change for the given process $CCl _{4(g)} \longrightarrow C _{(g)}+4 Cl _{(g)}$, can be calculated using the following algebraic calculations as:

Equation (ii) +2 × Equation (iii) -Equation (i) - Equation (iv)

$\Delta H=\Delta _a H^{ \ominus }(C)+2 \Delta _a H^{ \ominus }(Cl_2) - \Delta _{\text{vap }} H^{\ominus} - \Delta_i H$

$ \Delta _fH^{\ominus} [CH _3OH _{(l)}] = \Delta _cH^{\ominus} + 2\Delta _fH^{\ominus} [H _2O _{(l)}]- \Delta _r H^{\ominus}$

$\therefore \Delta H=1304 kJ mol^{-1}$

Bond enthalpy of $C - Cl$ bond in $CCl _{4(g)}$

$=\frac{1304}{4} kJ mol^{-1}$

$=326 kJ mol^{- 1}$

6.16 For an isolated system, $\Delta U=0$, what will be $\Delta S$ ?

Show Answer

Answer

$\Delta S$ will be positive i.e., greater than zero

Since $\Delta U=0, \Delta$ Swill be positive and the reaction will be spontaneous.

6.17 For the reaction at $298 \mathrm{~K}$, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$

$\Delta H=400 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=0.2 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

At what temperature will the reaction become spontaneous considering $\Delta H$ and $\Delta S$ to be constant over the temperature range.

Show Answer

Answer

From the expression,

$\Delta G=\Delta H- T \Delta S$

Assuming the reaction at equilibrium, $\Delta T$ for the reaction would be:

$T=(\Delta H-\Delta G) \frac{1}{\Delta S}$

$=\frac{\Delta H}{\Delta S} _{(\Delta G=0 \text{ at equilibrium })}$

$=\frac{400 kJ mol^{-1}}{0.2 kJ K^{-1} mol^{-1}}$

$T=2000 K$

For the reaction to be spontaneous, $\Delta$ Gmust be negative. Hence, for the given reaction to be spontaneous, Tshould be greater than $2000 K$.

6.18 For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl_2}(\mathrm{~g})$, what are the signs of $\Delta H$ and $\Delta S$ ?

Show Answer

Answer

$\Delta H$ and $\Delta S$ are negative

The given reaction represents the formation of chlorine molecule from chlorine atoms. Here, bond formation is taking place. Therefore, energy is being released. Hence, $\Delta$ His negative.

Also, two moles of atoms have more randomness than one mole of a molecule. Since spontaneity is decreased, $\Delta$ Sis negative for the given reaction.

6.19 For the reaction $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow 2 \mathrm{D}(\mathrm{g})$ $\Delta U^{\ominus}=-10.5 \mathrm{~kJ}$ and $\Delta S^{\ominus}=-44.1 \mathrm{JK}^{-1}$. Calculate $\Delta G^{\ominus}$ for the reaction, and predict whether the reaction may occur spontaneously.

Show Answer

Answer

For the given reaction,

$2 A _{(g)}+B _{(g)} \to 2 D _{(g)}$

$\Delta n_g=2$ - (3)

$=-1$ mole

Substituting the value of $\Delta U^{\ominus}$, in the expression of $\Delta H$ :

$\Delta H^{\ominus}=\Delta U^{\ominus}+\Delta n_g R T$

$=(-10.5 kJ)-(-1)(8.314 \times 10^{-3} kJ K^{-1} mol^{-1})(298 K)$

$=-10.5 kJ-2.48 kJ$

$\Delta H^{\ominus}=-12.98 kJ$

Substituting the values of $\Delta H^{\ominus}$, and $\Delta S^{\ominus}$, in the expression of $\Delta G^{\ominus}$ :

$ \Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus} $

$=-12.98 kJ-(298 K)(-44.1 J K^{-1})$

$=-12.98 kJ+13.14 kJ$

$\Delta G^{\ominus}=+0.16 kJ$

Since $\Delta G^{\ominus}$, for the reaction is positive, the reaction will not occur spontaneously.

6.20 The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\ominus}$ ? $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{~T}=300 \mathrm{~K}$.

Show Answer

Answer

From the expression,

$\Delta G^{\ominus}=-2.303 R T \log K _{e q}$

$\Delta G^{\ominus}$ for the reaction,

$=(2.303)(8.314 JK^{-1} mol^{-1})(300 K) \log 10$

$=-5744.14 Jmol^{-1}$

$=-5.744 kJ mol^{-1}$

6.21 Comment on the thermodynamic stability of $\mathrm{NO}(\mathrm{g})$, given

$\frac{1}{2} \mathrm{~N_2}(\mathrm{~g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) ; \quad \Delta_{r} H^{\ominus}=90 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O_2}(\mathrm{~g}) \rightarrow \mathrm{NO_2}(\mathrm{~g}): \Delta_{r} H^{\ominus}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Show Answer

Answer

The positive value of $\Delta_r H$ indicates that heat is absorbed during the formation of $NO _{(g)}$. This means that $NO _{(g)}$ has higher energy than the reactants ($N_2.$ and $O_2$ ). Hence, $NO _{(g)}$ is unstable.

The negative value of $\Delta_r H$ indicates that heat is evolved during the formation of $NO _{2(g)}$ from $NO _{(g)}$ and $O _{2(g)}$. The product, $NO _{2(g)}$ is stabilized with minimum energy.

Hence, unstable $NO _{(g)}$ changes to stable $NO _{2(g)}$.

6.22 Calculate the entropy change in surroundings when $1.00 \mathrm{~mol}$ of $\mathrm{H_2} \mathrm{O}(1)$ is formed under standard conditions. $\Delta_{f} H^{\ominus}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Show Answer

Answer

It is given that $286 kJ mol^{{-1}}$ of heat is evolved on the formation of $1 mol$ of $H_2 O _{(\jmath)}$. Thus, an equal amount of heat will be absorbed by the surroundings.

$q _{\text{surr }}=+286 kJ mol^{- 1}$

Entropy change $(\Delta S _{\text{surr }})$ for the surroundings $=\frac{q _{\text{surr }}}{7}$ $=\frac{286 kJ mol^{-1}}{298 k}$ $\therefore \Delta S _{\text{surr }}=959.73 J mol^{-1} K^{-1}$



Table of Contents