Chapter 07 Equilibrium
Multiple Choice Questions (MCQs)
1. We know that the relationship between $K_{c}$ and $K_{p}$ is
$$ K_{p}=K_{c}(R T)^{\Delta n} $$
What would be the value of $\Delta n$ for the reaction?
$$ NH_{4} Cl(s) \rightleftharpoons NH_{3}(g)+HI(g) $$
(a) 1
(b) 0.5
(c) 1.5
(d) 2
Answer (d) The relationship between $K_{p}$ and $K_{c}$ is $$
K_{p}=K_{c}(R T)^{\Delta n}
$$ where, $\Delta n=$ (number of moles of gaseous products) - (number of moles of gaseous reactants) For the reaction, $$
\begin{gathered}
NH_{4} Cl(s) \rightleftharpoons NH_{3}(g)+HCl(g) \\
\Delta n=2-0=2
\end{gathered}
$$Show Answer
(a) $K=0$
(b) $K>1$
(c) $K=1$
(d) $K<1$
Answer (d) $\Delta G^{\ominus}$ and $K$ are related as $$
\Delta G^{\ominus}=-R T \ln K_{C}
$$ when $G^{\ominus}>0$ means $\Delta G^{\circ}$ is positive. This can be so only if $\ln K_{c}$ is negative i.e., $K_{c}<1$.Show Answer
(a) Equilibrium is possible only in a closed system at a given temperature
(b) All measurable properties of the system remain constant
(c) All the physical processes stop at equilibrium
(d) The opposing processes occur at the same rate and there is dynamic but stable condition
Answer (c) At the stage of equilibria involving physical processes like melting of ice and freezing of water etc., process does not stop but the opposite processes i.e., forward and reverse process occur with the same rate.Show Answer
$$ PCl_{5}(g) \rightleftharpoons PCl_{3}(g)+Cl_{2}(g) \text { will be } $$
(a) $1.8 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
(b) $1.8 \times 10^{-3}$
(c) $1.8 \times 10^{-3} \mathrm{~mol}^{1} \mathrm{~L}$
(d) $0.55 \times 10^{4}$
Answer (b) For the reaction, $$
PCl_{5} \rightleftharpoons PCl_{3}+Cl_{2}
$$ At $500 \mathrm{~K}$ in a closed container, $\left[\mathrm{PCl}_{5}\right]=0.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ $$
\begin{aligned}
{\left[PCl_{3}\right] } & =1.2 \times 10^{-3} mol L^{-1} \\
{\left[Cl_{2}\right] } & =1.2 \times 10^{-3} mol L^{-1} \\
K_C & =\frac{\left[PCl_3 \right]\left[Cl_2\right]}{\left[PCl_5 \right]}=\frac{\left(1.2 \times 10^{-3}\right) \times\left(1.2 \times 10^{-3}\right)}{\left(0.8 \times 10^{-3}\right)} \\
& =1.8 \times 10^{-3}
\end{aligned}
$$Show Answer
(a) In equilibrium mixture of ice and water kept in perfectly insulated flask, mass of ice and water does not change with time
(b) The intensity of red colour increases when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate
(c) On addition of catalyst the equilibrium constant value is not affected
(d) Equilibrium constant for a reaction with negative $\Delta H$ value decreases as the temperature increases
Answer (b) In the reaction, $\mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \rightleftharpoons \underset{(\mathrm{Red})}{\mathrm{FeSCN}^{2+}}$ When oxalic acid is added it combines with $\mathrm{Fe}^{3+}$ ions, then, equilibrium shifts towards backward direction and intensity of red colour decreases.Show Answer
$$ \underset{\text{(pink)}}{[Co (H_2 O_6)]^{3+}} (aq) + 4Cl^- (aq) \rightleftharpoons \underset{\text{(blue)}}{[CoCl_4]^{2-}} (aq) + 6H_2O (l) $$
(a) $\Delta H>0$ for the reaction
(b) $\Delta H<0$ for the reaction
(c) $\Delta H=0$ for the reaction
(d) The sign of $\Delta H$ cannot be predicted on the basis of this information
Answer (a) In the reaction, $ [Co \underset{\text(Pink)}{(H_2O)_6}]^{+3} _{(aq)} + 4Cl^- _{(aq)} \leftrightharpoons [Co \underset{\text{Blue}}{Cl_4}]^{2-} _{(aq)} + 6H _2O _{(l)} $ On cooling, the equilibrium shifts backward direction or on heating, the equilibrium shifts forward direction. Hence, reaction is endothermic. i.e., $\Delta H>0$.Show Answer
(a) Equal to 7.0
(b) Greater than 7.0
(c) Less than 7.0
(d) Equal to zero
Answer (c) The $\mathrm{pH}$ of neutral water at $25^{\circ} \mathrm{C}$ is 7.0 . With rise in temperature, $\mathrm{pH}$ of pure water decreases and it become less than 7 at $60^{\circ} \mathrm{C}$.Show Answer
At $25^{\circ} \mathrm{C}$,
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}$
and
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
On heating, $K_{w}$ increases, i.e.,
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]>10^{-14}$
As
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$or, $\left[\mathrm{H}^{+}\right]^{2}>=10^{-14}$
or,
$\left[\mathrm{H}^{+}\right]>10^{-7} \mathrm{M}$
$\therefore$
$\mathrm{pH}<7$.
(a) Acetic acid $>$ hypochlorous acid $>$ formic acid
(b) Hypochlorous acid $>$ acetic acid $>$ formic acid
(c) Formic acid $>$ hypochlorous acid $>$ acetic acid
(d) Formic acid $>$ acetic acid $>$ hypochlorous acid
Thinking Process This problem is based upon the relationship between ionisation constant $\left(K_{a}\right)$ and $p H$ i.e, $K_{a} \propto \frac{1}{p H}$. Greater the $K_{a}$ lesser the value of $p H$ and vice-versa. Answer (d) As the acidity or $K_{a}$ value increases, $\mathrm{pH}$ decreases, thus, the order of $\mathrm{pH}$ value of the acids is $$
\begin{gathered}
\text { Hypochlorous acid< Acetic acid < Formic acid } \\
\left(3.8 \times 10^{-8}\right) \quad\left(1.74 \times 10^{-5}\right) \quad\left(18 \times 10^{-4}\right)
\end{gathered}
$$Show Answer
$$ \begin{aligned} & H_{2} ~S \rightleftharpoons H^{+} + HS^{-} \\ & HS^{-} \rightleftharpoons H^{+} + S^{2-} \\ & H_{2} ~S \rightleftharpoons 2 H^{+} + S^{2-} \end{aligned} $$
The correct relationship between $K_{a_{1}}, K_{a_{2}}, K_{a_{3}}$ is
(a) $K_{a_{3}}=K_{a_{1}} \times K_{a_{2}}$
(c) $K_{a_{3}}=K_{a_{1}}-K_{a_{2}}$
(b) $K_{a_{3}}=K_{a_{1}}+K_{a_{2}}$
(d) $K_{a_{3}}=K_{a_{1}} / K_{a_{2}}$
Thinking Process To find out the correct relationship between three ionisation constants $\left(K_{a_{1}}, K_{a_{2}}\right.$ and $\left.K_{a_{3}}\right)$ this must be keep in mind that when two reactions are added, their equilib: Answer (a) For the reaction, $$
\begin{aligned}
H_{2} ~S & \rightleftharpoons H^{+} + HS^{-} \\
K_{a_{1}} & =\frac{\left[H^{+}\right]\left[HS^{-}\right]}{\left[H_{2} ~S \right]}
\end{aligned}
$$ For the reaction, $$
\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}
$$ $$
K_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}
$$ When, the above two reactions are added, their equilibrium constants are multiplied, thus Hence, $$
K_{a_{3}}=\frac{\left[H^{+}\right]^{2}\left[~S^{2-}\right]}{\left[H_{2} ~S \right]}=K_{a_{1}} \times K_{a_{2}}
$$ $$K_{a_{3}}=K_{a_{1}} \times K_{a_{2}}$$Show Answer
(a) Arrhenius concept
(b) Bronsted Lowry concept
(c) Lewis concept
(d) Bronsted Lowry as well as Lewis concept
Answer (c) GN Lewis in 1923 defined an acid as a species which accepts an electron pair and base which donates an electron pair. $\mathrm{As} \mathrm{BF}_{3}$ is an electron deficient compound, hence, it is a Lewis acid.Show Answer
(a) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
(b) $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
(c) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
(d) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{4} \mathrm{COONa}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
Answer (c) When the concentration of $\mathrm{NH}_{4} \mathrm{OH}$ (weak base) is higher than the strong acid $(\mathrm{HCl}), a$ mixture of weak base and its conjugate acid is obtained, which acts as basic buffer. $ \quad\quad\quad NH_4OH + HCL \longrightarrow NH_4Cl + H_2O $ Initial $\quad\quad$ 0.1 M $\quad$ 0.05 M $\quad\quad\quad$ 0 After Show Answer
reaction $\quad$ 0.05 M $\quad$ 0 $\quad\quad\quad$ 0.05 M
(a) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}$ solution
(b) $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ solution
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) Aqueous ammonia
Answer (d) Among the given solvent, $AgCl$ is most soluble in aqueous ammonia solution. $AgCl$ react with aqueous ammonia to form a complex, $\left[Ag\left(NH_{3}\right)_{2}\right]^{+} Cl^{-}$.Show Answer
(a) 3.4
(b) 3.6
(c) 3.9
(d) 3.0
Answer (a) Given that, $$
K_{a}=1.74 \times 10^{-5}
$$ Concentration of $\mathrm{CH}_{3} \mathrm{COOH}=0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ $$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{K_{a} \cdot \mathrm{C}} \\
& =\sqrt{1.74 \times 10^{-5} \times 0.01}=4.17 \times 10^{-4} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(4.17 \times 10^{-4}\right)=3.4
\end{aligned}
$$Show Answer
(a) 7.005
(b) 4.75
(c) 7.0
(d) Between 6 and 7
Answer (c) Given that, $$
K_{a} \text { for } \mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}
$$ $$
K_{b} \text { for } \mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}
$$ Ammonium acetate is a salt of weak acid and weak base. For such salts $$
\begin{aligned}
pH & =7+\frac{pK_{a} - p K_b}{2} \\
& =7+\frac{\left[-\log 1.8 \times 10^{-5}\right]-\left[-\log 1.8 \times 10^{-5}\right]}{2} \\
& =7+\frac{4.74-4.74}{2}=7.00
\end{aligned}
$$Show Answer
(a) $\Delta G^{\ominus}=0$
(b) $\Delta G^{\ominus}>0$
(c) $\Delta \mathrm{G}^{\ominus}<0$
(d) $\Delta G^{\ominus}=-R T \ln K$
Answer (a) As we know that $$
\Delta G^{\ominus}=-R T \ln K
$$ At the stage of half completion of the reaction, $$
\begin{aligned}
A \rightleftharpoons B,[A] & =[B] \\
\text{Therefore,\quad }K & =1 . \\
\text{Thus,\quad } \Delta G^{\ominus} & =0
\end{aligned}
$$Show Answer
$$ N_{2}(~g)+3 H_{2}(~g) \rightleftharpoons 2 NH_{3}(~g) $$
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?
(a) $K$ will remain same
(b) K will decrease
(c) $K$ will increase
(d) $K$ will increase initially and decrease when pressure is very high
Answer (a) In the reaction, $\quad N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 NH_{3}(g)$ If the total pressure at which the equilibrium is established, is increased without changing the temperature, $K$ will remain same. $K$ changes only with change in temperature.Show Answer
(a) Water < ether < acetone
(b) Water < acetone < ether
(c) Ether < acetone $<$ water
(d) Acetone $<$ ether $<$ water
Answer (b) The given compounds are $$ \underset{\text{(Maximum b.p)}}{Water} \quad acetone, \underset{\text{(Maximum b.p)}}{ether} $$ Greater the boiling point, lower is the vapour pressure of the solvent. Hence, the correct order of vapour pressure will be Water < acetone <ether.Show Answer
$$ \frac{1}{2} H_{2}(~g)+\frac{1}{2} I_{2}(~g) \rightleftharpoons HI(g) $$
What would be the equilibrium constant $\mathrm{K}_{c}$ for the reaction?
$$ 2 HI(g) \rightleftharpoons H_{2}(~g)+I_{2}(~g) $$
(a) 0.04
(b) 0.4
(c) 25
(d) 2.5
Answer (a) For the reaction, $\frac{1}{2} H_{2}(g)+\frac{1}{2} I_{2}(g) \rightleftharpoons HI(g)$ $$
K_{c}=\frac{[HI]}{\left[H_{2}\right]^{1 / 2}\left[I_{2}\right]^{1 / 2}}=5
$$ Thus, for the reaction, $$
\begin{aligned}
2 HI(g) & \rightleftharpoons H_{2}(g)+ I_{2}(g) \\
K_{c_{1}} & =\frac{\left[H_{2}\right]\left[I_{2}\right]}{[HI]^{2}}=\left(\frac{1}{K_c}\right)^{2}=\left(\frac{1}{5}\right)^{2}=\frac{1}{25}=0.04
\end{aligned}
$$Show Answer
(a) $H_{2}(~g)+ I_{2}(~g) \rightleftharpoons 2 HI(g)$
(b) $PCl_{5}(~g) \rightleftharpoons PCl_{3}(~g)+ Cl_{2}(~g)$
(c) $N_{2}(~g)+3 H_{2}(~g) \rightleftharpoons 2 NH_{3}(~g)$
(d) The equilibrium will remain unaffected in all the three cases
Show Answer
Thinking Process
At constant volume, the equilibrium remain unaffected on addition of small amount of inert gas like argon, nean, Kruspton, etc.
Answer
(d) In these reactions, at constant volume
$$ \begin{aligned} H_{2}(g)+ I_{2}(g) & \rightleftharpoons 2 HI(g) \\ PCl_{5}(g) & \rightleftharpoons PCl_{3}(g)+ Cl_{2}(g) \\ N_{2}(g)+3 H_{2}(g) & \rightleftharpoons 2 NH_{3}(g) \end{aligned} $$
The equilibrium constant $(K)$ remains unaffected on addition of inert gas in all the three cases.
Multiple Choice Questions (More Than One Options)
20. For the reaction $N_{2} O_{4}(~g) \rightleftharpoons 2 NO_{2}(~g)$, the value of $K$ is 50 at $400 ~K$ and 1700 at $500 ~K$. Which of the following option(s) is/are correct?
(a) The reaction is endothermic
(b) The reaction is exothermic
(c) If $NO_{2}$ (g) and $N_{2} O_{4}(~g)$ are mixed at $400 ~K$ at partial pressures 20 bar and 2 bar respectively, more $N_{2} O_{4}(g)$ will be formed
(d) The entropy of the system increases
Answer $(a, c, d)$ For the reaction, $\quad N_{2} O_{4}(g) \rightleftharpoons 2 NO_{2}(g)$ At $\quad 400 \mathrm{~K}, K=50$ At $\quad 500 \mathrm{~K}, \mathrm{~K}=1700$ (a) As the value of $K$ increase with increase of temperature and $K=\frac{K_{f}}{K_{b}}$, this means that $K_{f}$ increases, i.e., forward reaction is favoured. Hence, reaction is endothermic. (c) Since, number of moles of gaseous products are greater than the number of moles of gaseous reactants. Thus, higher pressure favours the backward reaction, i.e., more $N_{2} O_{4}(g)$ will be obtained, if $P_{\text {product }}>P_{\text {reactant }}$. (d) As reaction is accompanied by increase in the number of moles, entropy increases.Show Answer
(a) Normal melting point
(b) Equilibrium temperature
(c) Boiling point
(d) Freezing point
Show Answer
Answer
$(a, d)$
At a particular temperature and atmospheric pressure, the solid and liquid phases of a pure substance can exist as Solid $\rightleftharpoons$ liquid.
They exists at normal melting point or normal freezing point.
Short Answer Type Questions
22. The ionisation of hydrochloric acid in water is given below
$$ HCl(aq)+H_{2} O(l) \rightleftharpoons H_{3} O^{+}(aq)+Cl^{-}(aq) $$
Label two conjugate acid-base pairs in this ionisation.
Answer
Note If Bronsted acid is a strong acid then its conjugate base is a weak base and vice-versa. Generally, the conjugate acid has one extra proton and each conjugate base has one less proton.Show Answer
Answer Explanation for the given statement on the basis of ionisation and effect upon the concentration of sodium chloride is given below (i) Sugar being a non-electrolyte does not ionise in water whereas $\mathrm{NaCl}$ ionises completely in water and produces $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ion which help in the conduction of electricity. (ii) When concentration of $\mathrm{NaCl}$ is increased, more $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ions will be produced. Hence, conductance or conductivity of the solution increases.Show Answer
Answer $BF_{3}$ is an electron deficient compound and hence acts as Lewis acid. $NH_{3}$ has one lone pair which it can donate to $BF_{3}$ and form a coordinate bond. Hence, $NH_{3}$ acts as a Lewis base. $$
H_{3} ~N: \longrightarrow BF_{3}
$$Show Answer
$$ \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]} $$
Values of ionisation constant of some weak bases at a particular temperature are given below
Base | Dimethylamine | Urea | Pyridine | Ammonia |
---|---|---|---|---|
$\mathrm{K}_{\mathrm{b}}$ | $5.4 \times 10^{-4}$ | $1.3 \times 10^{-14}$ | $1.77 \times 10^{-9}$ | $1.77 \times 10^{-5}$ |
Arrange the bases in decreasing order of the extent of their ionisation at equilibrium. Which of the above base is the strongest?
Answer Given that, ionisation constant of a weak base $\mathrm{MOH}$ $$
K_{b}=\left[M^{+}\right]\left[\mathrm{OH}^{-}\right][\mathrm{MOH}] .
$$ Larger the ionisation constant $\left(K_{b}\right)$ of a base, greater is its ionisation and stronger the base. Hence, dimethyl amine is the strongest base. $$
K_{b} \text { Dimethyl amine }>\underset{5.4 \times 10^{-4}}{\text { ammonia }}>\underset{1.77 \times 10^{-5}}{1.77 \times 10^{-9}}>\underset{1.3 \times 10^{-14}}{\text { urea }}
$$Show Answer
$$ \mathrm{OH}^{-}, \mathrm{RO}^{-} \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{Cl}^{-} $$
Answer Conjugate acid of the given bases are $H_{2} O, ROH, CH_{3} COOH$ and $HCl$. Order of their acidic strength is $$
HCl>CH_{3} COOH>H_{2} O>ROH
$$ Hence, order of basic strength of their conjugate bases is $$
\mathrm{Cl}^{-}<\mathrm{CH}_{3} \mathrm{COO}^{-}<\mathrm{OH}^{-}<\mathrm{RO}^{-}
$$Show Answer
$$ KNO_{3}(aq), CH_{3} COONa(aq) NH_{4} Cl(aq), C_{6} H_{5} COONH_{4}(aq) $$
Answer (i) $KNO_{3}$ is a salt of strong acid $\left(HNO_{3}\right)$ strong base $(KOH)$, hence its aqueous solution is neutral; $pH=7$. (ii) $CH_{3} COONa$ is a salt of weak acid $\left(CH_{3} COOH \right)$ and strong base $(NaOH)$, hence, its aqueous solution is basic; $pH>7$. (iii) $NH_{4} Cl$ is a salt of strong acid $(HCl)$ and weak base $\left(NH_{4} OH\right)$ hence, its aqueous solution is acidic; $pH<7$. (iv) $C_{6} H_{5} COONH_{4}$ is a salt of weak acid, $C_{6} H_{5} COOH$ and weak base, $NH_{4} OH$. But $NH_{4} OH$ is slightly stronger than $C_{6} H_{5} COOH$. Hence, $pH$ is slightly $>7$. Therefore, increasing order of $\mathrm{pH}$ of the given salts is, $$
NH_{4} Cl<C_{6} H_{5} COONH_{4}>KNO_{3}<CH_{3} COONa
$$Show Answer
Answer Given that, $$
\begin{aligned}
{[HI] } & =2 \times 10^{-5} ~mol \\
{\left[H_{2}\right] } & =1 \times 10^{-5} ~mol \\
{\left[I_{2}\right] } & =1 \times 10^{-5} ~mol
\end{aligned}
$$ At a given time, the reaction quotient $Q$ for the reaction will be given by the expression $$
\begin{aligned}
Q & =\frac{\left[H_{2}\right]\left[I_{2}\right]}{[HI]^{2}} \\
& =\frac{1 \times 10^{-5} \times 1 \times 10^{-5}}{\left(2 \times 10^{-5}\right)^{2}}=\frac{1}{4} \\
& =0.25=2.5 \times 10^{-1}
\end{aligned}
$$ As the value of reaction quotient is greater than the value of $K_{c}$, i.e., $1 \times 10^{-4}$ the reaction will proceed in the reverse reaction.Show Answer
Answer Concentration $10^{-8} ~mol dm^{-3}$ indicates that the solution is very dilute. So, we cannot neglect the contribution of $H_{3} O^{+}$ions produced from $H_{2} O$ in the solution. Total $\left[H_{3} O^{+}\right]=10^{-8}+10^{-7} M$. From this we get the value of $pH$ close to 7 but less than 7 because the solution is acidic. From calculation, it is found that $pH$ of $10^{-8} ~mol dm^{-3}$ solution of $HCl$ is equal to 6.96 .Show Answer
Answer Given that, $$
\begin{aligned}
\mathrm{pH} & =5 \\
{\left[\mathrm{H}^{+}\right] } & =10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$ On diluting the solution 100 times $\left[\mathrm{H}^{+}\right]=\frac{10^{-5}}{100}=10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$ On calculating the $\mathrm{pH}$ using the equation $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, value of $\mathrm{pH}$ comes out to be 7. It is not possible. This indicates that solution is very dilute. Hence, $\quad$ Total $\mathrm{H}^{+}$ion concentration $=\mathrm{H}^{+}$ions from acid $+\mathrm{H}^{+}$ion from water $$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-7}+10^{-7}=2 \times 10^{-7} \mathrm{M} \\
\mathrm{pH} & =-\log \left[2 \times 10^{-7}\right] \\
\mathrm{pH} & =7-0.3010=6.699
\end{aligned}
$$Show Answer
Answer $$
\begin{aligned}
BaSO_{4}(~s) & \rightleftharpoons Ba^{2+}(aq)+SO_{4}^{2-}(aq) \\
K_{sp} \text { for } BaSO_{4} & =\left[Ba^{2+}\right]\left[SO_{4}^{2-}\right]=s \times s=s^{2} \\
but \quad s & =8 \times 10^{-4} ~mol dm ^{-3} \\
\therefore \quad K_{sp} & =\left(8 \times 10^{-4}\right)^{2}=64 \times 10^{-8}
\end{aligned}
$$ In the presence of $0.01 MH_{2} SO_{4}$, the expression for $K_{sp}$ will be $$
\begin{aligned}
& K_{sp}=\left[Ba^{2+}\right]\left[SO_{4}^{2-}\right] \\
& K_{sp}=(s) \cdot(s+0.01) \quad\left(0.01 M SO_{4}^{2-} \text { ions from } 0.01 M H_{2} SO_{4}\right)
\end{aligned}
$$ $$
\begin{aligned}
64 \times 10^{-8} & =s \cdot(s+0.01) \\
s^{2}+0.01 s-64 \times 10^{-8} & =0
\end{aligned}
$$ $$
\begin{aligned}
S & =\frac{-0.01 \pm \sqrt{(0.01)^{2}+\left(4 \times 64 \times 10^{-8}\right)}}{2} \\
& =\frac{-0.01 \pm \sqrt{10^{-4}+\left(256 \times 10^{-8}\right)}}{2} \\
& =\frac{-0.01 \pm \sqrt{10^{-4}\left(1+256 \times 10^{-4}\right)}}{2} \\
& =\frac{-0.01 \pm 10^{-2} \sqrt{1+0.0256}}{2}=\frac{10^{-2}(-1 \pm 1.012719)}{2} \\
& =5 \times 10^{-3}(-1+1.012719)=6.4 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$ Note $s«<0.01, s 0, s+0.01 \approx 0.01$ and $64 \times 10^{-8}=s \times 0.01$ $$
s=\frac{64 \times 10^{-8}}{0.01}=6.4 \times 10^{-5}
$$Show Answer
Thinking Process To solve this problem, we use two steps Step I Find out the concentration of hydrogen ion $\left[\mathrm{H}^{+}\right]$through the formula $-\mathrm{pH}=\log \left[\mathrm{H}^{+}\right]$ Step II Afterward, calculate the $K_{a}$ of $HOCl$ which is weak monobasic acid by using the formula $K_{a}=\frac{\left[H^{+}\right]^{2}}{C}$. where, $C$ is concentration of the solution Answer $\mathrm{pH}$ of $\mathrm{HOCl}=2.85$ $$
\begin{aligned}
& \text { But, } \quad-\mathrm{pH}=\log \left[\mathrm{H}^{+}\right] \\
& \therefore \quad-2.85=\log \left[\mathrm{H}^{+}\right] \\
& \Rightarrow \quad \overline{3} .15=\log \left[\mathrm{H}^{+}\right] \\
& \Rightarrow \quad\left[\mathrm{H}^{+}\right]=1.413 \times 10^{-3} \\
& \text{for weak monobasic acid } [H^+] = \sqrt{K_a \times C}\\
& \Rightarrow \quad K_{a}=\frac{\left[H^{+}\right]^{2}}{C}=\frac{\left(1.413 \times 10^{-3}\right)^{2}}{0.08} \\
& =24.957 \times 10^{-6}=2.4957 \times 10^{-5}
\end{aligned}
$$Show Answer
Answer $\mathrm{pH}$ of solution $A=6$. Hence, $\left[\mathrm{H}^{+}\right]=10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$ $\mathrm{pH}$ of solution $B=4$. Hence, $\left[\mathrm{H}^{+}\right]=10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ On mixing $1 \mathrm{~L}$ of each solution, molar concentration of total $\mathrm{H}^{+}$is halved. Total, $$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{10^{-6}+10^{-4}}{2} \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {\left[\mathrm{H}^{+}\right]=\frac{1.01 \times 10^{-4}}{2}=5.05 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {\left[\mathrm{H}^{+}\right]=5.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \Rightarrow \mathrm{pH}=-\log \left(5.0 \times 10^{-5}\right) \\
& \mathrm{pH}=-[\log 5+(-5 \log 10)] \Rightarrow \mathrm{pH}=-\log 5+5 \\
& \mathrm{pH}=5-\log 5=5-0.6990 \Rightarrow \mathrm{pH}=4.3010 \approx 4.3
\end{aligned}
$$ Thus, the $\mathrm{pH}$ of resulting solution is 4.3 .Show Answer
Answer Let $S$ be the solubility of $\mathrm{Al}(\mathrm{OH})_{3}$. Concentration of species at $t=0$ Concentration of various species at equilibrium $$
\begin{aligned}
K_{\mathrm{sp}} & =\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}=(\mathrm{S})(3 \mathrm{~S})^{3}=27 \mathrm{~S}^{4} \\
\mathrm{~S}^{4} & =\frac{K_{\mathrm{sp}}}{27}=\frac{2.7 \times 10^{-11}}{27}=1 \times 10^{-12} \\
S & =1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
\end{aligned}
$$ (i) Solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ Molar mass of $\mathrm{Al}(\mathrm{OH})_{3}$ is $78 \mathrm{~g}$. Therefore, Solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in $\mathrm{g}^{-1}=1 \times 10^{-3} \times 78 \mathrm{~g} \mathrm{~L}^{-1}=78 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1}$ $$
=7.8 \times 10^{-2} \mathrm{~g} \mathrm{~L}^{-1}
$$ (ii) $\mathrm{pH}$ of the solution $\quad S=1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ $$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =3 \mathrm{~S}=3 \times 1 \times 10^{-3}=3 \times 10^{-3} \\
\mathrm{pOH} & =3-\log 3
\end{aligned}
$$ $$ pH = 14 - pOH = 11 + log 3 = 11 4771 $$Show Answer
$$ \left(K_{sp} \text { of } PbCl_{2}=3.2 \times 10^{-8} \text {, atomic mass of } Pb=207 u\right) $$
Answer Suppose, solubility of $\mathrm{PbCl}_{2}$ in water is $s \mathrm{~mol} \mathrm{~L}^{-1}$ $$
\begin{aligned}
\mathrm{PbCl} _2(\mathrm{~s}) & \rightleftharpoons \mathrm{Pb} ^{2+}(\mathrm{aq})+2 \mathrm{Cl} ^{-}(\mathrm{aq}) \\
\left (1-\mathrm{s})\mathrm{K} _{\mathrm{sp}}\right. & =\left[\mathrm{Pb} ^{2 \mathrm{~s}}\right] \cdot\left[\mathrm{Cl} ^{-}\right] ^2 \\
\mathrm{~K} _{\mathrm{sp}} & =[\mathrm{s}][2 \mathrm{~s}]^2=4 \mathrm{~s} ^3 \\
3.2 \times 10 ^{-8} & =4 \mathrm{~s}^3 \\
\mathrm{~s}^3 & =\frac{3.2 \times 10^{-8}}{4}=0.8 \times 10^{-8} \\
s^3 & =8.0 \times 10^{-9}
\end{aligned}
$$ Solubility of
$$
\begin{aligned}
& \mathrm{PbCl} _2, \mathrm{~S}=2 \times 10 ^{-3} \mathrm{~mol} \mathrm{~L} ^{-1} \\
\end{aligned}
$$ Solubility of
$$
\mathrm{PbCl} _2 \text { in } \mathrm{gL}^{-1}=278 \times 2 \times 10^{-3}=0.556 \mathrm{~g} \mathrm{~L}^{-1}
$$
$\left(\because\right.$ Molar mass of $\left.\mathrm{PbCl}_2=207+(2 \times 35.5)=278\right)$
$0.556 \mathrm{~g}$ of $\mathrm{PbCl} _2$ dissolve in $1 \mathrm{~L}$ of water. $\therefore \quad 0.1 \mathrm{~g}$ of $\mathrm{PbCl} _2$ will dissolve in $=\frac{1 \times 0.1}{0.556} \mathrm{~L}$ of water
$$
=0.1798 \mathrm{~L}
$$ To make a saturated solution, dissolution of $0.1 \mathrm{~g} \mathrm{PbCl}_{2}$ in $0.1798 \mathrm{~L} \approx 0.2 \mathrm{~L}$ of water will be required.Show Answer
$$ : NH_3 + BF_3 \longrightarrow H_3 N : BF_3 $$
Identify the acid and base in this reaction. Which theory explains it? What is the hybridisation of $\mathrm{B}$ and $\mathrm{N}$ in the reactants?
Answer Although $BF_{3}$ does not have a proton but acts as Lewis acid as it is an electron deficient compound. It reacts with $NH_{3}$ by accepting the lone pair of electrons from $NH_{3}$ and complete its octet. The reaction can be represented by $$
BF_{3}+: NH_{3} \longrightarrow BF_{3} \leftarrow NH_{3}
$$ Lewis electronic theory of acids and bases can explain it. Boron in $BF_{3}$ is $s p^{2}$ hybridised where $N$ in $NH_{3}$ is $s p^{3}$ hybridised.Show Answer
$$ \begin{aligned} & CaCO_{3}(~s) \longrightarrow CaO(s)+CO_{2}(~g) \\ & \Delta_{f} H^{\ominus}[CaO(s)]=-635.1 ~kJ ~mol^{-1} \\ & \Delta_{f} H^{\ominus}\left[CO_{2}(g)\right]=-393.5 ~kJ ~mol^{-1} \\ & \Delta_{f} H^{\ominus}\left[CaCO_{3}(s)\right]=-1206.9 ~kJ ~mol^{-1} \end{aligned} $$
Predict the effect of temperature on the equilibrium constant of the above reaction.
Show Answer
Answer
Given that,
$\Delta_{f} H^{\ominus}[\mathrm{CaO}(\mathrm{s})]=-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\ominus}\left[\mathrm{CO}_{2}(g)\right]=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\ominus}\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
In the reaction,
$$ \begin{gathered} CaCO_{3}(s) \rightleftharpoons CaO(s)+CO_{2}(g) \\ \quad \Delta_{f} H^{\ominus}=\Delta_{f} H^{\ominus}[CaO(s)]+\Delta_{f} H^{\ominus}\left[CO_{2}(g)\right]-\Delta_{f} H^{\ominus}\left[CaCO_{3}(s)\right] \\ \therefore \quad \Delta_{f} H^{\ominus}=-635.1+(-393.5)-(-1206.9)=178.3 kJmol^{-1} \end{gathered} $$
Because $\Delta H$ value is positive, so the reaction is endothermic. Hence, according to Le-Chatelier’s principle, reaction will proceed in forward direction on increasing temperature. Thus, the value of equilibrium constant for the reaction increases.
Matching The Columns
A. | Liquid $\rightleftharpoons$ Vapour | 1. | Saturated solution |
---|---|---|---|
B. | Solid $\rightleftharpoons$ Liquid | 2. | Boiling point |
C. | Solid $\rightleftharpoons$ Vapour | 3. | Sublimation point |
D. | Solute $(s) \rightleftharpoons$ Solute (solution) | 4. | Melting point |
5. | Unsaturated solution |
38. Match the following equilibria with the corresponding condition.
Answer A. $\rightarrow(2)$ B. $\rightarrow(4)$ C. $\rightarrow$ (3) D. $\rightarrow(1)$ A. Liquid $\rightleftharpoons$ Vapour equilibrium exists at the boiling point. B. Solid $\rightleftharpoons$ Liquid equilibrium exists at the melting point. C. Solid $\rightleftharpoons$ Vapour equilibrium exists at the sublimation point. D. Solute $(s) \rightleftharpoons$ Solute (solution) equilibrium exists at saturated solution.Show Answer
Equilibrium constant, $K_c=\frac{\left[NH_3 \right]^2}{\left[N_2 \right] \left[H_2 \right]^3}$
Some reactions are written below in Column I and their equilibrium constants in terms of $K_{c}$ are written in Column II. Match the following reactions with the corresponding equilibrium constant.
Column I (Reaction) |
Column II (Equilibrium constant) |
||
---|---|---|---|
A. | $\quad 2 N_{2}(g)+6 H_{2}(g) \rightleftharpoons 4 NH_{3}(g)$ | 1. | $2 K_{c}$ |
B. | $2 NH_{3}(g) \rightleftharpoons 2 N_{2}(g)+3 H_{2}(g)$ | 2. | $K_{c}^{1 / 2}$ |
C. | $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \rightleftharpoons NH_{3}(g)$ | 3. | $\frac{1}{K_{c}}$ |
4. | $K_{c}^{2}$ |
Answer A. $\rightarrow(4)$ B. $\rightarrow(3)$ C. $\rightarrow(2)$ For the reaction, $$
N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 NH_{3}(g)
$$ Equilibrium constant $K_C=\frac{\left[NH_3 \right]^2}{\left[N_2 \right]\left[H_2 \right]^3}$ A. The given reaction $\left[2 N_{2}(g)+6 H_{2}(g) \rightleftharpoons 4 NH_{3}(g)\right]$ is twice the above reaction. Hence, $K=K_{c}^{2}$ B. The reaction $\left[2 NH_{3}(g) \rightleftharpoons N_{2}(g)+3 H_{2}(g)\right]$ is reverse of the above reaction. Hence, $K=\frac{1}{K_{c}}$ C. The reaction $\left[\frac{1}{2} ~N_{2}(g)+\frac{3}{2} H_{2}(g) \rightleftharpoons NH_{3}(g)\right]$ is half of the above reaction. Hence, $K=\sqrt{K_{c}}=K_{c}^{\frac{1}{2}}$.Show Answer
A. | $\Delta G^{\ominus}>0$ | 1. | $K>1$ |
---|---|---|---|
B. | $\Delta G^{\ominus}<0$ | 2. | $K=1$ |
C. | $\Delta G^{\ominus}=0$ | 3. | $K=0$ |
4. | $K<1$ |
Answer A. $\rightarrow(4)$ B. $\rightarrow(1)$ C. $\rightarrow(2)$ As we know that, $\Delta G^{\ominus}=-R T \ln K$ A. If $\Delta G^{\ominus}>0$, i.e., $\Delta G^{\circ}$ is positive, then $\ln K$ is negative i.e., $K<1$. B. If $\Delta G^{\ominus}<0$, i.e., $\Delta G^{\circ}$ is negative then $\ln K$ is positive i.e., $K>1$. C. If $\Delta G^{\ominus}=0, \ln K=0$, i.e., $K=1$.Show Answer
Species | Conjugate acid | |
---|---|---|
A. | $\mathrm{NH}_{3}$ | 1. $\mathrm{CO}_{3}^{2-}$ |
B. | $\mathrm{HCO}_{3}^{-}$ | 2. $\mathrm{NH}_{4}^{+}$ |
C. | $\mathrm{H}_{2} \mathrm{O}$ | 3. $\mathrm{H}_{3} \mathrm{O}^{+}$ |
D. | $\mathrm{HSO}_{4}^{-}$ | 4. $H_{2} SO_{4}$ |
5. $H_{2} CO_{3}$ |
Answer A. $\rightarrow(2)$ B. $\rightarrow(5)$ C. $\rightarrow(3)$ D. $\rightarrow$ (4) As conjugate acid $\rightarrow$ Base $+H ^{+}$ A. $NH_{3} + H^{+} \longrightarrow NH_{4}^{+}$ B. $HCO_{3}^{-}+H^{+} \longrightarrow H_{2} CO_{3}$ C. $H_{2} O+H^{+} \longrightarrow H_{3} O^{+}$ D. $HSO_{4} ^{-}+H^{+} \longrightarrow H_{2} SO_{4}$Show Answer
Answer A. $\rightarrow(3)$ B. $\rightarrow(1)$ C. $\rightarrow(2)$ A. Graph (A) represents variation of reactant concentration with time. B. Graph (B) represents variation of product concentration with time. C. Graph $(\mathrm{C})$ represents reaction at equilibrium.Show Answer
Column I | Column II | ||
---|---|---|---|
A. | Equilibrium | 1. | $\Delta G>0, K<1$ |
B. | Spontaneous reaction | 2. | $\Delta G=0$ |
C. | Non-spontaneous reaction | 3. | $\Delta G^{\ominus}=0$ |
4. | $\Delta G<0, K>1$ |
Answer A. $\rightarrow(2,3)$ B. $\rightarrow$ (4) C. $\rightarrow(1)$ A. $\Delta G\left(\Delta G^{\ominus}\right)$ is 0 ,
reaction has achieved equilibrium: at this point, there is no longer any free energy left to drive the reaction. B. If $\Delta G<0$, then $K>1$ which implies a spontaneous reaction or the reaction which proceeds in the forward direction to such an extent that the products are present predominantly. C. If $\Delta G>0$, then $K<1$, which implies a non-spontaneous reaction or a reaction which proceeds in the forward direction to such a small degree that only a very minute quantity of product is formed. In the following questions a statement of Assertion (A) followed by a statement of Reason $(\mathrm{R})$ is given. Choose the correct option out of the choices given below in each question.Show Answer
Assertion and Reason
Reason ( $R$ ) While comparing acids formed by the elements belonging to the same group of periodic table, $\mathrm{H}-\mathrm{A}$ bond strength is a more important factor in determining acidity of an acid than the polar nature of the bond.
(a) Both $A$ and $R$ are true $R$ is the correct explanation of $A$
(b) Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$
(c) $A$ is true but $R$ is false
(d) Both $A$ and $R$ are false
Answer (a) Both assertion and reason are true and reason is the correct explanation of assertion. In the hydrogen halides, the HI is strongest acid while HF is the weak acid. It is because while comparing acids formed by the elements belonging to the same group of periodic table, $\mathrm{H}$ - A bond strength is a more important factor in determining acidity of an acid than the polar nature of the bond.Show Answer
Reason (R) A solution containing a mixture of acetic acid and sodium acetate acts as buffer solution around $\mathrm{pH} 4.75$.
(a) Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
(b) Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$
(c) $A$ is true but $R$ is false
(d) Both $A$ and $R$ are false
Answer (a) Both assertion and reason are true and reason is correct explanation of assertion. A solution containing a mixture of acetic acid and the sodium acetate acts as a buffer solution as it maintains a constant value of $\mathrm{pH}(=4.75)$ and its $\mathrm{pH}$ is not affected on addition of small amounts of acid or alkali.Show Answer
Reason ( $R$ ) Hydrogen sulphide is a weak acid.
(a) Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
(b) Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$
(c) $A$ is true but $R$ is false
(d) Both $A$ and $R$ are false
Answer (b) Both assertion and reason are true but reason is not correct explanation of assertion. $\mathrm{HCl}$ gives the common $\mathrm{H}^{+}$ions and hence ionisation equilibrium $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}$ is suppressed.Show Answer
Reason (R) Equilibrium constant is independent of temperature.
(a) Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
(b) Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$
(c) $A$ is true but $R$ is false
(d) Both $A$ and $R$ are false
Answer (c) Assertion is true but reason is false. Equilibrium constant of a reaction depends upon temperature.Show Answer
Reason (R) Acidic/basic nature of a salt solution of a salt of weak acid and weak base depends on $K_{a}$ and $K_{b}$ value of the acid and the base forming it.
(a) Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
(b) Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$
(c) $A$ is true but $R$ is false
(d) Both $A$ and $R$ are false
Answer (a) Both assertion and reason are true and reason is the correct explanation of assertion. If $K_{b}$ of $NH_{4} OH>K_{a}$ of $H_{2} CO_{3}$ The solution is basic. or, if $K_{a}$ of $H_{2} CO_{3}>K_{b}$ of $NH_{4} OH$; the solution is acidic.Show Answer
Reason (R) Acetic acid is a weak acid and $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base.
(a) Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
(b) Both $\mathrm{A}$ and $\mathrm{R}$ are true but $\mathrm{R}$ is not the correct explanation of $\mathrm{A}$
(c) $A$ is false but $R$ is true
(d) Both $A$ and $R$ are false
Answer (b) Both assertion and reason are true but reason is not correct explanation of assertion. Ammonium acetate is a salt of weak acid $\left(CH_{3} COOH \right)$ and weak base $\left(NH_{4} OH \right)$.Show Answer
Reason ( $R$ ) Helium removes $\mathrm{Cl}_{2}$ from the field of action.
(a) Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
(b) Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$
(c) $A$ is true but $R$ is false
(d) Both $A$ and $R$ are false
Show Answer
Answer
(c) Assertion is true but reason is false.
$$ PCl_{5} \longrightarrow PCl_{3}+Cl_{2} $$
At constant pressure, when helium is added to the equilibrium, volume increases. Thus, in order to maintain the $K$ constant, degree of dissociation of $\mathrm{PCl}_{5}$ increases. Helium is unreactive towards chlorine gas.
Long Answer Type Questions
51. How can you predict the following stages of a reaction by comparing the value of $K_{c}$ and $Q_{c}$ ?
(i) Net reaction proceeds in the forward direction.
(ii) Net reaction proceeds in the backward direction.
(iii) No net reaction occurs.
Answer Prediction of the following stages of a reaction by comparing the value of $K_{c}$ and $Q_{c}$ are (i) If $Q_{C}<K_{C}$, the reaction will proceed in the direction of the products (forward reaction). (ii) If $Q_{c}>K_{c}$, the reaction will proceed in the direction of reactants (reverse reaction). (iii) If $Q_{C}=K_{c}$, the reaction mixture is already at equilibrium.Show Answer
$$ N_{2}(~g)+3 H_{2}(~g) \rightleftharpoons 2 NH_{3}(~g) \Delta H=-92.38 ~kJ ~mol^{-1} $$
What will be the effect of addition of argon to the above reaction mixture at constant volume?
Answer $$
N_{2}(g)+3 H_{2}(g) \rightleftharpoons 2 NH_{3}(g) ; \Delta H=-92.38 ~kJ ~mol^{-1}
$$ It is an exothermic process as $\Delta H$ is negative. Effect of temperature According to Le-Chatelier’s principle, low temperature is favourable for high yield of ammonia, but practically very low temperatures slow down the reaction. So, optimum temperature $700 \mathrm{~K}$ is favourable in attainment of equilibrium. Effect of pressure Similarly, high pressure about 200 atm is favourable for high yield of ammonia. On increasing pressure, reaction goes in the forward direction because the number of moles decreases in the forward direction. Addition of argon At constant volume addition of argon does not affect the equilibrium because it does not change the partial pressures of the reactants or products involved in the reaction and the equilibrium remains undisturbed.Show Answer
Answer A sparingly soluble salt having general formula $A_{x}^{p+} B_{y}^{q-}$. Its molar solubility is $S \mathrm{~mol} \mathrm{~L}^{-1}$. Then, $$
A_{x}^{p+} B_{y}^{q-} \rightleftharpoons x A_{x}^{p+}(a q)+y B_{y}^{q-}(a q)
$$ $S$ moles of $A_{x} B_{y}$ dissolve to give $x$ moles of $A^{P+}$ and $y$ moles of $B^{q-}$. Therefore, solubility product $\left(K_{\mathrm{sp}}\right)=\left[A^{P+}\right]^{x}\left[B^{q-}\right]^{y}$ $$
\begin{aligned}
& =[x S]^{x}[y S]^{y} \\
& =x^{x} y^{y} S^{x+y}
\end{aligned}
$$Show Answer
(a) Why a reaction proceeds forward when $Q<K$ and no net reaction occurs when $\mathrm{Q}=\mathrm{K}$ ?
(b) Explain the effect of increase in pressure in terms of reaction quotient Q.
For the reaction, $CO(g)+3 H_{2}(~g) \rightleftharpoons CH_{4}(~g) + H_{2} O(g)$
Show Answer
Answer
The relation between $\Delta G$ and $Q$ is
$$ \begin{aligned} \Delta G & =\Delta G^{\ominus}+R T \ln Q \\ \Delta G & =\text { change in free energy as the reaction proceeds. } \\ \Delta G^{\ominus} & =\text { standard free energy } \\ Q & =\text { reaction quotient } \\ R & =\text { gas constant } \\ T & =\text { absolute temperature in } K \end{aligned} $$
(a) Since,
$$ \begin{aligned} \Delta G^{\ominus} & =-R T \ln K \\ \therefore \quad \Delta G & =-R T \ln K+R T \ln Q \\ \Delta G & =R T \ln \frac{Q}{K} \end{aligned} $$
If $Q<K, \Delta G$ will be negative and the reaction proceeds in the forward direction.
If $Q=K, \Delta G=0$ reaction is in equilibrium and there is no net reaction.
(b)
$$ \begin{aligned} CO(g)+3 H_{2}(g) & \rightleftharpoons CH_{4}(g)+H_{2} O(g) \\ K_{c} & =\frac{\left[CH_{4}\right]\left[H_{2} O\right]}{[CO]\left[H_{2}\right]^{3}} \end{aligned} $$
On increasing pressure, volume decreases. If we doubled the pressure, volume will be halved but the molar concentrations will be doubled. Then,
$$ Q_C = \frac{2[CH_4] . 2[H_2 O ]}{2[CO]{2[H_2 ]}^3}=\frac{1}{4} \frac{[CH_4 ][H_2 O]}{[CO][H_2 ]^3}=\frac{1}{4} K_c $$
Therefore, $Q_{C}$ is less than $K_{c}$, so $Q_{c}$ will tend to increase to re-establish equilibrium and the reaction will go in forward direction.