Chapter 05 Morphology Of Flowering Plants

The wide range in the structure of higher plants will never fail to fascinate us. Even though the angiosperms show such a large diversity in external structure or morphology, they are all characterised by presence of roots, stems, leaves, flowers and fruits.

In chapters 2 and 3, we talked about classification of plants based on morphological and other characteristics. For any successful attempt at classification and at understanding any higher plant (or for that matter any living organism) we need to know standard technical terms and standard definitions. We also need to know about the possible variations in different parts, found as adaptations of the plants to their environment, e.g., adaptions to various habitats, for protection, climbing, storage, etc.

If you pull out any weed you will see that all of them have roots, stems and leaves. They may be bearing flowers and fruits. The underground part of the flowering plant is the root system while the portion above the ground forms the shoot system (Figure 5.1).

Figure 5.1 Parts of a flowering plant

5.1 THE ROOT

In majority of the dicotyledonous plants, the direct elongation of the radicle leads to the formation of primary root which grows inside the soil. It bears lateral roots of several orders that are referred to as secondary, tertiary, etc. roots. The primary roots and its branches constitute the tap root system, as seen in the mustard plant (Figure 5.2a). In monocotyledonous plants, the primary root is short lived and is replaced by a large number of roots. These roots originate from the base of the stem and constitute the fibrous root system, as seen in the wheat plant (Figure 5.2b). In some plants, like grass, Monstera and the banyan tree, roots arise from parts of the plant other than the radicle and are called adventitious roots (Figure 5.2c). The main functions of the root system are absorption of water and minerals from the soil, providing a proper anchorage to the plant parts, storing reserve food material and synthesis of plant growth regulators.

Figure 5.2 Different types of roots : (a) Tap (b) Fibrous (c) Adventitious

5.1.1 Regions of the Root

The root is covered at the apex by a thimble-like structure called the root cap (Figure 5.3). It protects the tender apex of the root as it makes its way through the soil. A few millimetres above the root cap is the region of meristematic activity. The cells of this region are very small, thin-walled and with dense protoplasm. They divide repeatedly. The cells proximal to this region undergo rapid elongation and enlargement and are responsible for the growth of the root in length. This region is called the region of elongation. The cells of the elongation zone gradually differentiate and mature. Hence, this zone, proximal to region of elongation, is called the region of maturation. From this region some of the epidermal cells form very fine and delicate, thread-like structures called root hairs. These root hairs absorb water and minerals from the soil.

Figure 5.3 The regions of the root-tip

5.2 THE STEM

What are the features that distinguish a stem from a root? The stem is the ascending part of the axis bearing branches, leaves, flowers and fruits. It develops from the plumule of the embryo of a germinating seed. The stem bears nodes and internodes. The region of the stem where leaves are born are called nodes while internodes are the portions between two nodes. The stem bears buds, which may be terminal or axillary. Stem is generally green when young and later often become woody and dark brown.

The main function of the stem is spreading out branches bearing leaves, flowers and fruits. It conducts water, minerals and photosynthates. Some stems perform the function of storage of food, support, protection and of vegetative propagation.

5.3 THE LEAF

The leaf is a lateral, generally flattened structure borne on the stem. It develops at the node and bears a bud in its axil. The axillary bud later develops into a branch. Leaves originate from shoot apical meristems and are arranged in an acropetal order. They are the most important vegetative organs for photosynthesis. A typical leaf consists of three main parts: leaf base, petiole and lamina (Figure 5.7 a). The leaf is attached to the stem by the leaf base and may bear two lateral small leaf like structures called stipules. In monocotyledons, the leaf base expands into a sheath covering the stem partially or wholly. In some leguminous plants the leafbase may become swollen, which is called the pulvinus. The petiole help hold the blade to light. Long thin flexible petioles allow leaf blades to flutter in wind, thereby cooling the leaf and bringing fresh air to leaf surface. The lamina or the leaf blade is the green expanded part of the leaf with veins and veinlets. There is, usually, a middle prominent vein, which is known as the midrib. Veins provide rigidity to the leaf blade and act as channels of transport for water, minerals and food materials. The shape, margin, apex, surface and extent of incision of lamina varies in different leaves.

Figure 5.4 Structure of a leaf :(a) Parts of a leaf (b) Reticulate venation (c) Parallel venation

5.3.1 Venation

The arrangement of veins and the veinlets in the lamina of leaf is termed as venation. When the veinlets form a network, the venation is termed as reticulate (Figure 5.7 b). When the veins run parallel to each other within a lamina, the venation is termed as parallel (Figure 5.7 c). Leaves of dicotyledonous plants generally possess reticulate venation, while parallel venation is the characteristic of most monocotyledons.

5.3.2 Types of Leaves

A leaf is said to be simple, when its lamina is entire or when incised, the incisions do not touch the midrib. When the incisions of the lamina reach up to the midrib breaking it into a number of leaflets, the leaf is called compound. A bud is present in the axil of petiole in both simple and compound leaves, but not in the axil of leaflets of the compound leaf.

The compound leaves may be of two types (Figure 5.8). In a pinnately compound leaf a number of leaflets are present on a common axis, the rachis, which represents the midrib of the leaf as in neem.

In palmately compound leaves, the leaflets are attached at a common point, i.e., at the tip of petiole, as in silk cotton.

Figure 5.5 Compound leaves : (a) pinnately compound leaf (b) palmately compound leaf

5.3.3 Phyllotaxy

Phyllotaxy is the pattern of arrangement of leaves on the stem or branch. This is usually of three types - alternate, opposite and whorled (Figure 5.9). In alternate type of phyllotaxy, a single leaf arises at each node in alternate manner, as in china rose, mustard and sun flower plants. In opposite type, a pair of leaves arise at each node and lie opposite to each other as in Calotropis and guava plants. If more than two leaves arise at a node and form a whorl, it is called whorled, as in Alstonia.

Figure 5.6 Different types of phyllotaxy : (a) Alternate (b) Opposite (c) Whorled

5.4 THE INFLORESCENCE

A flower is a modified shoot wherein the shoot apical meristem changes to floral meristem. Internodes do not elongate and the axis gets condensed. The apex produces different kinds of floral appendages laterally at successive nodes instead of leaves. When a shoot tip transforms into a flower, it is always solitary. The arrangement of flowers on the floral axis is termed as inflorescence. Depending on whether the apex gets developed into a flower or continues to grow, two major types of inflorescences are defined - racemose and cymose. In racemose type of inflorescences the main axis continues to grow, the flowers are borne laterally in an acropetal succession (Figure 5.11). In cymose type of inflorescence the main axis terminates in a flower, hence is limited in growth.The flowers are borne in a basipetal order (Figure 5.12).

Figure 5.7 Racemose inflorescenc

5.5 THE FLOWER

The flower is the reproductive unit in the angiosperms. It is meant for sexual reproduction. A typical flower has four different kinds of whorls arranged successively on the swollen end of the stalk or pedicel, called thalamus or receptacle. These are calyx, corolla, androecium and gynoecium. Calyx and corolla are accessory organs, while androecium and gynoecium are reproductive organs. In some flowers like lily, the calyx and corolla are not distinct and are termed as perianth. When a flower has both androecium and gynoecium, it is bisexual. A flower having either only stamens or only carpels is unisexual.

Figure 5.8 Cymose inflorescence

In symmetry, the flower may be actinomorphic (radial symmetry) or zygomorphic (bilateral symmetry). When a flower can be divided into two equal radial halves in any radial plane passing through the centre, it is said to be actinomorphic, e.g., mustard, datura, chilli. When it can be divided into two similar halves only in one particular vertical plane, it is zygomorphic, e.g., pea, gulmohur, bean, Cassia. A flower is asymmetric (irregular) if it cannot be divided into two similar halves by any vertical plane passing through the centre, as in canna.

A flower may be trimerous, tetramerous or pentamerous when the floral appendages are in multiple of 3, 4 or 5, respectively. Flowers with bracts -reduced leaf found at the base of the pedicel - are called bracteate and those without bracts, ebracteate.

Figure 5.9 Position of floral parts on thalamus : (a) Hypogynous (b) and (c) Perigynous (d) Epigynous

Based on the position of calyx, corolla and androecium in respect of the ovary on thalamus, the flowers are described as hypogynous, perigynous and epigynous (Figure 5.13). In the hypogynous flower the gynoecium occupies the highest position while the other parts are situated below it. The ovary in such flowers is said to be superior, e.g., mustard, china rose and brinjal. If gynoecium is situated in the centre and other parts of the flower are located on the rim of the thalamus almost at the same level, it is called perigynous. The ovary here is said to be half inferior, e.g., plum, rose, peach. In epigynous flowers, the margin of thalamus grows upward enclosing the ovary completely and getting fused with it, the other parts of flower arise above the ovary. Hence, the ovary is said to be inferior as in flowers of guava and cucumber, and the ray florets of sunflower.

5.5.1 Parts of a Flower

Each flower normally has four floral whorls, viz., calyx, corolla, androecium and gynoecium (Figure 5.14).

Figure 5.10 Parts of a flower

5.5.1.1 Calyx

The calyx is the outermost whorl of the flower and the members are called sepals. Generally, sepals are green, leaf like and protect the flower in the bud stage. The calyx may be gamosepalous (sepals united) or polysepalous (sepals free).

5.5.1.2 Corolla

Corolla is composed of petals. Petals are usually brightly coloured to attract insects for pollination. Like calyx, corolla may also be gamopetalous (petals united) or polypetalous (petals free). The shape and colour of corolla vary greatly in plants. Corolla may be tubular, bellshaped, funnel-shaped or wheel-shaped.

Figure 5.11 Types of aestivation in corolla : (a) Valvate (b) Twisted (c) Imbricate (d) Vexillary

Aestivation: The mode of arrangement of sepals or petals in floral bud with respect to the other members of the same whorl is known as aestivation. The main types of aestivation are valvate, twisted, imbricate and vexillary (Figure 5.15). When sepals or petals in a whorl just touch one another at the margin, without overlapping, as in Calotropis, it is said to be valvate. If one margin of the appendage overlaps that of the next one and so on as in china rose, lady’s finger and cotton, it is called twisted. If the margins of sepals or petals overlap one another but not in any particular direction as in Cassia and gulmohur, the aestivation is called imbricate. In pea and bean flowers, there are five petals, the largest (standard) overlaps the two lateral petals (wings) which in turn overlap the two smallest anterior petals (keel); this type of aestivation is known as vexillary or papilionaceous.

5.5.1.3 Androecium

Androecium is composed of stamens. Each stamen which represents the male reproductive organ consists of a stalk or a filament and an anther. Each anther is usually bilobed and each lobe has two chambers, the pollen-sacs. The pollen grains are produced in pollen-sacs. A sterile stamen is called staminode.

Stamens of flower may be united with other members such as petals or among themselves. When stamens are attached to the petals, they are epipetalous as in brinjal, or epiphyllous when attached to the perianth as in the flowers of lily. The stamens in a flower may either remain free (polyandrous) or may be united in varying degrees. The stamens may be united into one bunch or one bundle (monoadelphous) as in china rose, or two bundles (diadelphous) as in pea, or into more than two bundles (polyadelphous) as in citrus. There may be a variation in the length of filaments within a flower, as in Salvia and mustard.

5.5.1.4 Gynoecium

Gynoecium is the female reproductive part of the flower and is made up of one or more carpels. A carpel consists of three parts namely stigma, style and ovary. Ovary is the enlarged basal part, on which lies the elongated tube, the style. The style connects the ovary to the stigma. The stigma is usually at the tip of the style and is the receptive surface for pollen grains. Each ovary bears one or more ovules attached to a flattened, cushion-like placenta. When more than one carpel is present, they may be free (as in lotus and rose) and are called apocarpous. They are termed syncarpous when carpels are fused, as in mustard and tomato. After fertilisation, the ovules develop into seeds and the ovary matures into a fruit.

Placentation: The arrangement of ovules within the ovary is known as placentation. The placentation are of different types namely, marginal, axile, parietal, basal, central and free central (Figure 5.16). In marginal placentation the placenta forms a ridge along the ventral suture of the ovary and the ovules are borne on this ridge forming two rows, as in pea. When the placenta is axial and the (e) ovules are attached to it in a multilocular ovary, the placentaion is said to be axile, as in china rose, tomato and lemon. In parietal Figure 5.16 Types of placentation, the ovules develop on the inner wall of the ovary or placentation : (a) Marginal on peripheral part. Ovary is one-chambered but it becomes two(b) Axile chambered due to the formation of the false septum, e.g., mustard (c) Parietal and Argemone. When the ovules are borne on central axis and (d) Free central (e) Basal septa are absent, as in Dianthus and Primrose the placentation is called free central. In basal placentation, the placenta develops at the base of ovary and a single ovule is attached to it, as in sunflower, marigold.

Figure 5.12 Types of placentation : (a) Marginal(b) Axile (c) Parietal (d) Free central(e) Basal

5.6 THE FRUIT

The fruit is a characteristic feature of the flowering plants. It is a mature or ripened ovary, developed after fertilisation. If a fruit is formed without fertilisation of the ovary, it is called a parthenocarpic fruit.

Generally, the fruit consists of a wall or pericarp and seeds. The pericarp may be dry or fleshy. When pericarp is thick and fleshy, it is differentiated into the outer epicarp, the middle mesocarp and the inner endocarp.

In mango and coconut, the fruit is known as a drupe (Figure 5.17). They develop from monocarpellary superior ovaries and are one seeded. In mango the pericarp is well differentiated into an outer thin epicarp, a middle fleshy edible mesocarp and an inner stony hard endocarp. In coconut which is also a drupe, the mesocarp is fibrous.

Figure 5.13 Parts of a fruit : (a) Mango (b) Coconut

5.7 THE SEED

The ovules after fertilisation, develop into seeds. A seed is made up of a seed coat and an embryo. The embryo is made up of a radicle, an embryonal axis and one (as in wheat, maize) or two cotyledons (as in gram and pea).

5.7.1 Structure of a Dicotyledonous Seed

The outermost covering of a seed is the seed coat. The seed coat has two layers, the outer testa and the inner tegmen. The hilum is a scar on the seed coat through which the developing seeds were attached to the fruit. Above the hilum is a small pore called the micropyle. Within the seed coat is the embryo, consisting of an embryonal axis and two cotyledons. The cotyledons are often fleshy and full of reserve food materials. At the two ends of the embryonal axis are present the radicle and the plumule (Figure 5.18). In some seeds such as castor the endosperm formed as a result of double fertilisation, is a food storing tissue and called endospermic seeds. In plants such as bean, gram and pea, the endosperm is not present in mature seeds and such seeds are called nonendospermous.

Figure 5.14 Structure of dicotyledonous seed

5.7.2 Structure of Monocotyledonous Seed

Generally, monocotyledonous seeds are endospermic but some as in orchids are non-endospermic. In the seeds of cereals such as maize the seed coat is membranous and generally fused with the fruit wall. The endosperm is bulky and stores food. The outer covering of endosperm separates the embryo by a proteinous layer called aleurone layer. The embryo is small and situated in a groove at one end of the endosperm. It consists of one large and shield shaped cotyledon known as scutellum and a short axis with a plumule and a radicle. The plumule and radicle are enclosed in sheaths which are called coleoptile and coleorhiza respectively (Figure 5.19).

Figure 5.15 Structure of a monocotyledonous seed

5.8 SEMI-TECHNICAL DESCRIPTION FLOWERING PLANT

Various morphological features are used to describe a flowering plant. The description has to be brief, in a simple and scientific language and presented in a proper sequence. The plant is described beginning with its habit, vegetative characters - roots, stem and leaves and then floral characters inflorescence and flower parts. After describing various parts of plant, a floral diagram and a floral formula are presented. The floral formula is represented by some symbols. In the floral formula, Br stands for bracteate K stands for calyx , C for corolla, P for perianth, A for androecium and G for Gynoecium, G for superior ovary and G for inferior ovary, for male, for female, for bisexual plants, ⊕ for actinomorphic and for zygomorphic nature of flower. Fusion is indicated by enclosing the figure within bracket and adhesion by a line drawn above the symbols of the floral parts. A floral diagram provides information about the number of parts of a flower, their arrangement and the relation they have with one another (Figure 5.20). The position of the mother axis with respect to the flower is represented by a dot on the top of the floral diagram. Calyx, corolla, androecium and gynoecium are drawn in successive whorls, calyx being the outermost and the gynoecium being in the centre. Floral formula also shows cohesion and adhesion within parts of whorls and between whorls. The floral diagram and floral formula in Figure 5.20 represents the mustard plant (Family: Brassicaceae).

Figure 5.16 Floral diagram with floral formula

5.9 Solanaceae

It is a large family, commonly called as the ‘potato family’. It is widely distributed in tropics, subtropics and even temperate zones (Figure 5.17).

Figure 5.17 Solanum nigrum (makoi) plant : (a) Flowering twig (b) Flower (c) L.S. of flower (d) Stamens (e) Carpel (f) Floral diagram

Vegetative Characters Plants mostly herbs, shrubs and rarely small trees

Stem: herbaceous rarely woody, aerial; erect, cylindrical, branched, solid or hollow, hairy or glabrous, underground stem in potato (Solanum tuberosum)

Leaves: alternate, simple, rarely pinnately compound, exstipulate; venation reticulate

Floral Characters

Inflorescence : Solitary, axillary or cymose as in Solanum

Flower: bisexual, actinomorphic

Calyx: sepals five, united, persistent, valvate aestivation

Corolla: petals five, united; valvate aestivation

Androecium: stamens five, epipetalous

Gynoecium: bicarpellary obligately placed, syncarpous; ovary superior, bilocular, placenta swollen with many ovules, axile

Fruits: berry or capsule Seeds: many, endospermous

Floral Formula:

Economic Importance Many plants belonging to this family are source of food (tomato, brinjal, potato), spice (chilli); medicine (belladonna, ashwagandha); fumigatory (tobacco); ornamentals (petunia).

Summary

Flowering plants exhibit enormous variation in shape, size, structure, mode of nutrition, life span, habit and habitat. They have well developed root and shoot systems. Root system is either tap root or fibrous. Generally, dicotyledonous plants have tap roots while monocotyledonous plants have fibrous roots. The roots in some plants get modified for storage of food, mechanical support and respiration. The shoot system is differentiated into stem, leaves, flowers and fruits. The morphological features of stems like the presence of nodes and internodes, multicellular hair and positively phototropic nature help to differentiate the stems from roots. Stems also get modified to perform diverse functions such as storage of food, vegetative propagation and protection under different conditions. Leaf is a lateral outgrowth of stem developed exogeneously at the node. These are green in colour to perform the function of photosynthesis. Leaves exhibit marked variations in their shape, size, margin, apex and extent of incisions of leaf blade (lamina). Like other parts of plants, the leaves also get modified into other structures such as tendrils, spines for climbing and protection respectively.

The flower is a modified shoot, meant for sexual reproduction. The flowers are arranged in different types of inflorescences. They exhibit enormous variation in structure, symmetry, position of ovary in relation to other parts, arrangement of petals, sepals, ovules etc. After fertilisation, the ovary is modified into fruits and ovules into seeds. Seeds either may be monocotyledonous or dicotyledonous. They vary in shape, size and period of viability. The floral characteristics form the basis of classification and identification of flowering plants. This can be illustrated through semi-technical descriptions of families. Hence, a flowering plant is described in a definite sequence by using scientific terms. The floral features are represented in the summarised form as floral diagrams and floral formula.

Exercises

1. How is a pinnately compound leaf different from a palmately compound leaf?

Show Answer

Answer

Pinnately compound leaf Palmately compound leaf
The leaflets are attached to the common axis, called
rachis.
The leaflets are attached at a common point
on the leaf stalk.
Examples include neem and Cassia fistula( also called
golden shower plant)
Examples include silk cotton (Bombax )
and Cannabis.

2. Explain with suitable examples the different types of phyllotaxy.

Show Answer

Answer

Phyllotaxy refers to the pattern or arrangement of leaves on the stem or branch of a plant. It is of three types, alternate, opposite, and whorled phyllotaxy.

In alternate phyllotaxy, a single leaf arises from the node of a branch. This type of phyllotaxy is observed in the sunflower, mustard, and peepal. Plants with opposite phyllotaxy have two leaves arising from the node in opposite directions. It is found in guava and jamun plants. Plants with whorled phyllotaxy have three or more leaves arising from the node. It is found in Alstonia.

3. Define the following terms:

(a) aestivation

(b) placentation

(c) actinomorphic

(d) zygomorphic

(e) superior ovary

(f) perigynous flower

(g) epipetalous stamen

Show Answer

Answer

(a) Aestivation

The term ‘aestivation’ refers to the mode in which sepals or petals are arranged in a floral bud with respect to other floral members. There are four types of aestivation in plants i.e., valvate, twisted, imbricate, and vexillary.

(b) Placentation

The term ‘placentation’ refers to the arrangement of ovules within the ovary of a flower. It is primarily of five types, namely marginal, basal, parietal, axile, and free central.

(c) Actinomorphic

Actinomorphic flowers can be divided into two radial halves by any radial plane passing through its centre. Examples of these flowers include chilly and mustard.

(d)Zygomorphic

Zygomorphic flowers are those flowers which can be divided into two similar halves by a single vertical plane.

Examples of these flowers include pea and beans.

(e) Superior ovary

Superior ovary flowers are those flowers in which the gynoecium is present at the highest position, while other floral parts are arranged below it. A flower with this arrangement is described as hypogynous. Examples include brinjal and mustard.

(f) Perigynous flower

In perigynous flowers, the gynoecium is present in the centre and the rest of the floral parts are arranged at the rim of the thalamus at the same level. Examples include plum and rose.

(g) Epipetalous Stamen

Epipetalous stamens are stamens attached to the petals. They are found in brinjal.

4. Differentiate between

(a) Racemose and cymose inflorescence

(b) Fibrous root and adventitious root

Show Answer

Answer

(a) Racemose and cymose inflorescence

Racemose inflorescence Cymose inflorescence
Younger flowers are present at the tip while older flowers are arranged at the base of this inflorescence. Such an arrangement is called acropetal succession. Younger flowers are present at the base of the inflorescence, while older flowers are present at the top. Such an arrangement is called basipetal succession.
The main axis in racemose inflorescence continues to grow and produce flowers laterally The main axis in cymose inflorescence has limited growth, which later terminates into a flower.

(b) Fibrous root and adventitious root

Fibrous root Adventitious root
In monocots, the primary root which develops from the radicle of the seed is short-lived and is replaced by a large number of roots arising from the base of the stem. These roots arise from any part of the plant other than the radicle of seeds.
It is found in wheat and other cereals. It is found in banyan, Monstera, and other plants.

5. Draw the labelled diagram of the following: (i) gram seed (ii) V.S. of maize seed

Show Answer

Answer

(i)

Structure of Gram seed

(ii)

6. Take one flower each of the families Fabaceae and Solanaceae and write its semi-technical description. Also draw their floral diagram after studying them.

Show Answer

Answer

(1) Family Fabaceae/Papilionaceae (pea plant)

Fabaceae/Papilionaceae is a sub-family of the Leguminoseae family.

Vegetative features:

Habit: Pinnately compound, alternately arranged with leaf tendrils with the pulvinus present at the leaf base along folacious stipules.

Root: Tap root system with root nodules.

Floral features:

Inflorescence: Racemose, generally axial than terminal

Flower: Zygomorphic and bisexual flowers are found

Calyx: It contains five sepals which are gamosepalous while aestivation is imbricate.

Corolla: It contains five petals (polypetalous) with vexillary aestivation.

Androecium: It consists of ten anthers that are diadelphous with dithecous anthers.

Gynoecium: Monocarpellary superior ovary which is unilocular with marginal placentation.

Fruit: Legume pod with non-endospermic seeds

Floral formula: $\%$ O $K_{(5)} C_{1+2+(2)} A_{(9)+1} G_1$

Economic importance: Peas are used as vegetables for making various culinary preparations.

Floral diagram of family Papilionaceae

(2) Flowers of Solanum nigrum

Family Solanaceae

Vegetative features:

Habit: Erect, herbaceous plant

Leaves: Simple, exstipulate leaves with reticulate venation

Stem: Erect stem with numerous branches.

Floral features:

Inflorescence: Solitary and axillary

Flowers: Actinomorphic, bisexual flowers

Calyx: Calyx is composed of five sepals that are united and persistent. Aestivation is valvate.

Corolla: Corolla consists of five united petals with valvate aestivation.

Androecium: It consists of five epipetalous stamens.

Gynoecium: It consists of bicarpellary syncarpous superior ovary with axile placentation.

Fruits: Berry

Seeds: Numerous, endospermous

Floral formula:

Economic importance: Used for medicinal purposes.

Floral diagram of family Solanaceae

7. Describe the various types of placentations found in flowering plants.

Show Answer

Answer

Placentation refers to the arrangement of ovules inside the ovary. It is of five basic types.

(A) Marginal placentation

The ovary in which the placenta forms a ridge along the ventral suture of the ovary and the ovules develop on two separate rows is known to have marginal placentation. This type of placentation is found in peas.

(B) Parietal placentation

When the ovules develop on the inner walls of the ovary, the ovary is said to have parietal placentation.

(C) Axile placentation

In axile placentation, the placenta is axial and ovules are attached to it. Examples include China rose, lemon, and tomato.

(D) Basal placentation

The ovary in which the placenta develops from its base and a single ovule is found attached to the base is said to have basal placentation. It is found in marigold and sunflower.

(E) Free central placentation

In free central placentation, the ovules develop on the central axis while the septa are absent. This type of placentation is found in Dianthus and primrose.

8. What is a flower? Describe the parts of a typical angiosperm flower.

Show Answer

Answer

A flower can be defined as the reproductive unit of any flowering plant (angiosperms). Flowers carry out sexual reproduction in angiosperms. A typical flower is a modified stem with a condensed axis. A flower has four different parts i.e., the calyx, corolla, androecium, and gynoecium. Androecium and gynoecium represent the male and female reproductive organs of a flower (respectively). Bisexual flowers are those which contain both androecium and gynoecium, while unisexual flowers contain either gynoecium or androecium. The corolla and the calyx are generally distinct, but may sometimes be fused (called perianth). A flower that contains all four floral parts is called a complete flower.

Parts of flowers

(A) The calyx forms the outermost whorl of a flower, which contains sepals. They are green, leaf-like structures that cover and protect the flowers during the bud stage. When the sepals of a flower are free, they are called polysepalous, while fused sepals of a flower are called gamosepalous.

(B) The corolla of a flower is a layer that lies inside the calyx. It contains beautifully coloured petals, which help in attracting insects for pollination. When the petals are free, they are called polypetalous, while fused petals are called gamopetalous.

(C) The androecium or the stamen is the male reproductive part of a flower. It consists of two parts, the filament and the bilobed anther. The bilobed anther is the site for meiosis and the generation of pollen grains.

(D) Gynoecium represents the female reproductive part of a flower. It consists of an ovary. The ovary is connected by a long tube (called style) to the stigma. The ovary bears numerous ovules attached to the placenta.

9. Define the term inflorescence. Explain the basis for the different types inflorescence in flowering plants.

Show Answer

Answer

Inflorescence is the manner in which the flowers are arranged on the flowering axis. During the flowering season, the vegetative apex of the stem gets converted into a floral meristem. Based on whether the floral axis continues to grow or end in a flower, inflorescence is classified into racemose and cymose. In racemose inflorescence, the floral axis continues to grow and produces flowers laterally. On the other hand, in cymose inflorescence, the main axis terminates into a flower. Hence, it is limited in growth.

10. Describe the arrangement of floral members in relation to their insertion on thalamus.

Show Answer

Answer

Based on the position of the calyx, corolla, and androecium (with respect to the ovary on the thalamus), the flowers are described as hypognous, perigynous, and epigynous.

In hypogynous flowers, the ovary occupies the highest position on the thalamus while other floral parts are situated below it. In such flowers, the ovary is superior e.g., China rose, mustard etc.

In perigynous flowers, the ovary is situated at the centre and other floral parts are arranged on the rim of the thalamus. The ovary here is said to be half inferior e.g., plum, rose, peach

In epigynous flowers, the thalamus grows around the ovary fusing with its wall. The other floral parts are present above the ovary. Hence, the ovary is said to be inferior e.g., flowers of guava and cucumber.



Table of Contents