Inverse Trigonometric Functions

Short Answer Type Questions

1. Find the value of $\tan ^{-1}(\tan \frac{5 \pi}{6})+\cos ^{-1}(\cos \frac{13 \pi}{6})$.

Show Answer

Solution

We know that $\frac{5 \pi}{6} \notin(-\frac{\pi}{2}, \frac{\pi}{2})$ and $\frac{13 \pi}{6} \notin[0, \pi]$

$\therefore \tan ^{-1}(\tan \frac{5 \pi}{6})+\cos ^{-1}(\cos \frac{13 \pi}{6})$

$=\tan ^{-1}[\tan (\pi-\frac{\pi}{6})]+\cos ^{-1}[\cos (2 \pi+\frac{\pi}{6})]$

$=\tan ^{-1}[\tan (-\frac{\pi}{6})]+\cos ^{-1}(\cos \frac{\pi}{6})$

$=\tan ^{-1}(-\tan \frac{\pi}{6})+\cos ^{-1}(\cos \frac{\pi}{6})$

$=-\tan ^{-1}(\tan \frac{\pi}{6})+\cos ^{-1}(\cos \frac{\pi}{6}) \quad[\because \tan ^{-1}(-x)=-\tan ^{-1} x]$

$=-\frac{\pi}{6}+\frac{\pi}{6}=0$

Hence, $\tan ^{-1}(\tan \frac{5 \pi}{6})+\cos ^{-1}(\cos \frac{13 \pi}{6})=0$

2. Evaluate: $\cos [\cos ^{-1}(\frac{-\sqrt{3}}{2})+\frac{\pi}{6}]$

Show Answer

Solution

$\cos [\cos ^{-1}(\frac{-\sqrt{3}}{2})+\frac{\pi}{6}]$

$=\cos [\pi-\cos ^{-1} \frac{\sqrt{3}}{2}+\frac{\pi}{6}][\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x]$

$=\cos [\pi-\frac{\pi /}{6}+\frac{\pi /}{6}]=\cos \pi=-1$

$ \text{ Hence, } \cos [\cos ^{-1}(\frac{-\sqrt{3}}{2})+\frac{\pi}{6}]=-1 \text{. } $

3. Prove that: $\cot (\frac{\pi}{4}-2 \cot ^{-1} 3)=7$.

Show Answer

Solution

L.H.S. $\cot (\frac{\pi}{4}-2 \cot ^{-1} 3)$

$=\cot [\tan ^{-1}(1)-2 \tan ^{-1} \frac{1}{3}] \quad[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x}]$

$=\cot [\tan ^{-1}(1)-\tan ^{-1} \frac{2 \times \frac{1}{3}}{1-(\frac{1}{3})^{2}}][\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}]$

$=\cot [\tan ^{-1}(1)-\tan ^{-1} \frac{\frac{2}{3}}{\frac{8}{9}}]$

$=\cot [\tan ^{-1}(1)-\tan ^{-1} \frac{3}{4}]$

$=\cot [\tan ^{-1}(\frac{1-\frac{3}{4}}{1+1 \times \frac{3}{4}})]=\cot [\tan ^{-1}(\frac{\frac{1}{4}}{\frac{7}{4}})]$

$=\cot [\tan ^{-1} \frac{1}{7}] \quad[\because \tan ^{-1} \frac{1}{x}=\cot ^{-1} x]$

$=\cot [\cot ^{-1}(7)]=7$ R.H.S.

Hence proved.

4. Find the value of $\tan ^{-1}(\frac{-1}{\sqrt{3}})+\cot ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}[\sin (\frac{-\pi}{2})]$

Show Answer

Solution

$\tan ^{-1}(\frac{-1}{\sqrt{3}})+\cot ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}[\sin (\frac{-\pi}{2})]$ $=-\tan ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}(\sqrt{3})+\tan ^{-1}(-1)$

$ \begin{bmatrix} \because \tan ^{-1}(-x)=-\tan ^{-1} x \\ \tan ^{-1} x=\cot ^{-1}(\frac{1}{x}) \\ \sin (\frac{-\pi}{2})=-1 \end{bmatrix} $

$ =-\frac{\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4}=\frac{-\pi}{12} \quad[\because \tan ^{-1}(-1)=\frac{-\pi}{4}] $

Hence, $\tan ^{-1}(\frac{-1}{\sqrt{3}})+\cot ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}[\sin (\frac{-\pi}{2})]=\frac{-\pi}{12}$

5. Find the value of $\tan ^{-1}(\tan \frac{2 \pi}{3})$

Show Answer

Solution

We know that $\frac{2 \pi}{3} \notin[\frac{-\pi}{2}, \frac{\pi}{2}]$

$ \begin{aligned} \therefore \tan ^{-1}(\tan \frac{2 \pi}{3}) & =\tan ^{-1}[\tan (\pi-\frac{\pi}{3})]=\tan ^{-1}(-\tan \frac{\pi}{3}) \\ & =-\tan ^{-1}(\tan \frac{\pi}{3})[\because \tan ^{-1}(-x)=-\tan ^{-1} x] \\ & =-\frac{\pi}{3} \in[-\frac{\pi}{2}, \frac{\pi}{2}] \end{aligned} $

Hence, $\tan ^{-1}(\tan \frac{2 \pi}{3})=\frac{-\pi}{3}$.

6. Show that: $2 \tan ^{-1}(-3)=\frac{-\pi}{2}+\tan ^{-1}(\frac{-4}{3})$

Show Answer

Solution

L.H.S. $2 \tan ^{-1}(-3)=-2 \tan ^{-1}(3)$

$ \begin{aligned} & =-\cos ^{-1}[\frac{1-(3)^{2}}{1+(3)^{2}}][\because 2 \tan ^{-1} x=\cos ^{-1}(\frac{1-x^{2}}{1+x^{2}})] \\ & =-\cos ^{-1}(\frac{1-9}{1+9})=-\cos ^{-1}(\frac{-8}{10}) \\ & =-\cos ^{-1}(\frac{-4}{5})=-[\pi-\cos ^{-1}(\frac{4}{5})]=-\pi+\cos ^{-1} \frac{4}{5} \\ & =-\pi+\tan ^{-1}(\frac{3}{4}) \quad[\because \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4}] \end{aligned} $

$ \begin{matrix} =-\pi+\frac{\pi}{2}-\cot ^{-1}(\frac{3}{4}) & {[\tan ^{-1} x=\frac{\pi}{2}-\cot ^{-1} x]} \\ =\frac{-\pi}{2}-\cot ^{-1}(\frac{3}{4}) & {[\because \tan ^{-1} x=\cot ^{-1} \frac{1}{x}]} \\ =\frac{-\pi}{2}-\tan ^{-1}(\frac{4}{3}) & \\ =\frac{-\pi}{2}+\tan ^{-1}(-\frac{4}{3}) \text{ R.H.S. } & \end{matrix} $

Hence proved.

7. Find the real solutions of the equation

$ \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} $

Show Answer

Solution

$\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2}$

$ \text{ Let } \quad \theta=\sin ^{-1} \sqrt{x^{2}+x+1} $

$\therefore \quad \sin \theta=\sqrt{x^{2}+x+1}$

$\Rightarrow \tan \theta=\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}} \Rightarrow \theta=\tan ^{-1}(\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}})$

$\Rightarrow \sin ^{-1} \sqrt{x^{2}+x+1}=\tan ^{-1}(\sqrt{\frac{x^{2}+x+1}{-x^{2}-x}})$

So, $\tan ^{-1} \sqrt{x(x+1)}+\tan ^{-1}(\sqrt{\frac{x^{2}+x+1}{-x^{2}-x}})=\frac{\pi}{2}$

$\Rightarrow \tan ^{-1}[\frac{\sqrt{x(x+1)}+\sqrt{\frac{x^{2}+x+1}{-x(x+1)}}}{1-\sqrt{x(x+1)} \times \sqrt{\frac{x^{2}+x+1}{-x(x+1)}}}]=\frac{\pi}{2}$

$\Rightarrow \tan ^{-1}[\frac{\frac{x(x+1)+\sqrt{-(x^{2}+x+1)}}{\sqrt{x(x+1)}}}{1-\sqrt{-(x^{2}+x+1)}}]=\frac{\pi}{2}$ $\Rightarrow \frac{x^{2}+x-\sqrt{-(x^{2}+x+1)}}{[1-\sqrt{-(x^{2}+x+1)}] \sqrt{x^{2}+x}}=\tan \frac{\pi}{2}=\frac{1}{0}$ $\Rightarrow[1-\sqrt{-(x^{2}+x+1)}] \sqrt{x^{2}+x}=0$ $\Rightarrow[1-\sqrt{-(x^{2}+x+1)}]=0$ or $\sqrt{x^{2}+x}=0$

Here, $\sqrt{-(x^{2}+x+1)} \notin R$

$\therefore \sqrt{x^{2}+x}=0$

$\Rightarrow \quad x^{2}+x=0 \Rightarrow x(x+1)=0$

$\Rightarrow \quad x=0$ or $x+1=0 \Rightarrow x=0$ or $x=-1$

Hence the real solutions are $x=0$ and $x=-1$.

Alternate Method

$ \begin{aligned} & \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} \\ & \Rightarrow \tan ^{-1} \sqrt{x^{2}+x}=\frac{\pi}{2}-\sin ^{-1} \sqrt{x^{2}+x+1} \\ & \Rightarrow \tan ^{-1} \sqrt{x^{2}+x}=\cos ^{-1} \sqrt{x^{2}+x+1}[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}] \\ & \Rightarrow \cos ^{-1}[\frac{1}{\sqrt{1+x^{2}+x}}]=\cos ^{-1} \sqrt{x^{2}+x+1} \\ & \Rightarrow \quad \frac{1}{\sqrt{x^{2}+x+1}}=\sqrt{x^{2}+x+1} \quad[\because \tan ^{-1} x=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}] \\ & \Rightarrow \quad x^{2}+x+1=1 \quad \Rightarrow x^{2}+x=0 \\ & \Rightarrow \quad x(x+1)=0 \quad \Rightarrow x=0 \text{ or } x+1=0 \\ & \therefore \quad x=0, x=-1 \end{aligned} $

8. Find the value of the expression

$ \sin (2 \tan ^{-1} \frac{1}{3})+\cos (\tan ^{-1} 2 \sqrt{2}) $

Show Answer

Solution

$\sin (2 \tan ^{-1} \frac{1}{3})+\cos (\tan ^{-1} 2 \sqrt{2})$

$ \begin{aligned} & \Rightarrow \sin [\tan ^{-1}(\frac{2 \times \frac{1}{3}}{1-(\frac{1}{3})^{2}})]+\cos [\cos ^{-1} \frac{1}{\sqrt{1+(2 \sqrt{2})^{2}}}] \\ & {[\because \tan ^{-1} x=\cos ^{-1}(\frac{1}{\sqrt{1+x^{2}}})]} \\ & \Rightarrow \sin [\tan ^{-1}(\frac{\frac{2}{3}}{1-\frac{1}{9}})]+\cos [\cos ^{-1}(\frac{1}{3})] \\ & .\Rightarrow \sin [\tan ^{-1}(\frac{3}{4})]+\frac{1}{3} \Rightarrow \sin ^{-1}(\frac{3}{5})]+\frac{1}{3} \\ & \Rightarrow \frac{3}{5}+\frac{1}{3} \Rightarrow \frac{14}{15} \\ & \text{ Hence, } \sin (2 \tan ^{-1} \frac{1}{3})+\cos (\tan ^{-1} 2 \sqrt{2})=\frac{14}{15} . \end{aligned} $

9. If $2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 cosec \theta)$, then show that $\theta=\frac{\pi}{4}$

Show Answer

Solution

$2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 cosec \theta)$

$ \begin{aligned} & \Rightarrow \tan ^{-1}(\frac{2 \cos \theta}{1-\cos ^{2} \theta})=\tan ^{-1}(2 cosec \theta) \\ & \Rightarrow \quad[\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}] \\ & \Rightarrow \quad \frac{2 \cos \theta}{1-\cos ^{2} \theta}=2 cosec \theta \Rightarrow \frac{2 \cos \theta}{\sin ^{2} \theta}=\frac{2}{\sin \theta} \\ & \Rightarrow \quad \cos \theta \sin \theta-\sin ^{2} \theta=0 \Rightarrow \sin \theta(\cos \theta-\sin \theta)=0 \\ & \Rightarrow \quad \sin \theta=0 \text{ or } \quad \cos \theta-\sin \theta=0 \\ & \Rightarrow \quad \sin \theta=0 \quad \text{ or } \quad 1-\tan \theta=0 \\ & \Rightarrow \quad \theta=0 \text{ or } \quad \tan \theta=1 \\ & \Rightarrow \quad \theta=0^{\circ} \text{ or } \quad \theta=\frac{\pi}{4} \text{ Hence proved. } \end{aligned} $

10. Show that: $\cos (2 \tan ^{-1} \frac{1}{7})=\sin (4 \tan ^{-1} \frac{1}{3})$

Show Answer

Solution

L.H.S. $\cos (2 \tan ^{-1} \frac{1}{7})$

$ \begin{aligned} & =\cos [\cos ^{-1} \frac{1-\frac{1}{49}}{1+\frac{1}{49}}] \quad[\because 2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}] \\ & =\cos [\cos ^{-1} \frac{48}{50}]=\cos [\cos ^{-1} \frac{24}{25}]=\frac{24}{25} \end{aligned} $

R.H.S. $\sin [4 \tan ^{-1} \frac{1}{3}]$

$ \begin{aligned} & =\sin [2 \tan ^{-1}(\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}})][\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}] \\ & =\sin [2 \tan ^{-1}(\frac{\frac{2}{3}}{\frac{3}{9}})]=\sin [2 \tan ^{-1} \frac{3}{4}] \\ & =\sin [\sin ^{-1} \frac{2 \times \frac{3}{4}}{1+\frac{9}{16}}][\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}] \\ & =\sin [\sin ^{-1} \frac{24}{25}] \Rightarrow \frac{24}{25} \end{aligned} $

L.H.S. = R.H.S. Hence proved.

11. Solve the following equation: $\cos (\tan ^{-1} x)=\sin (\cot ^{-1} \frac{3}{4})$

Show Answer

Solution

Given that $\cos (\tan ^{-1} x)=\sin (\cot ^{-1} \frac{3}{4})$

$ \begin{aligned} \Rightarrow \cos [\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}]=\sin [\sin ^{-1} \frac{4}{5}] \\ { \begin{bmatrix} \because \tan ^{-1} x=\cos ^{-1}(\frac{1}{\sqrt{1+x^{2}}}) \\ \cot ^{-1} x=\sin ^{-1}(\frac{1}{\sqrt{1+x^{2}}}) \end{bmatrix} } \end{aligned} $

$ \Rightarrow \quad \frac{1}{\sqrt{1+x^{2}}}=\frac{4}{5} $

Squaring both sides we get,

$ \begin{aligned} & \frac{1}{1+x^{2}}=\frac{16}{25} \Rightarrow 1+x^{2}=\frac{25}{16} \\ & \Rightarrow \quad x^{2}=\frac{25}{16}-1=\frac{9}{16} \Rightarrow x= \pm \frac{3}{4} \\ & \text{ Hence, } \quad x=\frac{-3}{4}, \frac{3}{4} \text{. } \end{aligned} $

Long Answer Type Questions

12. Prove that: $\tan ^{-1}[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}]=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$

Show Answer

Solution

L.H.S. $\tan ^{-1}[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}]$

Put $x^{2}=\cos \theta \quad \therefore \theta=\cos ^{-1} x^{2}$

$\Rightarrow \tan ^{-1}[\frac{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}]$

$\Rightarrow \tan ^{-1}[\frac{\sqrt{2 \cos ^{2} \theta / 2}+\sqrt{2 \sin ^{2} \theta / 2}}{\sqrt{2 \cos ^{2} \theta / 2}-\sqrt{2 \sin ^{2} \theta / 2}}] \begin{cases} \because 1+\cos \theta=2 \cos ^{2} \theta / 2 \\ 1-\cos \theta=2 \sin ^{2} \theta / 2 \end{cases} $

$\Rightarrow \tan ^{-1}[\frac{\cos \theta / 2+\sin \theta / 2}{\cos \theta / 2-\sin \theta / 2}]$

$\Rightarrow \tan ^{-1}[\frac{1+\tan \theta / 2}{1-\tan \theta / 2}] \quad$ [Dividing the Nr. and Den. by $\cos \theta / 2$ ]

$\Rightarrow \tan [\tan (\frac{\pi}{4} \quad \frac{\theta}{2})] \quad[\because \frac{1+\tan \theta}{1-\tan \theta}=\tan (\frac{\pi}{4}+\theta)]$

$\Rightarrow \frac{\pi}{4}+\frac{\theta}{2} \Rightarrow \frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$ R.H.S. $\quad$ [Putting $\theta=\cos ^{-1} x^{2}$ ]

Hence proved.

13. Find the simplified form of $\cos ^{-1}(\frac{3}{5} \cos x+\frac{4}{5} \sin x)$, where $x \in[\frac{-3 \pi}{4}, \frac{\pi}{4}]$

Show Answer

Solution

Given that $\cos ^{-1}(\frac{3}{5} \cos x+\frac{4}{5} \sin x)$

Put $\quad \frac{3}{5}=\cos y$

$\therefore \quad \sqrt{1-\cos ^{2} y}=\sin y \Rightarrow \sqrt{1-\frac{9}{25}}=\sin y \Rightarrow \frac{4}{5}=\sin y$

$\therefore \cos ^{-1}[\frac{3}{5} \cos x+\frac{4}{5} \sin x]=\cos ^{-1}[\cos y \cos x+\sin y \sin x]$

$=\cos ^{-1}[\cos (y-x)]=y-x$

$=\tan ^{-1} \frac{4}{3}-x$ $\frac{8}{7}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{77}{85}$

14. Prove that: $\sin ^{-1} \frac{8}{17}+\sin ^{-}$

Show Answer

Solution

L.H.S. $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}$

$ \begin{aligned} & \text{ Using } \sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}] \\ & \begin{aligned} \sin ^{-1} \frac{8}{17}+ & \sin ^{-1} \frac{3}{5}=\sin ^{-1}[\frac{8}{17} \cdot \sqrt{1-(\frac{3}{5})^{2}}+\frac{3}{5} \cdot \sqrt{1-(\frac{8}{17})^{2}}] \\ & =\sin ^{-1}[\frac{8}{17} \cdot \sqrt{1-\frac{9}{25}}+\frac{3}{5} \cdot \sqrt{1-\frac{64}{289}}] \\ & =\sin ^{-1}[\frac{8}{17} \cdot \sqrt{\frac{16}{25}}+\frac{3}{5} \cdot \sqrt{\frac{225}{289}}] \\ & =\sin ^{-1}[\frac{8}{17} \cdot \frac{4}{5}+\frac{3}{5} \cdot \frac{15}{17}]=\sin ^{-1}[\frac{32}{85}+\frac{45}{85}] \\ & =\sin ^{-1} \frac{77}{85} \text{ R.H.S. Hence proved. } \end{aligned} \end{aligned} $

15. Show that: $\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$

Show Answer

Solution

Let $\sin ^{-1} \frac{5}{13}=x \quad \Rightarrow \quad \sin x=\frac{5}{13}$

$\Rightarrow \quad \tan x=\frac{5}{12}$

Let $\cos ^{-1} \frac{3}{5}=y \quad \Rightarrow \quad \cos y=\frac{3}{5}$

$\Rightarrow \quad \tan y=\frac{4}{3}$

Now $\quad \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$

$\Rightarrow \quad \tan (x+y)=\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}}=\frac{\frac{15+48}{36}}{\frac{36-20}{36}}=\frac{63}{16}$

$\Rightarrow \quad x+y=\tan ^{-1} \frac{63}{16}$

$\therefore \sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$ Hence proved.

16. Prove that: $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\sin ^{-1} \frac{1}{\sqrt{5}}$

Show Answer

Solution

$\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\tan ^{-1}[\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}]$

$[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}(\frac{x+y}{1-x y})]$

$\Rightarrow \tan ^{-1}[\frac{\frac{9+8}{36}}{\frac{36-2}{36}}]=\tan ^{-1}[\frac{17}{34}]$

Let $\quad \tan ^{-1}[\frac{17}{34}]=x$

$\therefore \quad \tan x=\frac{17}{34}=\frac{1}{2}$

$ \begin{aligned} \sin x & =\frac{1}{\sqrt{5}} \\ \therefore \quad \tan ^{-1} \frac{1}{2} & =\sin ^{-1} \frac{1}{\sqrt{5}} \text{ R.H.S. } \end{aligned} $

Hence, $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\sin ^{-1} \frac{1}{\sqrt{5}}$

17. Find the value of $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$

Show Answer

Solution

$4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$

$\Rightarrow 2 \cdot(2 \tan ^{-1} \frac{1}{5})-\tan ^{-1} \frac{1}{239}$

$\Rightarrow 2[\tan ^{-1} \frac{2 \times \frac{1}{5}}{1-\frac{1}{25}}]-\tan ^{-1} \frac{1}{239} \quad[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}]$

$\Rightarrow 2 \tan ^{-1} \frac{5}{12}-\tan ^{-1} \frac{1}{239} \Rightarrow \tan ^{-1}(\frac{2 \times \frac{5}{12}}{1-\frac{25}{144}})-\tan ^{-1}(\frac{1}{239})$

$\Rightarrow \tan ^{-1}(\frac{120}{119})-\tan ^{-1}(\frac{1}{239})$

$\Rightarrow \tan ^{-1}[\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119} \times \frac{1}{239}}][\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}]$

$\Rightarrow \tan ^{-1}[\frac{120 \times 239-119}{119 \times 239+120}] \Rightarrow \tan ^{-1}[\frac{28680-119}{28441+120}]$

$\Rightarrow \tan ^{-1}[\frac{28561}{28561}]=\tan ^{-1}(1)=\frac{\pi}{4}$

18. Show that $\tan (\frac{1}{2} \sin ^{-1} \frac{3}{4})=\frac{4-\sqrt{7}}{3}$ and justify why the other value $\frac{4+\sqrt{7}}{3}$ is ignored?

Show Answer

Solution

To prove that $\tan (\frac{1}{2} \sin ^{-1} \frac{3}{4})=\frac{4-\sqrt{7}}{3}$ L.H.S. Let $\frac{1}{2} \sin ^{-1} \frac{3}{4}=\tan ^{-1} \theta$ $[\therefore \tan (\tan ^{-1} \theta)=\theta]$

$ \begin{aligned} & \Rightarrow \quad \sin ^{-1} \frac{3}{4}=2 \tan ^{-1} \theta \Rightarrow \sin ^{-1} \frac{3}{4}=\sin ^{-1}(\frac{2 \theta}{1+\theta^{2}}) \\ & {[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}]} \\ & \Rightarrow \quad \frac{2 \theta}{1+\theta^{2}}=\frac{3}{4} \Rightarrow 3+3 \theta^{2}=8 \theta \\ & \Rightarrow \quad 3 \theta^{2}-8 \theta+3=0 \\ & \Rightarrow \quad \theta=\frac{-(-8) \pm \sqrt{(-8)^{2}-4 \times 3 \times 3}}{2 \times 3} \\ & =\frac{8 \pm \sqrt{64-36}}{6}=\frac{8 \pm \sqrt{28}}{6}=\frac{8 \pm 2 \sqrt{7}}{6}=\frac{2(4 \pm \sqrt{7})}{6} \\ & \Rightarrow \quad \theta=\frac{4 \pm \sqrt{7}}{3} \\ & \therefore \quad \theta=\frac{4+\sqrt{7}}{3} \text{ or } \frac{4-\sqrt{7}}{3} \\ & \theta=\frac{4+\sqrt{7}}{3} \text{ is ignored. } \\ & \text{ Because } \frac{-\pi}{2} \leq \sin ^{-1} \frac{3}{4} \leq \frac{\pi}{2} \\ & \Rightarrow \frac{-\pi}{4} \leq \frac{1}{2} \sin ^{-1} \frac{3}{4} \leq \frac{\pi}{4} \\ & \Rightarrow \tan (\frac{-\pi}{4}) \leq \tan (\frac{1}{2} \sin ^{-1} \frac{3}{4}) \leq \tan (\frac{\pi}{4}) \\ & \Rightarrow-1 \leq \tan (\frac{1}{2} \sin ^{-1} \frac{3}{4}) \leq 1 \end{aligned} $

19. If $a_1, a_2, a_3, \ldots, a_n$ is an arithmetic progression with common difference $d$, then evaluate the following expression

$ \begin{matrix} \tan [\tan ^{-1}(\frac{d}{1+a_1 a_2})+\tan ^{-1}(\frac{d}{1+a_2 a_3})+\tan ^{-1}(\frac{d}{1+a_3 a_4})+\ldots. \\ .\ldots+\tan ^{-1}(\frac{d}{1+a _{n-1} \cdot a_n})] \end{matrix} $

Show Answer

Solution

If $a_1, a_2, a_3, \ldots, a_n$ are the terms of an arithmetic progression $\therefore d=a_2-a_1=a_3-a_2=a_4-a_3 \ldots$

$ \begin{matrix} \therefore \tan [\tan ^{-1}(\frac{a_2-a_1}{1+a_1 a_2})+\tan ^{-1}(\frac{a_3-a_2}{1+a_2 a_3})+\tan ^{-1}(\frac{a_4-a_3}{1+a_3 a_4})+\ldots. \\ .\ldots+\tan ^{-1}(\frac{a_n-a _{n-1}}{1+a _{n-1} \cdot a_n})] \\ \Rightarrow \tan [(\tan ^{-1} a_2-\tan ^{-1} a_1)+(\tan ^{-1} a_3-\tan ^{-1} a_2)+(\tan ^{-1} a_4-\tan ^{-1} a_3). \\ .+\ldots+(\tan ^{-1} a_n-\tan ^{-1} a _{n-1})] \\ \Rightarrow \tan [\tan ^{-1} a_2-\tan ^{-1} a_1+\tan ^{-1} a_3-\tan ^{-1} a_2+\tan ^{-1} a_4-\tan ^{-1} a_3. \\ \quad[\because \tan ^{-1} \frac{x-y}{1+x y}=\tan ^{-1} x-\tan ^{-1} y] \\ \Rightarrow \tan [\tan ^{-1} a_n-\tan ^{-1} a_1] \quad \quad[\because \tan (\tan ^{-1} x)=x] \\ \Rightarrow \tan [\tan ^{-1}(\frac{a_n-a_1}{1+a_1 a_n})] \Rightarrow \frac{a_n-a_1}{1+a_1 a_n \quad} \end{matrix} $

Objective Type Questions

20. Which of the following is the principal value branch of $\cos ^{-1} x$ ?

(a) $[\frac{-\pi}{2}, \frac{\pi}{2}]$

(b) $(0, \pi)$

(c) $[0, \pi]$

(d) $(0, \pi)-{\frac{\pi}{2}}$

Show Answer

Solution

Principal value branch of $\cos ^{-1} x$ is $[0, \pi]$. Hence the correct answer is (c).

  • Option (a) $[\frac{-\pi}{2}, \frac{\pi}{2}]$ is incorrect because this interval is the principal value branch of $\sin^{-1} x$, not $\cos^{-1} x$.
  • Option (b) $(0, \pi)$ is incorrect because the principal value branch of $\cos^{-1} x$ includes the endpoints 0 and $\pi$, making it a closed interval $[0, \pi]$ rather than an open interval.
  • Option (d) $(0, \pi)-{\frac{\pi}{2}}$ is incorrect because the principal value branch of $\cos^{-1} x$ is a continuous interval $[0, \pi]$ and does not exclude $\frac{\pi}{2}$.

21. Which of the following is the principal value branch of $cosec^{-1} x$ ?

(a) $(\frac{-\pi}{2}, \frac{\pi}{2})$

(b) $[0, \pi]-{\frac{\pi}{2}}$

(c) $[\frac{-\pi}{2}, \frac{\pi}{2}]$

(d) $[\frac{-\pi}{2}, \frac{\pi}{2}]-{0}$

Show Answer

Solution

Principal value branch of $cosec^{-1} x$ is $[\frac{-\pi}{2}, \frac{\pi}{2}]-{0}$ as $cosec^{-1}(0)=\infty$ (not defined).

Hence, the correct answer is (d).

  • Option (a) $(\frac{-\pi}{2}, \frac{\pi}{2})$ is incorrect because the interval does not include the endpoints $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, which are necessary for the principal value branch of $cosec^{-1} x$.

  • Option (b) $[0, \pi]-{\frac{\pi}{2}}$ is incorrect because the principal value branch of $cosec^{-1} x$ should include negative values, and this interval only covers the positive half of the range.

  • Option (c) $[\frac{-\pi}{2}, \frac{\pi}{2}]$ is incorrect because it includes $0$, where $cosec^{-1}(0)$ is not defined.

22. If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then $x$ equals

(a) 0

(b) 1

(c) -1

(d) $\frac{1}{2}$

Show Answer

Solution

Given that $3 \tan ^{-1} x+\cot ^{-1} x=\pi$

$\Rightarrow 2 \tan ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\pi$

$\Rightarrow 2 \tan ^{-1} x+\frac{\pi}{2}=\pi$

$[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}]$

$\Rightarrow \quad 2 \tan ^{-1} x=\pi-\frac{\pi}{2} \quad \Rightarrow 2 \tan ^{-1} x=\frac{\pi}{2}$

$\Rightarrow \quad \tan ^{-1} x=\frac{\pi}{4} \quad \Rightarrow \tan ^{-1} x=\tan ^{-1}(1)$

$\therefore \quad x=1$

Hence, the correct answer is $(b)$.

  • Option (a) 0: If ( x = 0 ), then ( \tan^{-1}(0) = 0 ). Substituting into the given equation, we get ( 3 \cdot 0 + \cot^{-1}(0) = \pi ). However, ( \cot^{-1}(0) = \frac{\pi}{2} ), so the equation becomes ( \frac{\pi}{2} \neq \pi ). Therefore, ( x = 0 ) does not satisfy the equation.

  • Option (c) -1: If ( x = -1 ), then ( \tan^{-1}(-1) = -\frac{\pi}{4} ). Substituting into the given equation, we get ( 3 \cdot -\frac{\pi}{4} + \cot^{-1}(-1) = \pi ). However, ( \cot^{-1}(-1) = \frac{3\pi}{4} ), so the equation becomes ( -\frac{3\pi}{4} + \frac{3\pi}{4} = 0 \neq \pi ). Therefore, ( x = -1 ) does not satisfy the equation.

  • Option (d) (\frac{1}{2}): If ( x = \frac{1}{2} ), then ( \tan^{-1}\left(\frac{1}{2}\right) ) is some angle (\theta) such that (\tan(\theta) = \frac{1}{2}). Substituting into the given equation, we get ( 3 \cdot \tan^{-1}\left(\frac{1}{2}\right) + \cot^{-1}\left(\frac{1}{2}\right) = \pi ). However, (\cot^{-1}\left(\frac{1}{2}\right) = \tan^{-1}(2)), so the equation becomes ( 3 \cdot \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}(2) \neq \pi ). Therefore, ( x = \frac{1}{2} ) does not satisfy the equation.

23. The value of $\sin ^{-1}[\cos (\frac{33 \pi}{5})]$ is

(a) $\frac{3 \pi}{5}$

(b) $\frac{-7 \pi}{5}$

(c) $\frac{\pi}{10}$

(d) $\frac{-\pi}{10}$

Show Answer

Solution

$\sin ^{-1}[\cos (\frac{33 \pi}{5})]=\sin ^{-1}[\cos (6 \pi+\frac{3 \pi}{5})]$

$ \begin{aligned} & =\sin ^{-1}[\cos \frac{3 \pi}{5}] \quad[\because \cos (2 n \pi+x)=\cos x] \\ & =\sin ^{-1}[\cos (\frac{\pi}{2}+\frac{\pi}{10})] \\ & =\sin ^{-1}[-\sin (\frac{\pi}{10})][\because \cos (\frac{\pi}{2}+\theta)=-\sin \theta] \\ & =\sin ^{-1}[\sin (\frac{-\pi}{10})]=\frac{-\pi}{10} \end{aligned} $

Hence, the correct answer is $(d)$.

  • Option (a) $\frac{3 \pi}{5}$ is incorrect because $\sin^{-1}[\cos(\frac{33 \pi}{5})]$ simplifies to $\sin^{-1}[\cos(\frac{3 \pi}{5})]$, which is not equal to $\frac{3 \pi}{5}$ since $\cos(\frac{3 \pi}{5})$ is not in the range of the inverse sine function.

  • Option (b) $\frac{-7 \pi}{5}$ is incorrect because $\sin^{-1}[\cos(\frac{33 \pi}{5})]$ simplifies to $\sin^{-1}[\cos(\frac{3 \pi}{5})]$, and $\frac{-7 \pi}{5}$ is not a valid angle in the principal range of the inverse sine function, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

  • Option (c) $\frac{\pi}{10}$ is incorrect because $\sin^{-1}[\cos(\frac{33 \pi}{5})]$ simplifies to $\sin^{-1}[\cos(\frac{\pi}{2} + \frac{\pi}{10})]$, which further simplifies to $\sin^{-1}[-\sin(\frac{\pi}{10})]$. The correct value is $\frac{-\pi}{10}$, not $\frac{\pi}{10}$.

24. The domain of the function $\cos ^{-1}(2 x-1)$ is

(a) $[0,1]$

(b) $[-1,1]$

(c) $(-1,1)$

(d) $[0, \pi]$

Show Answer

Solution

The given function is $\cos ^{-1}(2 x-1)$

Let

$ \begin{aligned} f(x) & =\cos ^{-1}(2 x-1) \\ -1 & \leq 2 x-1 \leq 1 \Rightarrow-1+1 \leq 2 x \leq 1+1 \\ 0 & \leq 2 x \leq 2 \quad \Rightarrow 0 \leq x \leq 1 \end{aligned} $

$\therefore$ domain of the given function is $[0,1]$.

Hence, the correct answer is (a)

  • Option (b) $[-1,1]$: This option is incorrect because the domain of the function $\cos^{-1}(2x-1)$ is determined by the range of the expression $2x-1$. For $2x-1$ to be within the range of the $\cos^{-1}$ function, it must lie between -1 and 1. Solving $-1 \leq 2x-1 \leq 1$ gives $0 \leq x \leq 1$, not $-1 \leq x \leq 1$.

  • Option (c) $(-1,1)$: This option is incorrect because the domain of the function $\cos^{-1}(2x-1)$ includes the endpoints 0 and 1. The correct domain is $[0,1]$, not $(-1,1)$, which excludes the endpoints.

  • Option (d) $[0, \pi]$: This option is incorrect because it represents the range of the $\cos^{-1}$ function, not the domain. The domain of the function $\cos^{-1}(2x-1)$ is the set of $x$ values for which $2x-1$ lies within the interval $[-1, 1]$, which is $[0,1]$.

25. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is

(a) $[1,2]$

(b) $[-1,1]$

(c) $[0,1]$

(d) None of these

Show Answer

Solution

Let

$ f(x)=\sin ^{-1} \sqrt{x-1} $

$\because \sqrt{x-1} \geq 0$ and $-1 \leq \sqrt{x-1} \leq 1$

$ \Rightarrow 0 \leq x-1 \leq 1 \Rightarrow 1 \leq x \leq 2 \Rightarrow x \in[1,2] $

Hence, the correct answer is (a).

  • Option (b) $[-1,1]$: This is incorrect because the expression $\sqrt{x-1}$ represents a square root, which is always non-negative. Therefore, $x-1$ must be non-negative, implying $x \geq 1$. Additionally, for $\sqrt{x-1}$ to be within the range of the inverse sine function, $x-1$ must be less than or equal to 1, implying $x \leq 2$. Thus, $x$ must be in the interval $[1,2]$, not $[-1,1]$.

  • Option (c) $[0,1]$: This is incorrect because for $f(x) = \sin^{-1} \sqrt{x-1}$ to be defined, $\sqrt{x-1}$ must be within the range $[0,1]$. This requires $x-1$ to be in the range $[0,1]$, which implies $x$ must be in the interval $[1,2]$. The interval $[0,1]$ does not satisfy this condition as it includes values less than 1, which would make $\sqrt{x-1}$ undefined or imaginary.

  • Option (d) None of these: This is incorrect because the correct domain of the function $f(x) = \sin^{-1} \sqrt{x-1}$ is indeed $[1,2]$, which is provided in option (a). Therefore, option (d) is not applicable.

26. If $\cos [\sin ^{-1} \frac{2}{5}+\cos ^{-1} x]=0$, then $x$ is equal to

(a) $\frac{1}{5}$

(b) $\frac{2}{5}$

(c) 0

(d) 1

Show Answer

Solution

Given that $\cos [\sin ^{-1} \frac{2}{5}+\cos ^{-1} x]=0$

$ \begin{matrix} \Rightarrow \sin ^{-1} \frac{2}{5}+\cos ^{-1} x =\cos ^{-1}(0) \\ \Rightarrow \sin ^{-1} \frac{2}{5}+\cos ^{-1} x =\frac{\pi}{2} \Rightarrow \sin ^{-1} \frac{2}{5}=\frac{\pi}{2}-\cos ^{-1} x \\ \Rightarrow \sin ^{-1} \frac{2}{5} =\sin ^{-1} x[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}] \\ \Rightarrow x =\frac{2}{5} \end{matrix} $

Hence, the correct answer is (b).

  • Option (a) $\frac{1}{5}$ is incorrect because if $x = \frac{1}{5}$, then $\cos^{-1} x = \cos^{-1} \frac{1}{5}$. Substituting this into the equation $\cos [\sin^{-1} \frac{2}{5} + \cos^{-1} x] = 0$ would not satisfy the equation since $\sin^{-1} \frac{2}{5} + \cos^{-1} \frac{1}{5} \neq \frac{\pi}{2}$.

  • Option (c) 0 is incorrect because if $x = 0$, then $\cos^{-1} x = \cos^{-1} 0 = \frac{\pi}{2}$. Substituting this into the equation $\cos [\sin^{-1} \frac{2}{5} + \cos^{-1} x] = 0$ would result in $\cos [\sin^{-1} \frac{2}{5} + \frac{\pi}{2}] = 0$, which is not true since $\sin^{-1} \frac{2}{5} + \frac{\pi}{2}$ is not an angle whose cosine is zero.

  • Option (d) 1 is incorrect because if $x = 1$, then $\cos^{-1} x = \cos^{-1} 1 = 0$. Substituting this into the equation $\cos [\sin^{-1} \frac{2}{5} + \cos^{-1} x] = 0$ would result in $\cos [\sin^{-1} \frac{2}{5} + 0] = \cos [\sin^{-1} \frac{2}{5}]$, which is not zero since $\cos [\sin^{-1} \frac{2}{5}] = \sqrt{1 - (\frac{2}{5})^2} \neq 0$.

27. The value of $\sin [2 \tan ^{-1}(0.75)]$ is equal to

(a) 0.75

(b) 1.5

(c) 0.96

(d) $\sin 1.5$

Show Answer

Solution

Given that $\sin [2 \tan ^{-1}(0.75)]$

$ \begin{aligned} & =\sin [2 \tan ^{-1} \frac{3}{4}] \\ & =\sin [\sin ^{-1} \frac{2 \times \frac{3}{4}}{1+\frac{9}{16}}][\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}] \\ & =\sin [\sin ^{-1} \frac{\frac{3}{2}}{\frac{25}{16}}]=\sin [\sin ^{-1} \frac{24}{25}] \\ & =\sin [\sin ^{-1}(0.96)] \end{aligned} $

$ =0.96 $

Hence, the correct answer is (c).

  • Option (a) 0.75 is incorrect because the value of $\sin [2 \tan^{-1}(0.75)]$ is not equal to 0.75. The calculation shows that it simplifies to 0.96.

  • Option (b) 1.5 is incorrect because the value of $\sin [2 \tan^{-1}(0.75)]$ does not simplify to 1.5. The correct value is 0.96.

  • Option (d) $\sin 1.5$ is incorrect because $\sin [2 \tan^{-1}(0.75)]$ simplifies to $\sin [\sin^{-1}(0.96)]$, which is 0.96, not $\sin 1.5$.

28. The value of $\cos ^{-1}(\cos \frac{3 \pi}{2})$ is equal to

(a) $\frac{\pi}{2}$

(b) $\frac{3 \pi}{2}$

(c) $\frac{5 \pi}{2}$

(d) $\frac{7 \pi}{2}$

Show Answer

Solution

$ \cos ^{-1}(\cos \frac{\pi}{2}) \neq \frac{3 \pi}{2} \quad \because \frac{3 \pi}{2} \notin[0, \pi] $

$\Rightarrow \cos ^{-1}[\cos (\pi+\frac{\pi}{2})] \Rightarrow \cos ^{-1}[-\cos \frac{\pi}{2}] \Rightarrow \cos ^{-1}[0]=\frac{\pi}{2}$

Hence, the correct answer is (a).

  • Option (b) $\frac{3 \pi}{2}$ is incorrect because $\frac{3 \pi}{2}$ is not within the principal range of the inverse cosine function, which is $[0, \pi]$.

  • Option (c) $\frac{5 \pi}{2}$ is incorrect because $\frac{5 \pi}{2}$ is not within the principal range of the inverse cosine function, which is $[0, \pi]$.

  • Option (d) $\frac{7 \pi}{2}$ is incorrect because $\frac{7 \pi}{2}$ is not within the principal range of the inverse cosine function, which is $[0, \pi]$.

29. The value of expression $2 \sec ^{-2} 2+\sin ^{-1}(\frac{1}{2})$ is

(a) $\frac{\pi}{6}$

(b) $\frac{5 \pi}{6}$

(c) $\frac{7 \pi}{6}$

(d) 1

Show Answer

Solution

$2 \sec ^{-1} 2+\sin ^{-1} \frac{1}{2}=2 \sec ^{-1}(\sec \frac{\pi}{3})+\sin ^{-1}(\sin \frac{\pi}{6})$

$ =2 \cdot \frac{\pi}{3}+\frac{\pi}{6}=\frac{2 \pi}{3}+\frac{\pi}{6}=\frac{5 \pi}{6} $

Hence, the correct answer is $(b)$.

  • Option (a) $\frac{\pi}{6}$ is incorrect because the calculated value of the expression $2 \sec^{-1} 2 + \sin^{-1} \frac{1}{2}$ is $\frac{5\pi}{6}$, not $\frac{\pi}{6}$. The value $\frac{\pi}{6}$ is too small compared to the correct value.

  • Option (c) $\frac{7\pi}{6}$ is incorrect because the calculated value of the expression $2 \sec^{-1} 2 + \sin^{-1} \frac{1}{2}$ is $\frac{5\pi}{6}$, not $\frac{7\pi}{6}$. The value $\frac{7\pi}{6}$ is too large compared to the correct value.

  • Option (d) 1 is incorrect because the calculated value of the expression $2 \sec^{-1} 2 + \sin^{-1} \frac{1}{2}$ is $\frac{5\pi}{6}$, not 1. The value 1 is not in the same form as the correct value, which is in terms of $\pi$.

30. If $\tan ^{-1} x+\tan ^{-1} y=\frac{4 \pi}{5}$, then $\cot ^{-1} x+\cot ^{-1} y$ equals

(a) $\frac{\pi}{5}$

(b) $\frac{2 \pi}{5}$

(c) $\frac{3 \pi}{5}$

(d) $\pi$

Show Answer

Solution

Given that $\tan ^{-1} x+\tan ^{-1} y=\frac{4 \pi}{5}$

$ \begin{matrix} \Rightarrow & \frac{\pi}{2}-\cot ^{-1} x+\frac{\pi}{2}-\cot ^{-1} y=\frac{4 \pi}{5} \quad[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}] \\ \Rightarrow & \pi-(\cot ^{-1} x+\cot ^{-1} y)=\frac{4 \pi}{5} \\ \Rightarrow & \quad \cot ^{-1} x+\cot ^{-1} y=\pi-\frac{4 \pi}{5} \\ \Rightarrow & \quad \cot ^{-1} x+\cot ^{-1} y=\frac{\pi}{5} \end{matrix} $

Hence, the correct answer is (a).

  • Option (b) $\frac{2 \pi}{5}$ is incorrect because the correct calculation shows that $\cot^{-1} x + \cot^{-1} y = \frac{\pi}{5}$, not $\frac{2 \pi}{5}$. The given equation $\tan^{-1} x + \tan^{-1} y = \frac{4 \pi}{5}$ leads to $\pi - \frac{4 \pi}{5}$, which simplifies to $\frac{\pi}{5}$.

  • Option (c) $\frac{3 \pi}{5}$ is incorrect because the correct calculation shows that $\cot^{-1} x + \cot^{-1} y = \frac{\pi}{5}$, not $\frac{3 \pi}{5}$. The given equation $\tan^{-1} x + \tan^{-1} y = \frac{4 \pi}{5}$ leads to $\pi - \frac{4 \pi}{5}$, which simplifies to $\frac{\pi}{5}$.

  • Option (d) $\pi$ is incorrect because the correct calculation shows that $\cot^{-1} x + \cot^{-1} y = \frac{\pi}{5}$, not $\pi$. The given equation $\tan^{-1} x + \tan^{-1} y = \frac{4 \pi}{5}$ leads to $\pi - \frac{4 \pi}{5}$, which simplifies to $\frac{\pi}{5}$.

31. If $\sin ^{-1}(\frac{2 a}{1+a^{2}})+\cos ^{-1}(\frac{1-a^{2}}{1+a^{2}})=\tan ^{-1}(\frac{2 x}{1-x^{2}})$, where $a, x \in] 0,1$, then the value of $x$ is

(a) 0

(b) $\frac{a}{2}$

(c) $a$

(d) $\frac{2 a}{1-a^{2}}$

Show Answer

Solution

$\sin ^{-1}(\frac{2 a}{1+a^{2}})+\cos ^{-1}(\frac{1-a^{2}}{1+a^{2}})=\tan ^{-1}(\frac{2 x}{1-x^{2}})$

$ \Rightarrow 2 \tan ^{-1} a+2 \tan ^{-1} a=2 \tan ^{-1} x $

$[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}}]$

$\Rightarrow \quad 4 \tan ^{-1} a=2 \tan ^{-1} x \Rightarrow 2 \tan ^{-1} a=\tan ^{-1} x$

Hence, the correct answer is (d).

  • Option (a) 0: This option is incorrect because if ( x = 0 ), then ( \tan^{-1}(0) = 0 ). However, the given equation ( \sin^{-1}(\frac{2a}{1+a^2}) + \cos^{-1}(\frac{1-a^2}{1+a^2}) ) does not simplify to zero for ( a \in (0, 1) ).

  • Option (b) (\frac{a}{2}): This option is incorrect because if ( x = \frac{a}{2} ), then ( \tan^{-1}(\frac{2(\frac{a}{2})}{1-(\frac{a}{2})^2}) = \tan^{-1}(\frac{a}{1-\frac{a^2}{4}}) ). This does not match the simplified form ( 2 \tan^{-1} a ) derived from the given equation.

  • Option (c) (a): This option is incorrect because if ( x = a ), then ( \tan^{-1}(\frac{2a}{1-a^2}) ) would need to equal ( 2 \tan^{-1} a ). However, ( \tan^{-1}(\frac{2a}{1-a^2}) ) is not equal to ( 2 \tan^{-1} a ) for ( a \in (0, 1) ).

32. The value of $\cot [\cos ^{-1}(\frac{7}{25})]$ i

(a) $\frac{25}{24}$

(b) $\frac{25}{7}$

(c) $\frac{24}{25}$

(d) $\frac{7}{24}$

Show Answer

Solution

We have, $\cot [\cos ^{-1}(\frac{7}{25})]$

Let $\quad \cos ^{-1} \frac{7}{25}=\theta$

$\therefore \quad \cos \theta=\frac{7}{25} \Rightarrow \cot \theta=\frac{7}{24}$

$\therefore \cot [\cos ^{-1}(\frac{7}{25})]=\cot [\cot ^{-1}(\frac{7}{24})]=\frac{}{24}$

Hence, the correct answer is $(d)$.

  • Option (a) $\frac{25}{24}$: This option is incorrect because it represents the reciprocal of the sine of the angle, not the cotangent. The cotangent of the angle is $\frac{7}{24}$, not $\frac{25}{24}$.

  • Option (b) $\frac{25}{7}$: This option is incorrect because it represents the reciprocal of the cosine of the angle, not the cotangent. The cotangent of the angle is $\frac{7}{24}$, not $\frac{25}{7}$.

  • Option (c) $\frac{24}{25}$: This option is incorrect because it represents the tangent of the angle, not the cotangent. The cotangent of the angle is $\frac{7}{24}$, not $\frac{24}{25}$.

33. The value of expression $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$ is

(a) $2+\sqrt{5}$

(b) $\sqrt{5}-2$

(c) $\frac{\sqrt{5}+2}{2}$

(d) $5+\sqrt{2}$

Show Answer

Solution

We have, $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$

$ \begin{aligned} & \text{ Let } \\ & \theta=\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}} \\ & \Rightarrow \quad 2 \theta=\cos ^{-1} \frac{2}{\sqrt{5}} \Rightarrow \cos 2 \theta=\frac{2}{\sqrt{5}} \\ & \Rightarrow \quad \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{2}{\sqrt{5}} \quad[\because \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}] \\ & \Rightarrow \quad 2+2 \tan ^{2} \theta=\sqrt{5}-\sqrt{5} \tan ^{2} \theta \\ & \Rightarrow \sqrt{5} \tan ^{2} \theta+2 \tan ^{2} \theta=\sqrt{5}-2 \Rightarrow(\sqrt{5}+2) \tan ^{2} \theta=\sqrt{5}-2 \end{aligned} $

$ \begin{matrix} \Rightarrow & \tan ^{2} \theta=\frac{\sqrt{5}-2}{\sqrt{5}+2} \\ \Rightarrow & \tan ^{2} \theta=\frac{(\sqrt{5}-2)(\sqrt{5}-2)}{(\sqrt{5}+2)(\sqrt{5}-2)} \Rightarrow \tan ^{2} \theta=\frac{(\sqrt{5}-2)^{2}}{5-4} \\ \Rightarrow & \tan \theta= \pm(\sqrt{5}-2) \\ \Rightarrow \quad & \tan \theta=\sqrt{5}-2,[-(\sqrt{5}-2) \text{ is not required }] \end{matrix} $

Hence, the correct answer is $(b)$.

  • Option (a) $2+\sqrt{5}$: This option is incorrect because the derived value of $\tan \theta$ is $\sqrt{5}-2$, not $2+\sqrt{5}$. The expression $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$ simplifies to $\sqrt{5}-2$, which is not equal to $2+\sqrt{5}$.

  • Option (c) $\frac{\sqrt{5}+2}{2}$: This option is incorrect because the derived value of $\tan \theta$ is $\sqrt{5}-2$. The expression $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$ does not simplify to $\frac{\sqrt{5}+2}{2}$.

  • Option (d) $5+\sqrt{2}$: This option is incorrect because the derived value of $\tan \theta$ is $\sqrt{5}-2$. The expression $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$ does not simplify to $5+\sqrt{2}$.

34. If $|x| \leq 1$, then $2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}})$ is equal to

(a) $4 \tan ^{-1} x$

(b) 0

(c) $\frac{\pi}{2}$

(d) $\pi$

Show Answer

Solution

Here, we have $2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}})$

$ \begin{aligned} & =2 \tan ^{-1} x+2 \tan ^{-1} x \quad[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}] \\ & =4 \tan ^{-1} x \end{aligned} $

Hence, the correct answer is $(a)$.

  • Option (b) 0: This option is incorrect because the expression (2 \tan^{-1} x + \sin^{-1} \left( \frac{2x}{1+x^2} \right)) simplifies to (4 \tan^{-1} x), not 0. The given trigonometric identities and simplifications do not lead to a result of 0.

  • Option (c) (\frac{\pi}{2}): This option is incorrect because the expression (2 \tan^{-1} x + \sin^{-1} \left( \frac{2x}{1+x^2} \right)) simplifies to (4 \tan^{-1} x), not (\frac{\pi}{2}). The simplification process does not yield (\frac{\pi}{2}) for any value of (x) within the given range (|x| \leq 1).

  • Option (d) (\pi): This option is incorrect because the expression (2 \tan^{-1} x + \sin^{-1} \left( \frac{2x}{1+x^2} \right)) simplifies to (4 \tan^{-1} x), not (\pi). The trigonometric identities and the range of (x) do not support a result of (\pi).

35. If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$, then $\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$ equals

(a) 0

(b) 1

(c) 6

(d) 12

Show Answer

Solution

We have $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$

$ \begin{aligned} & \Rightarrow \quad \cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=\pi+\pi+\pi \\ & \Rightarrow \quad \cos ^{-1} \alpha=\pi, \cos ^{-1} \beta=\pi \text{ and } \cos ^{-1} \gamma=\pi \\ & \Rightarrow \quad \alpha=\cos \pi, \beta=\cos \pi \text{ and } \gamma=\cos \pi \\ & \therefore \quad \alpha=-1, \beta=-1 \text{ and } \gamma=-1 \\ & \text{ Which gives } \alpha=\beta=\gamma=-1 \\ & \text{ So } \quad \alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta) \\ & \Rightarrow \quad(-1)(-1-1)+(-1)(-1-1)+(-1)(-1-1) \\ & \Rightarrow \quad(-1)(-2)+(-1)(-2)+(-1)(-2) \Rightarrow 2+2+2 \Rightarrow 6 \end{aligned} $

Hence, the correct answer is (c).

  • Option (a) 0: This option is incorrect because the calculation of (\alpha(\beta+\gamma) + \beta(\gamma+\alpha) + \gamma(\alpha+\beta)) with (\alpha = \beta = \gamma = -1) results in 6, not 0. The expression simplifies to (2 + 2 + 2 = 6).

  • Option (b) 1: This option is incorrect because the expression (\alpha(\beta+\gamma) + \beta(\gamma+\alpha) + \gamma(\alpha+\beta)) does not simplify to 1 when (\alpha = \beta = \gamma = -1). The correct simplification is (2 + 2 + 2 = 6).

  • Option (d) 12: This option is incorrect because the expression (\alpha(\beta+\gamma) + \beta(\gamma+\alpha) + \gamma(\alpha+\beta)) simplifies to 6, not 12, when (\alpha = \beta = \gamma = -1). The correct calculation is (2 + 2 + 2 = 6).

36. The number of real solutions of the equation

$ \sqrt{1+\cos 2 x}=\sqrt{2} \cos ^{-1}(\cos x) \text{ in }[\frac{\pi}{2}, \pi] \text{ is } $

(a) 0

(b) 1

(c) 2

(d) infinite

Show Answer

Solution

We have $\sqrt{1+\cos 2 x}=\sqrt{2} \cos ^{-1}(\cos x)$

$ \begin{matrix} \Rightarrow & \sqrt{2 \cos ^{2} x}=\sqrt{2} x \\ \Rightarrow & \sqrt{2} \cos x & =\sqrt{2} x \Rightarrow \cos x=x \end{matrix} $

Which does not satisfy for any value of $x$.

Hence, the correct answer is $(d)$.

  • Option (a) 0: This option is incorrect because the equation $\cos x = x$ does not have any real solutions in the interval $[\frac{\pi}{2}, \pi]$. Therefore, stating that there are zero solutions is incorrect.

  • Option (b) 1: This option is incorrect because the equation $\cos x = x$ does not have exactly one real solution in the interval $[\frac{\pi}{2}, \pi]$. Hence, stating that there is one solution is incorrect.

  • Option (c) 2: This option is incorrect because the equation $\cos x = x$ does not have exactly two real solutions in the interval $[\frac{\pi}{2}, \pi]$. Therefore, stating that there are two solutions is incorrect.

  • Option (d) infinite: This option is incorrect because the equation $\cos x = x$ does not have any real solutions in the interval $[\frac{\pi}{2}, \pi]$. Therefore, stating that there are infinite solutions is incorrect.

37. If $\cos ^{-1} x>\sin ^{-1} x$, then

(a) $\frac{1}{\sqrt{2}}<x \leq 1$

(c) $-1 \leq x<\frac{1}{\sqrt{2}}$

(b) $0 \leq x<\frac{1}{\sqrt{2}}$

(d) $x>0$

Show Answer

Solution

Here, given that $\cos ^{-1} x>\sin ^{-1} x$

$ \begin{matrix} \Rightarrow & \sin [\cos ^{-1} x]>x \\ \Rightarrow & \sin [\sin ^{-1} \sqrt{1-x^{2}}]>x \Rightarrow \sqrt{1-x^{2}}>x \\ \Rightarrow & x<\sqrt{1-x^{2}} \Rightarrow x^{2}<1-x^{2} \Rightarrow 2 x^{2}<1 \\ \Rightarrow & x^{2}<\frac{1}{2} \Rightarrow x< \pm \frac{1}{\sqrt{2}} \end{matrix} $

We know that $-1 \leq x \leq 1$

So $-1 \leq x<\frac{1}{\sqrt{2}}$.

Hence, the correct answer is (c).

  • Option (a) $\frac{1}{\sqrt{2}}<x \leq 1$: This option is incorrect because it suggests that ( x ) is greater than (\frac{1}{\sqrt{2}}). However, from the solution, we derived that ( x ) must be less than (\frac{1}{\sqrt{2}}). Therefore, this range does not satisfy the condition ( \cos^{-1} x > \sin^{-1} x ).

  • Option (b) $0 \leq x<\frac{1}{\sqrt{2}}$: This option is incorrect because it only considers non-negative values of ( x ). The correct range derived from the solution is ( -1 \leq x < \frac{1}{\sqrt{2}} ), which includes negative values as well. Hence, this option is too restrictive.

  • Option (d) $x>0$: This option is incorrect because it implies that ( x ) must be positive. However, the correct range derived from the solution includes negative values as well, specifically ( -1 \leq x < \frac{1}{\sqrt{2}} ). Therefore, this option does not cover the entire valid range of ( x ).

Fillers

38. The principal value of $\cos ^{-1}(-\frac{1}{2})$ is ……

Show Answer

Solution

Let $\cos ^{-1}(-\frac{1}{2})=x \quad \Rightarrow \quad \cos x=-\frac{1}{2}$

$ \begin{aligned} & \Rightarrow & \cos x & =\cos (-\frac{\pi}{3}) \Rightarrow \cos x=\cos (\pi-\frac{\pi}{3})=\cos \frac{2 \pi}{3} \\ & \therefore & x & =\frac{2 \pi}{3} \in[0, \pi] \end{aligned} $

Hence, Principal value of $\cos ^{-1}(-\frac{1}{2})=\frac{2 \pi}{3}$.

39. The value of $\sin ^{-1}(\sin \frac{3 \pi}{5})$ is ……

Show Answer

Solution

$\quad \sin ^{-1}(\sin \frac{3 \pi}{5}) \neq \frac{3 \pi}{5}$ as $\frac{3 \pi}{5} \notin[\frac{-\pi}{2}, \frac{\pi}{2}]$

So $\sin ^{-1}(\sin \frac{3 \pi}{5})=\sin ^{-1} \sin (\pi-\frac{2 \pi}{5})$

$ =\sin ^{-1} \sin (\frac{2 \pi}{5})=\frac{2 \pi}{5} \in[\frac{-\pi}{2}, \frac{\pi}{2}] $

Hence, the value of $\sin ^{-1}(\sin \frac{3 \pi}{5})=\frac{2 \pi}{5}$

40. If $\cos (\tan ^{-1} x+\cot ^{-1} \sqrt{3})=0$, then value of $x$ is ……

Show Answer

Solution

Given that

$ \begin{aligned} & \cos [\tan ^{-1} x+\cot ^{-1} \sqrt{3}]=0 \\ \Rightarrow & \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\cos ^{-1}(0) \\ \Rightarrow & \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\frac{\pi}{2} \\ \Rightarrow & \tan ^{-1} x=\frac{\pi}{2}-\cot ^{-1} \sqrt{3} \\ \Rightarrow & \tan ^{-1} x=\tan ^{-1} \sqrt{3} \Rightarrow x=\sqrt{3} \end{aligned} \quad[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}] $

Hence, the value of $x$ is $\sqrt{3}$.

41. The set of values of $\sec ^{-1}(\frac{1}{2})$ is ……

Show Answer

Solution

Let $\sec ^{-1}(\frac{1}{2})=x \Rightarrow \sec x=\frac{1}{2}$

Since, the domain of $\sec ^{-1} x$ is $R-{-1,1}$ and $\frac{1}{2} \notin R-{-1,1}$.

Hence, $\sec ^{-1}(\frac{1}{2})$ has no set of values.

42. The principal value of $\tan ^{-1} \sqrt{3}$ is ……

Show Answer

Solution

$\tan ^{-1} \sqrt{3}=\tan ^{-1}(\tan \frac{\pi}{3})=\frac{\pi}{3} \in(\frac{-\pi}{2}, \frac{\pi}{2})$

Hence the principal value of $\tan ^{-1} \sqrt{3}$ is $\frac{\pi}{3}$.

43. The value of $\cos ^{-1}(\cos \frac{14 \pi}{3})$ is ……

Show Answer

Solution

$\quad \cos ^{-1}(\cos \frac{14 \pi}{3})=\cos ^{-1}[\cos (5 \pi-\frac{\pi}{3})]$

$ \begin{aligned} & =\cos ^{-1}[\cos (\frac{-\pi}{3})]=\cos ^{-1}[\cos (\pi-\frac{\pi}{3})] \\ & =\cos ^{-1}[\cos \frac{2 \pi}{3}]=\frac{2 \pi}{3} \in[0, \pi] \end{aligned} $

Hence, the value of $\cos ^{-1}[\cos \frac{14 \pi}{3}]=\frac{2 \pi}{3}$.

44. The value of $\cos (\sin ^{-1} x+\cos ^{-1} x),|x| \leq 1$ is ……

Show Answer

Solution

$\cos [\sin ^{-1} x+\cos ^{-1} x]=\cos \frac{\pi}{2}=0 \quad[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}]$ Hence, the value of $\cos (\sin ^{-1} x+\cos ^{-1} x)=0$.

45. The value of expression $\tan (\frac{\sin ^{-1} x+\cos ^{-1} x}{2})$, when $x=\frac{\sqrt{3}}{2}$ is ……

Show Answer

Solution

$\tan (\frac{\sin ^{-1} x+\cos ^{-1} x}{2})=\tan (\frac{\pi}{4})=1[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}]$ Hence, the value of the given expression is 1 .

46. If $y=2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}})$ for all $x$, then …… $<y<\ldots \ldots$

Show Answer

Solution

$ y=2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}}) $

$\begin{matrix} \Rightarrow & y=2 \tan ^{-1} x+2 \tan ^{-1} x \\ \Rightarrow & y=4 \tan ^{-1} x\end{matrix} [\because \sin ^{-1}(\frac{2 x}{1+x^{2}})=2 \tan ^{-1} x]$

Now $\frac{-\pi}{2}<\tan ^{-1} x<\frac{\pi}{2}$

$\Rightarrow \quad-4 \times \frac{\pi}{2}<4 \tan ^{-1} x<4 \times \frac{\pi}{2} \Rightarrow-2 \pi<y<2 \pi$

Hence, the value of $y$ is $(-2 \pi, 2 \pi)$.

47. The result $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}(\frac{x-y}{1+x y})$ is true when value of $x y$ is ……

Show Answer

Solution

The given result is true when $x y>-1$.

48. The value of $\cot ^{-1}(-x)$ for all $x \in R$ in terms of $\cot ^{-1} x$ is ……

Show Answer

Solution

$\cot ^{-1}(-x)=\pi-\cot ^{-1} x, x \in R \quad[\because as^{-1}(-x)=\pi-\cot ^{-1} x]$

True/False

49. All trigonometric functions have inverse over their respective domains.

Show Answer

Solution

False.

We know that all inverse trigonometric functions are restricted over their domains.

50. The value of expression $(\cos ^{-1} x)^{2}$ is equal to $\sec ^{2} x$.

Show Answer

Solution

False.

We know that $\cos ^{-1} x=\sec ^{-1}(\frac{1}{x}) \neq \sec x$ So

$ (\cos ^{-1} x)^{2} \neq \sec ^{2} x $

51. The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.

Show Answer

Solution

True.

We know that all trigonometric functions are restricted over their domains to obtain their inverse functions.

52. The least numerical value, either positive or negative of angle $\theta$ is called principal value of the inverse trigonometric function.

Show Answer

Solution

True.

53. The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging $x$ and $y$ axes.

Show Answer

Solution

True.

We know that the domain and range are interchanged in the graph of inverse trigonometric functions to that of their corresponding trigonometric functions.

54. The minimum value of $n$ for which $\tan ^{-1} \frac{n}{\pi}>\frac{\pi}{4}, n \in N$ is valid is 5 .

Show Answer

Solution

False.

Given that $\tan ^{-1} \frac{n}{\pi}>\frac{\pi}{4}$

$ \begin{matrix} \Rightarrow & \frac{n}{\pi}>\tan \frac{\pi}{4} \Rightarrow \frac{n}{\pi}>1 \\ \Rightarrow & n>\pi \Rightarrow n>3.14 \end{matrix} $

Hence, the value of $n$ is 4 .

55. The principal value of $\sin ^{-1}[\cos (\sin ^{-1} \frac{1}{2})]$ is $\frac{\pi}{3}$.

Show Answer

Solution

True.

$ \begin{aligned} \sin ^{-1}[\cos (\sin ^{-1} \frac{1}{2})] & =\sin ^{-1}[\cos (\sin ^{-1} \sin \frac{\pi}{6})] \\ \sin ^{-1}[\cos \frac{\pi}{6}] & =\sin ^{-1}(\frac{\sqrt{3}}{2})=\sin ^{-1}(\sin \frac{\pi}{3})=\frac{\pi}{3} \end{aligned} $



Table of Contents