Trigonometric Functions

Short Answer Type Questions

1. Prove that tanA+secA1tanAsecA+1=1+sinAcosA.

Show Answer

Thinking Process

Here, use the formulae i.e., sec2Atan2A=1 and a2b2=(a+b)(ab) to solve the above problem.

Solution

LHS=tanA+secA1tanAsecA+1=tanA+secA(sec2Atan2A)(tanAsecA+1)[sec2Atan2A=1]=(tanA+secA)(secA+tanA)(secAtanA)(1secA+tanA)=(secA+tanA)(1secA+tanA)1secA+tanA=secA+tanA=1cosA+sinAcosA=1+sinAcosA=RHS Hence proved. 

2. If 2sinα1+cosα+sinα=y, then prove that 1cosα+sinα1+sinα is also equal to y.

Show Answer

Solution

Given that, 2sinα1+cosα+sinα=y

 Now, 1cosα+sinα1+sinα=(1cosα+sinα)(1+sinα)(1+cosα+sinα)(1+cosα+sinα)=(1+sinα)cosα(1+sinα)(1+sinα)+cosα(1+cosα+sinα)=(1+sinα)2cos2α(1+sinα)(1+sinα+cosα)=(1+sin2α+2sinα)cos2α(1+sinα)(1+sinα+cosα)

=1+sin2α+2sinα1+sin2α(1+sinα)(1+sinα+cosα)=2sin2α+2sinα(1+sinα)(1+sinα+cosα)=2sinα(1+sinα)(1+sinα)(1+sinα+cosα)=2sinα1+sinα+cosα=y

Hence proved.

3. If msinθ=nsin(θ+2α), then prove that tan(θ+α)cotα=m+nmn.

Show Answer

Solution

Given that,

 Given that, msinθ=nsin(θ+2α)sin(θ+2α)sinθ=mn

Using componendo and dividendo, we get

sin(θ+2α)+sinθsin(θ+2α)sinθ=m+nmn2sinθ+2α+θ2cosθ+2αθ22cosθ+2α+θ2sinθ+2αθ2=m+nmn[sinx+siny=2sinx+y2cosxy2. and .sinxsiny=2cosx+y2sinxy2]sin(θ+α)cosαcos(θ+α)sinα=m+nmntan(θ+α)cotα=m+nmn Hence proved. 

4. If cos(α+β)=45 and sin(αβ)=513, where α lie between 0 and π4, then find that value of tan2α.

Show Answer

Solution

Given that,

cos(α+β)=45 and sin(αβ)=513

sin(α+β)=11625=925=±35

sin(α+β)=35

 and cos(αβ)=125169=144169=±1213

cos(αβ)=1213

 Now, tan(α+β)=sin(α+β)cos(α+β)

[ since, α lies between 0 and π4]

=3545=34

 and tan(αβ)=sin(αβ)cos(αβ)=5131213=512

tan2α=tan(α+β+αβ)

=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)[tan(x±y)=tanx±tany1tanxtany]

=34+512134512=9+51216516=14×1612×11=5633

5. If tanx=ba, then find the value of a+bab+aba+b.

Show Answer

Thinking Process

First of all rationalise the given expression and used the formula, i.e., cos2x=cos2xsin2x.

Solution

Given that, tanx=ba

a+bab+aba+b=(a+b)2+(ab)2(ab)(a+b)

=(a+b)+(ab)a2b2=2aa2b2=2aa1ba[ba=tan]

=21tan2x=2cosxcos2xsin2x[cos2x=cos2xsin2x]x

=2cosxcos2x

6. Prove that cosθcosθ2cos3θcos9θ2=sin7θsin8θ.

Show Answer

Solution

LHS =cosθcosθ2cos3θcos9θ2

=122cosθcosθ22cos3θcos9θ2=12cosθ+θ2+cosθθ2cos3θ+9θ2cos3θ9θ2=12(cos3θ2+cosθ2cos15θ2cos3θ2.=12cosθ2cos15θ2

=122sinθ+15θ2sinθ15θ2

[cosxcosy=2sinx+y2sinxy2]

=+(sin8θsin7θ)=RHS

 LHS = RHS 

Hence Proved

7. If acosθ+bsinθ=m and asinθbcosθ=n, then show that a2+b2=m2+n2.

Show Answer

Solution

Given that,

and

acosθ+bsinθ=m..(i)

asinθbcosθ=n..(ii)

On squaring and adding of Eqs. (i) and (ii), we get

m2+n2=(acosθ+bsinθ)2+(asinθbcosθ)2

=a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ

m2+n2=a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)2absinθcosθ

m2+n2=a2+b2 Hence proved. 

8. Find the value of tan2230.

Show Answer

Solution

Let

 Let θ=45

 We know that, tanθ2=sinθ2cosθ2=2sinθ2cosθ22cos2θ2tanθ2=sinθ1+cosθ

tan2230=sin451+cos45[θ=45]

=121+12=12+1

9. Prove that sin4A=4sinAcos3A4cosAsin3A.

Show Answer

Thinking Process

Here, apply the formula i.e., sin2x=2sinxcosx and cos2x=cos2xsin2x

Solution

LHS=sin4A

=2sin2Acos2A

=2(2sinAcosA)(cos2Asin2A)

=4sinAcos3A4cosAsin3A

[cos2A=cos2Asin2A and sin2A=2sinAcosA]

LHS=RHSHence Proved

10. If tanθ+sinθ=m and tanθsinθ=n, then prove that m2n2=4sinθtanθ.

Show Answer

Solution

Now,

Also, Given that,

tanθ+sinθ=m..(i)

andtanθsinθ=n..(ii)

Nowm+n=tanθ+sinθ+tanθsinθ

m+n=2tanθ(iii)

alsomn=tanθ+sinθtanθ+sinθ

mn=2sinθ(iv)

From Eqs. (iii) and (iv),

(m+n)(mn)=4sinθtanθm2n2=4sinθtanθHence Proved

11. If tan(A+B)=p and tan(AB)=q, then show that tan2A=p+q1pq.

Show Answer

Solution

Given that tan(A+B)=p..(i)

and tan(AB)=q..(ii)

tan2A=tan(A+B+AB)

=tan(A+B)+tan(AB)1tan(A+B)tan(AB)[tan(x+y)=tanx+tany1tanxtany]

=p+q1pq [from Eqs. (i) and (ii)]

12. If cosα+cosβ=0=sinα+sinβ, then prove that cos2α+cos2β=2cos(α+β).

Show Answer

Solution

Given that, cosα+cosβ=0=sinα+sinβ

(cosα+cosβ)2(sinα+sinβ)2=0

cos2α+cos2β+2cosαcosβsin2αsin2β2sinαsinβ=0

cos2αsin2α+cos2βsin2β=2(sinαsinβcosαcosβ)

cos2α+cos2β=2cos(α+β)

Hence proved.

13. If sin(x+y)sin(xy)=a+bab, then show that tanxtany=ab.

Show Answer

Solution

Given that, sin(x+y)sin(xy)=a+bab

Using componendo and dividendo,

⇒=sin(x+y)+[sin(xy)]sin(x+y)sin(xy)=a+b+aba+ba+b

⇒=2sinx+y+xy2cosx+yx+y22cosx+y+xy2sinx+yx+y2=2a2b

[sinx+siny=2sinx+y2cosxy2 and sinxsiny=2cosx+y2sinxy2]

⇒=sinxcosycosxsiny=ab

tanxtany=ab

14. If tanθ=sinαcosαsinα+cosα, then show that sinα+cosα=2cosθ.

Show Answer

Solution

Given that, tanθ=sinαcosαsinα+cosα

tanθ=cosα(tanα1)cosα(tanα+1)tanθ=tanαtanπ41+tanπ4tanα[tanπ4=1]

Trigonometric Functions

tanθ=tan(απ4)

θ=απ4α=θ+π4

sinα+cosα=sin(θ+π4)+cos(θ+π4)

=sinθcosπ4+cosθsinπ4+cosθcosπ4sinθsinπ4

=12sinθ+12cosθ+12cosθ12sinθ[sinπ4=cosπ4=12]

=22cosθ=2cosθ

15. If sinθ+cosθ=1, then find the general value of θ.

Show Answer

Thinking Process

If sinθ=sinα, then θ=nπ+(1)nα, gives general solution of the given equation.

Solution

Given that, sinθ+cosθ=1

On squaring both sides, we get

sin2θ+cos2θ+2sinθcosθ=1

1+2sinθcos=1[sin2x=2sinxcosx]

sin2θ=02θ=nπ+(1)n0

θ=nπ2

Alternate Method

sinθ+cosθ=1

12sinθ+12cosθ=12

sinθcosπ4+cosθsinπ4=12sinπ4=12=cosπ4

sinθ+π4=sinπ4[sin(x+y)=sinxcosy+cosxsiny]

θ+π4=nπ+(1)nπ4

θ=nπ+(1)n44π4

16. Find the most general value of θ satisfying the equation tanθ=1 and cosθ=12.

Show Answer

Solution

The given equations are

tanθ=1..(i)

 and cosθ=12..(ii)

 From Eq. (i), tanθ=tanπ4

tanθ=tan(2ππ4)tanθ=tan7π4

θ=7π4

From Eq. (ii),

cosθ=cos(2ππ4)cosθ=cos7π4

θ=7π4

Hence, the most general value of θ i.e., θ=2nπ+7π4.

17. If cotθ+tanθ=2cosecθ, then find the general value of θ.

Show Answer

Solution

Given that,

cotθ+tanθ=2cosecθ

cosθsinθ+sinθcosθ=2sinθ

cos2+sin2θsinθcosθ=2sinθ

1cosθ=2[sin2θ+cos2θ=1]

cosθ=12cosθ=cosπ3

θ=2nπ±π3

18. If 2sin2θ=3cosθ, where 0θ2π, then find the value of θ.

Show Answer

Solution

Given that,

Given that ,2sin2θ=3cosθ

22cos2θ=3cosθ

2cos2θ+3cosθ=0

2cos2θ+4cosθcosθ2=0

2cosθ(cosθ+2)1(cosθ+2)=0

(cosθ+2)(2cosθ1)=0

cosθ=2notpossible[1cosθ1]

2cosθ=1

cosθ=12

cosθ=cosπ3

θ=π3

Also,cosθ=cos(2ππ3)

cosθ=cos5π6

θ=5π6

So, the values of θ are π3 and 5π6.

19. If secxcos5x+1=0, where 0<xπ2, then find the value of x.

Show Answer

Solution

Given that, secxcos5x+1=0

cos5xcosx+1=0cos5x+cosx=0

2cos(5x+x2)cos(5xx2)=0

[cosx+cosy=2cosx+y2cosxy2]

2cos3xcos2x=0

cos3x=0 or cos2x=0

cos3x=cosπ2 or cos2x=cosπ2

3x=π22x=π2

x=π6x=π4

Hence, the solutions are π2,π4 and π6.

Long Answer Type Questions

20. If sin(θ+α)=a and sin(θ+β)=b, then prove that cos(α+β)4abcos(αβ)=12a22b2.

Thinking Process

Express cos(αβ)=cos(θ+α)(θ+β)

Show Answer

Solution

Given that, sin(θ+α)=a..(i)

and

sin(θ+β)=b..(ii)

cos(θ+α)=1a2 and cos(θ+β)=1b2

cos(αβ)=cosθ+α(θ+β)

=cos(θ+β)cos(θ+α)+sin(θ+α)sin(θ+β)

=1a21b2+ab=ab+(1a2)(1b2)=ab+1a2b2+a2b2

and

cos(αβ)=ab+1a2b2+a2b2

=cos2(αβ)4abcos(αβ)

=2cos2(αβ)14abcos(αβ)

=2cos(αβ)(cosαβ2ab)1

=2(ab+1a2b2+a2b2)(ab+1a2b2+a2b22ab)1

=2[(1a2b2+a2b2+ab)(1a2b2+a2b2ab)]1

=2[1a2b2+a2b2a2b2]1

=22a22b21

=12a22b2HenceProved

21. If cos(θ+φ)=mcos(θφ), then prove that tanθ=1m1+mcotφ.

Show Answer

Solution

Given that,

cos(θ+φ)=mcos(θφ)cos(θ+φ)cos(θφ)=m1

Using componendo and dividendo rule,

cos(θφ)cos(θ+φ)cos(θφ)+cos(θ+φ)=1m1+m

2sinθφ+θ+φ2sinθφθφ22cosθφ+θ+φ2cosθφθφ2=1m1+m

sinθsinφcosθcosφ=1m1+m[sin(θ)=sinθandcos(θ)=cosθ]

tanθtanφ=1m1+m

tanθ=1m1+mcotφ

22. Find the value of the expression

3[sin43π2α+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)].

Show Answer

Solution

Given expression,

3[sin4(3π2)α+sin4(3π+α)]2[sin6π2+α+sin6(5πα)]=3[cos4α+sin4(π+α)]2[cos6α+sin6(πα)]=3[cos4α+sin4α]2[cos6α+sin6α]=32=1

23. If acos2θ+bsin2θ=c has α and β as its roots, then prove that tanα+tanβ=2ba+c.

Show Answer

Solution

Given that, acos2θ+bsin2θ=c

a1tan2θ1+tan2θ+b2tanθ1+tan2θ=c

[sin2θ=2tanθ1+tan2θ and cos2θ=1tan2θ1+tan2θ]

a(1tan2θ)+2btanθ=c(1+tan2θ)

aatan2θ+2btanθ=c+ctan2θ

(a+c)tan2θ2btanθ+ca=0

Since, this equation has tanα and tanβ as its roots.

tanα+tanβ=(2b)a+c=2ba+c

24. If x=secφtanφ and y=cosecφ+cotφ, then show that xy+xy+1=0.

Show Answer

Solution

Given that, and x=secφtanφ..(i)

Now,

y=cosecφ+cotφ..(ii)

xy=secφcosecφcosecφtanφ+secφcotφtanφcotφ

xy=secφcosecφ1cosφ+1sinφ1

1+xy=secφcosecφsecφ+cosecφ..(iii)

From Eqs. (i) and (ii), we get

xy=secφtanφcosecφcotφ

xy=secφcosecφsinφcosφcosφsinφ

xy=secφcosecφ(sin2φ+cos2φsinφcosφ)

xy=secφcosecφ1sinφcosφ

xy=secφcosecφcosecφsecφxy=(secφcosecφsecφ+cosecφ)xy=(xy+1)xy+xy+1=0[from Eq. (iii)] Hence proved.

25. If θ lies in the first quadrant and cosθ=817, then find the value of cos(30+θ)+cos(45θ)+cos(120θ).

Show Answer

Solution

Given that,

sinθ=28964289

sinθ=±1517

sinθ=1517[Since,θlies in first quadrant ]

 Now, cos(30+θ)+cos(45θ)+cos(120θ)

=cos(30+θ)+cos(45θ)+cos(90+30θ)

=cos(30+θ)+cos(45θ)sin(30θ)

=cos30cosθsin30sinθ+cos45cosθ+sin45sinθ

=32cosθ12sinθ+12cosθ+12sinθ12cosθ32sinθ

=32+1212cosθ+1212+32sinθ

=6+2222cosθ+22+622sinθ

=6+2222817+22+6221517

=117(22)(86+1682+30152+156)=117(22)(236232+46)=23617(22)23217(22)+4617(22)=23317(2)2317(2)+23172=2317312+12

26. Find the value of cos4π8+cos43π8+cos45π8+cos47π8.

Show Answer

Solution

Given expression, cos4π8+cos43π8+cos45π8+cos47π8

=cos4π8+cos43π8+cos4π3π8+cos4ππ8=cos4π8+cos43π8+cos4(3π8)+cos4(π8)=2[cos4π8+cos43π8]=2[cos4π8+cos4(π2π8)]=2[cos4π8+sin4π8]=2[cos2π8+sin2π282cos2π8sin2π8]=212cos2π8sin2π8=22sinπ8cosπ28=2sin(2π8)2=2(12)=212=32

27. Find the general solution of the equation 5cos2θ+7sin2θ6=0.

Show Answer

Solution

Given equation,

5cos2θ+7sin2θ6=05cos2+7(1cos2θ)6=05cos2θ+77cos2θ6=05cos2θ+77cos2θ6=02cos2θ+1=02cos2θ1=0[cos2θ=cos2α]cos2θ=12θ=nπ±αcos2θ=cos2π4θ=nπ±π4

28. Find the general of the equation sinx3sin2x+sin3x =cosx3cos2x+cos3x.

Show Answer

Solution

Given equation, sinx3sin2x+sin3x=cosx3cos2x+cos3x

2sin(x+3x2)cos(3xx2)3sin2x=2cos(3x+x2)cos(3xx2)3cos2x2sin2xcosx3sin2x=2cos2xcosx3cos2xsin2x(2cosx3)=cos2x(2cosx3)sin2xcos2x=1tan2x=1tan2x=tanπ42x=nπ+π4x=nπ2+48

29. Find the general solution of the equation

Show Answer

Solution

Given equation is,

(31)cosθ+(3+1)sinθ=2..(i)

 Put 31=rsinα and 3+1=rcosαr2=(31)2+(3+1)2=3+123+3+1+23r2=8r=22 now, tanα=313+1=tanπ3tanπ41+tanπ3π4tanα=tanπ3π4tanα=tanπ12α=π12

From Eq. (i), rsinαcosθ+rcosαsinθ=2

r[sin(θ+α)]=2sin(θ+α)=222sin(θ+α)=12sin(θ+α)=sinπ4θ+α=nπ+(1)nπ4θ=nπ+(1)nπ4π12

Alternate Method

(31)cosθ+(3+1)sinθ=2Put31=rcosα and 3+1=rsinαr=22

Now,tanα=3+131=1+13113

tanα=tanπ4+tanπ61tanπ4tanπ6tanα=tanπ4+π6tanα=tan5π12

α=5π12

From Eq. (i), rcosαcosθ+rsinαsinθ=2

r[cos(θα)]

cos(θα)=222

cos(θα)=12

cos(θα)=cosπ4

θα=2nπ±π4

θ=2nπ±π4+5π12

Objective Type Questions

30. If sinθ+cosecθ=2, then sin2θ+cosec2θ is equal to

(a) 1

(b) 4

(c) 2

(d) None of these

Show Answer

Solution

(c) Given that, sinθ+cosecθ=2

sin2θ+cosec2θ+2sinθcosecθ=4

sin2θ+cosec2θ=42

sin2θ+cosec2θ=2

  • Option (a) 1: This option is incorrect because if (\sin \theta + \cosec \theta = 2), then (\sin^2 \theta + \cosec^2 \theta) cannot be 1. The given equation leads to (\sin^2 \theta + \cosec^2 \theta = 2), not 1.

  • Option (b) 4: This option is incorrect because the given equation (\sin \theta + \cosec \theta = 2) simplifies to (\sin^2 \theta + \cosec^2 \theta = 2), not 4.

  • Option (d) None of these: This option is incorrect because the correct answer is provided in option (c), which is 2. Therefore, “None of these” is not applicable.

31. If f(x)=cos2x+sec2x, then

(a) f(x)<1

(b) f(x)=1

(c) 2<f(x)<1

(d) f(x)2

Show Answer

Solution

(d) Given that, f(x)=cos2x+sec2x

We know that, AMGM

cos2x+sec2x2cos2xsec2x

cos2x+sec2x2

[cosxsecx=1]

f(x)2

  • (a) f(x)<1: This option is incorrect because cos2x and sec2x are both non-negative and sec2x is always greater than or equal to 1. Therefore, their sum cannot be less than 1.

  • (b) f(x)=1: This option is incorrect because sec2x is always greater than or equal to 1, and cos2x is always less than or equal to 1. The sum cos2x+sec2x cannot equal 1 since sec2x alone is at least 1.

  • (c) 2<f(x)<1: This option is incorrect because it is logically inconsistent. A value cannot be both greater than 2 and less than 1 simultaneously. Additionally, as shown in the solution, f(x)2.

32. If tanθ=12 and tanφ=13, then the value of θ+φ is

(a) π6

(b) π

(c) 0

(d) π4

Show Answer

Solution

(d) Given that,

 Now, tan(θ+φ)=tanθ+tanφ1tanθtanφtan(θ+φ)=12+1311213tan(θ+φ)=3+266616=55=1tan(θ+φ)=tanπ4θ+φ=π4

  • Option (a) π6: This option is incorrect because if θ+φ=π6, then tan(θ+φ)=tanπ6=13. However, from the given values of tanθ=12 and tanφ=13, we calculated tan(θ+φ)=1, which does not match 13.

  • Option (b) π: This option is incorrect because if θ+φ=π, then tan(θ+φ)=tanπ=0. However, from the given values of tanθ=12 and tanφ=13, we calculated tan(θ+φ)=1, which does not match 0.

  • Option (c) 0: This option is incorrect because if θ+φ=0, then tan(θ+φ)=tan0=0. However, from the given values of tanθ=12 and tanφ=13, we calculated tan(θ+φ)=1, which does not match 0.

33. Which of the following is not correct?

(a) sinθ=15

(b) cosθ=1

(c) secθ12

(d) tanθ=20

Show Answer

Solution

(c) We know that, the range of secθ is R(1,1).

Hence, secθ cannot be equal to 12.

  • (a) sinθ=15: This is incorrect because the range of sinθ is [1,1], and 15 falls within this range. Therefore, this option is actually correct.

  • (b) cosθ=1: This is incorrect because the range of cosθ is [1,1], and 1 falls within this range. Therefore, this option is actually correct.

  • (d) tanθ=20: This is incorrect because the range of tanθ is all real numbers, so 20 is a valid value for tanθ. Therefore, this option is actually correct.

34. The value of tan1tan2tan3tan89 is

(a) 0

(b) 1

(c) 12

(d) Not defined

Show Answer

Solution

(b) Given expression, tan1tan2tan3tan89

=tan1tan2tan45tan(9044)tan(9043)tan(901)=tan1cot1tan2cot2tan89cot89=1111=1

  • Option (a) 0: The product of the tangent values from (1^\circ) to (89^\circ) cannot be zero because none of the individual tangent values are zero within this range. The tangent function is zero only at integer multiples of (180^\circ), which are not included in the given range.

  • Option (c) (\frac{1}{2}): The product of the tangent values from (1^\circ) to (89^\circ) does not simplify to (\frac{1}{2}). The correct simplification, as shown in the solution, results in 1 due to the pairing of (\tan x) and (\cot x) which each multiply to 1.

  • Option (d) Not defined: The product of the tangent values from (1^\circ) to (89^\circ) is defined. Each tangent value within this range is finite and non-zero, and their product is well-defined and equals 1.

35. The value of 1tan2151+tan215 is

(a) 1

(b) 3

(c) 32

(d) 2

Show Answer

Solution

(c) Given expression, 1tan2151+tan215

 Let θ=15 We know that, cos2θ=1+tan2θcos30=1tan2151+tan2151tan2151+tan215=32[cos30=32]

  • Option (a) 1: This option is incorrect because the value of (\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}) is not equal to 1. The expression simplifies to (\cos 30^\circ), which is (\frac{\sqrt{3}}{2}), not 1.

  • Option (b) (\sqrt{3}): This option is incorrect because (\cos 30^\circ) is (\frac{\sqrt{3}}{2}), not (\sqrt{3}). The given expression (\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}) simplifies to (\cos 30^\circ), which is (\frac{\sqrt{3}}{2}).

  • Option (d) 2: This option is incorrect because the value of (\cos 30^\circ) is (\frac{\sqrt{3}}{2}), not 2. The expression (\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}) simplifies to (\cos 30^\circ), which is (\frac{\sqrt{3}}{2}).

36. The value of cos1cos2cos3cos179 is

(a) 12

(b) 0

(c) 1

(d) -1

Show Answer

Solution

(b) Given expression, cos1cos2cos3cos179

=cos1cos2cos90cos179[cos90=0]=0

  • Option (a) 12 is incorrect because the product of cosines from 1 to 179 includes cos90, which is 0. Therefore, the entire product is 0, not 12.

  • Option (c) 1 is incorrect because, as mentioned, the product includes cos90, which is 0. Hence, the product cannot be 1.

  • Option (d) -1 is incorrect because the product includes cos90, which is 0. Therefore, the product cannot be -1.

37. If tanθ=3 and θ lies in third quadrant, then the value of sinθ is

(a) 110

(b) 110

(c) 310

(d) 310

Show Answer

Solution

(c)

Given that,tanθ=3

sec2θ=1+tan2θ

secθ=1+9=±10

secθ=10

cosθ=110

sinθ=±1110=±910=±310 [since, θ lies in third quadrant]

sinθ=310

  • Option (a) 110: This option is incorrect because in the third quadrant, both sine and cosine functions are negative. Since sinθ must be negative in the third quadrant, 110 is not a valid value for sinθ.

  • Option (b) 110: This option is incorrect because it does not satisfy the relationship between sinθ and tanθ. Given tanθ=3, we have sinθ=310 and not 110.

  • Option (d) 310: This option is incorrect because in the third quadrant, the sine function is negative. Therefore, sinθ cannot be positive, and 310 is not a valid value for sinθ.

38. The value of tan75cot75 is

(a) 23

(b) 2+3

(c) 23

(d) 1

Show Answer

Solution

(a) Given expression, tan75cot75

=sin75cos75cos75sin75=sin275cos275sin75cos7=2cos150sin150=2cos(90+60)sin(90+60)=+2sin60cos60=23212=23

  • Option (b) 2+3: This option is incorrect because the correct simplification of tan75cot75 results in 23, not a sum involving 3. The trigonometric identities and simplifications do not lead to an expression of the form 2+3.

  • Option (c) 23: This option is incorrect because the correct simplification of tan75cot75 results in 23, not a difference involving 3. The trigonometric identities and simplifications do not lead to an expression of the form 23.

  • Option (d) 1: This option is incorrect because the correct simplification of tan75cot75 results in 23, not a simple integer like 1. The trigonometric identities and simplifications do not lead to a value of 1.

39. Which of the following is correct?

(a) sin1>sin1

(b) sin1<sin1

(c) sin1=sin1

(d) sin1=π18sin1

Show Answer

Solution

(b) We know that, if θ is increasing, then sinθ is also increasing.

sin1<sin1[1rad=5730]

  • Option (a): sin1>sin1 is incorrect because, in the range of angles from 0 to 90 degrees, the sine function is increasing. Since 1 degree is much smaller than 1 radian (approximately 57.3 degrees), sin1 will be less than sin1.

  • Option (c): sin1=sin1 is incorrect because 1 degree and 1 radian are not the same measure. 1 radian is approximately 57.3 degrees, so sin1 and sin1 cannot be equal.

  • Option (d): sin1=π18sin1 is incorrect because the expression π18 does not make sense dimensionally. The sine function takes an angle as input, and π18 is not a valid angle measure. Additionally, there is no known trigonometric identity that relates sin1 to sin1 in this manner.

40. If tanα=mm+1 and tanβ=12m+1, then α+β is equal to

(a) π2

(b) π3

(c) π6

(d) π4

Show Answer

Solution

(d) Given that, tanα=mm+1 and tanβ=12m+1

Now,tan(α+β)=tanα+tanβ1tanαtanβ

tan(α+β)=mm+1+12m+11mm+112m+1tan(α+β)=m(2m+1)+m+1(m+1)(2m+1)mtan(α+β)=2m2+m+m+12m2+2m+m+1mtan(α+β)=2m2+2m+12m2+2m+1tan(α+β)=1α+β=π4

  • Option (a) π2: This option is incorrect because if α+β=π2, then tan(α+β) would be undefined (since tan(π2) is undefined). However, in the given solution, tan(α+β)=1, which is a defined value.

  • Option (b) π3: This option is incorrect because if α+β=π3, then tan(α+β)=3. However, in the given solution, tan(α+β)=1, which does not equal 3.

  • Option (c) π6: This option is incorrect because if α+β=π6, then tan(α+β)=13. However, in the given solution, tan(α+β)=1, which does not equal 13.

41. The minimum value of 3cosx+4sinx+8 is

(a) 5

(b) 9

(c) 7

(d) 3

Show Answer

Thinking Process

For the expression Acosθ+Bsinθ, then the minimum value is A2+B2.

Solution

(d) Given expression, 3cosx+4sinx+8

 Let y=3cosx+4sinx+8y8=3cosx+4sinx Minimum value of y8=9+16y8=5y=5+8y=3

Hence, the minimum value of 3cosx+4sinx+8 is 3 .

  • Option (a) 5: This is incorrect because the minimum value of the expression 3cosx+4sinx+8 is calculated to be 3, not 5. The calculation shows that the minimum value of 3cosx+4sinx is 5, and adding 8 to this gives 3.

  • Option (b) 9: This is incorrect because the minimum value of the expression 3cosx+4sinx+8 is 3, not 9. The calculation shows that the minimum value of 3cosx+4sinx is 5, and adding 8 to this gives 3.

  • Option (c) 7: This is incorrect because the minimum value of the expression 3cosx+4sinx+8 is 3, not 7. The calculation shows that the minimum value of 3cosx+4sinx is 5, and adding 8 to this gives 3.

42. The value of tan3Atan2AtanA is

(a) tan3Atan2AtanA

(b) tan3Atan2AtanA

(c) tanAtan2Atan2Atan3Atan3AtanA

(d) None of the above

Show Answer

Solution

(a)

Let3A=A+2Atan3A=tan(A+2A)

tan3A=tanA+tan2A1tanAtan2A

tanA+tan2A=tan3Atan3Atan2AtanA

tan3Atan2AtanA=tan3Atan2AtanA

  • Option (b): The expression tan3Atan2AtanA is incorrect because the correct expression derived from the given trigonometric identity is tan3Atan2AtanA without the negative sign. The negative sign would change the value and does not match the derived result.

  • Option (c): The expression tanAtan2Atan2Atan3Atan3AtanA is incorrect because it does not simplify to the given expression tan3Atan2AtanA. The correct derivation involves the product of the three tangent terms, not a combination of products and differences.

  • Option (d): This option is incorrect because option (a) is the correct answer, as shown by the derivation. Therefore, “None of the above” is not applicable.

43. The value of sin(45+θ)cos(45θ) is

(a) 2cosθ

(b) 2sinθ

(c) 1

(d) 0

Show Answer

Thinking Process

Use formula i.e., sin(A+B)=sinAcosB+cosAsinB and cos(AB)=cosAcosB+sinAsinB.

Solution

(d) Given expression,

sin(45+θ)cos(45θ)=sin45cosθ+cos45sinθcos45cosθsin45sinθ=12cosθ+12sinθ12cosθ12sinθ=0

  • Option (a) 2cosθ: This option is incorrect because the given expression simplifies to zero, not to 2cosθ. The terms involving cosθ and sinθ cancel each other out, resulting in zero.

  • Option (b) 2sinθ: This option is incorrect because the given expression simplifies to zero, not to 2sinθ. The terms involving cosθ and sinθ cancel each other out, resulting in zero.

  • Option (c) 1: This option is incorrect because the given expression simplifies to zero, not to 1. The terms involving cosθ and sinθ cancel each other out, resulting in zero.

44. The value of cot(π4+θ)cot(π4θ) is

(a) -1

(b) 0

(c) 1

(d) Not defined

Show Answer

Thinking Process

 Use formula i.e., (cot(A+B)=cotAcotB1cotA+cotB) and cot(AB)=(cotAcotB+1cotAcotB)

Solution

(c)

Given expression,(cotπ4+θ)cot(π4θ)=(cotπ4cotθ1cotπ4+cotθ)(cotπ4cotθ+1cotθcotπ4)=(cotθ1cotθ+1)(cotθ+1cotθ1)=1

  • Option (a) -1: This option is incorrect because the product of the cotangent functions in the given expression simplifies to 1, not -1. The cotangent function does not introduce a negative sign in this context.

  • Option (b) 0: This option is incorrect because the product of the cotangent functions in the given expression does not result in zero. The cotangent values and their product do not lead to a zero value in this scenario.

  • Option (d) Not defined: This option is incorrect because the expression is defined for all values of (\theta) where the cotangent functions are defined. There are no values of (\theta) that make the expression undefined within the given context.

45. cos2θcos2φ+sin2(θφ)sin2(θ+φ) is equal to

(a) sin2(θ+φ)

(b) cos2(θ+φ)

(c) sin2(θφ)

(d) cos2(θφ)

Show Answer

Solution

(b) Given expression, cos2θcos2φ+sin2(θφ)sin2(θ+φ)

=cos2θcos2φ+sin(θφ+θ+φ)sin(θφθφ)=cos2θcos2φsin2θsin2φ=cos(2θ+2φ)=cos2(θ+φ)

  • Option (a) sin2(θ+φ): This option is incorrect because the given expression simplifies to a cosine function, not a sine function. The trigonometric identities used in the simplification process lead to a cosine term, specifically cos2(θ+φ), rather than a sine term.

  • Option (c) sin2(θφ): This option is incorrect because the given expression does not involve the sine of the difference of the angles θ and φ. The simplification process shows that the expression involves the sum of the angles, not their difference.

  • Option (d) cos2(θφ): This option is incorrect because the given expression simplifies to cos2(θ+φ), not cos2(θφ). The trigonometric identities used in the solution clearly indicate that the sum of the angles is involved, not the difference.

46. The value of cos12+cos84+cos156+cos132 is

(a) 12

(b) 1

(c) 12

(d) 18

Show Answer

Thinking Process

Use the formula cosA+cosB=2cosA+B2cosAB2 and

cosAcosB=2sinA+B2sinAB2 to solve this problem.

Solution

(c) Given expression, cos12+cos84+cos150+cos132

=cos12+cos150+cos84+cos132

=2cos(12+1502)cos(121502)+2cos(84+1322)cos(841322)

=2cos84cos72+2cos108cos24

=2cos84cos(9018)+2cos(90+18)cos24

=2cos84sin182sin18cos24

=2sin18(cos84cos24)

=2sin182sin(84+242)sin(84242)

=4sin18sin54sin30

=4514cos3612

=(51)5+1412=518=48=12

  • Option (a) 12: This option is incorrect because the sum of the given cosine values does not simplify to a positive fraction. The detailed trigonometric manipulations and identities used in the solution show that the result is negative, specifically 12.

  • Option (b) 1: This option is incorrect because the sum of the given cosine values does not equal 1. The trigonometric identities and calculations used in the solution demonstrate that the sum is negative, not positive, and certainly not equal to 1.

  • Option (d) 18: This option is incorrect because the sum of the given cosine values does not simplify to a small positive fraction like 18. The detailed solution shows that the sum is 12, which is a negative value and not a small positive fraction.

47. If tanA=12 and tanB=13, then tan(2A+B) is equal to

(a) 1

(b) 2

(c) 3

(d) 4

Show Answer

Solution

(c) Given that, tanA=12 and tanB=13

Now, tan(2A+B)=tan2A+tanB1tan2AtanB

Also, tan2A=2tanA1tan2A=212114=43

From Eq. (i), tan(2A+B)=43+1314313=43+13949=5359=3

  • Option (a) 1: This option is incorrect because the calculated value of (\tan(2A + B)) is 3, not 1. The mathematical operations and trigonometric identities used in the solution do not yield 1.

  • Option (b) 2: This option is incorrect because the calculated value of (\tan(2A + B)) is 3, not 2. The intermediate steps involving (\tan 2A) and the final formula for (\tan(2A + B)) do not result in 2.

  • Option (d) 4: This option is incorrect because the calculated value of (\tan(2A + B)) is 3, not 4. The correct application of trigonometric identities and simplification steps do not lead to 4.

48. The value of sinπ10sin13π10 is

(a) 12

(b) 12

(c) 14

(d) 1

Show Answer

Solution

(c) Given expression, sinπ10sin13π10=sinπ10sinπ+3π10

=sinπ10sin3π10=sin18sin54=sin18cos36=5145+14[since,put this value here]=5116=14

  • Option (a) 12: This option is incorrect because the product of sinπ10 and sin13π10 does not simplify to 12. The trigonometric identities and values involved do not yield this result.

  • Option (b) 12: This option is incorrect because the product of sinπ10 and sin13π10 does not simplify to 12. The correct simplification using trigonometric identities results in a different value.

  • Option (d) 1: This option is incorrect because the product of sinπ10 and sin13π10 does not simplify to 1. The trigonometric identities and values involved do not yield this result.

49. The value of sin50sin70+sin10 is

(a) 1

(b) 0

(c) 12

(d) 2

Show Answer

Thinking Process

Here, use the formula i.e., sinAsinB=2cosA+B2sinAB2 also sin(θ)=sinθ

Solution

(b) Given expression, sin50sin70+sin10

=2cos(50+702)sin(50702+sin10)=2cos60sin10+sin10=212sin10+sin10=0

  • Option (a) 1: The given expression sin50sin70+sin10 simplifies to 0, not 1. The trigonometric identities and simplifications used in the solution show that the terms cancel each other out, resulting in 0.

  • Option (c) 12: The simplification of the given expression does not yield 12. The correct simplification using trigonometric identities results in 0, not 12.

  • Option (d) 2: The given expression sin50sin70+sin10 does not simplify to 2. The trigonometric identities and calculations show that the terms cancel each other out, resulting in 0, not 2.

50. If sinθ+cosθ=1, then the value of sin2θ is

(a) 1

(b) 12

(c) 0

(d) -1

Show Answer

Solution

(c) Given that, sinθ+cosθ=1

On squaring both sides, we get

sin2θ+cos2θ+2sinθcosθ=1

1+sin2θ=1

sin2θ=0

  • Option (a) 1: If (\sin 2\theta = 1), then (\sin \theta) and (\cos \theta) would need to satisfy (\sin 2\theta = 2\sin \theta \cos \theta = 1). However, given (\sin \theta + \cos \theta = 1), this condition cannot be met because the maximum value of (\sin \theta) and (\cos \theta) is (\frac{\sqrt{2}}{2}), which does not satisfy the equation.

  • Option (b) (\frac{1}{2}): If (\sin 2\theta = \frac{1}{2}), then (2\sin \theta \cos \theta = \frac{1}{2}). This would imply (\sin \theta \cos \theta = \frac{1}{4}). However, given (\sin \theta + \cos \theta = 1), this condition cannot be met because the values of (\sin \theta) and (\cos \theta) that satisfy this equation do not result in (\sin \theta \cos \theta = \frac{1}{4}).

  • Option (d) -1: If (\sin 2\theta = -1), then (2\sin \theta \cos \theta = -1). This would imply (\sin \theta \cos \theta = -\frac{1}{2}). However, given (\sin \theta + \cos \theta = 1), this condition cannot be met because the values of (\sin \theta) and (\cos \theta) that satisfy this equation do not result in (\sin \theta \cos \theta = -\frac{1}{2}).

51. If α+β=π4, then the value of (1+tanα)(1+tanβ) is

(a) 1

(b) 2

(c) -2

(d) Not defined

Show Answer

Thinking Process

Formula i.e., tan(A+B)=tanA+tanB1tanAtanB to solve this problem.

Solution

(b) Given that, α+β=π4

Now, (1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ(i)

We know that, tan(α+β)=tanα+tanβ1tanαtanβ

1=tanα+tanβ1tanαtanβ..(i)tanα+tanβ=1tanαtanβ

From Eq. (i),

(1+tanα)(1+tanβ)=1+1tanαtanβ+tanαtanβ=2

  • Option (a) 1: This option is incorrect because the expression ((1 + \tan \alpha)(1 + \tan \beta)) simplifies to 2, not 1. The calculation shows that the sum of the terms results in 2.

  • Option (c) -2: This option is incorrect because the expression ((1 + \tan \alpha)(1 + \tan \beta)) does not yield a negative value. The terms involved are positive and their sum results in 2.

  • Option (d) Not defined: This option is incorrect because the expression ((1 + \tan \alpha)(1 + \tan \beta)) is well-defined for the given condition (\alpha + \beta = \frac{\pi}{4}). The trigonometric identities used in the solution are valid and lead to a defined numerical result.

52. If sinθ=45 and θ lies in third quadrant, then the value of cosθ2 is

(a) 15

(b) 110

(c) 15

(d) 110

Show Answer

Thinking Process

Use cosθ=1sin2θ and cosθ=2cos2θ21.

Solution

(c) Given that, sinθ=45

cosθ=11625=251625=±35cosθ=35 [since, θ lies in third quadrant] 2cos2θ21=352cos2θ2=1352cos2θ2=25cosθ2=±15cosθ2=15 [since, θ lies in third quadrant] 

  • Option (a) 15: This value is incorrect because it does not satisfy the equation derived from the given trigonometric identity. Specifically, cosθ2 must satisfy the equation 2cos2θ2=25, which simplifies to cos2θ2=15. Therefore, cosθ2 must be ±15, not 15.

  • Option (b) 110: This value is incorrect because it does not satisfy the equation 2cos2θ2=25. If cosθ2=110, then cos2θ2=110, which does not match 15.

  • Option (d) 110: This value is incorrect for the same reason as option (b). If cosθ2=110, then cos2θ2=110, which does not match 15. Additionally, since θ lies in the third quadrant, cosθ2 should be negative, not positive.

53. The number of solutions of equation tanx+secx=2cosx lying in the interval [0,2π] is

(a) 0

(b) 1

(c) 2

(d) 3

Show Answer

Solution

(c) Given equation,

tan+secx=2cosx

sinxcosx+1cosx=2cosx

1+sinx=2cos2x

1+sinx=2(1sin2x)

1+sinx=22sin2x

2sin2x+sinx1=0

2sin2x+2sinxsinx1=0

2sinx(sinx+1)1(sinx+1)=0

(sinx+1)(2sinx1)=0

sinx+1=0 or (2sinx1)=0

sinx=1,sinx=12

x=3π2,x=π6

Hence, only two solutions possible.

  • Option (a) is incorrect because there are indeed solutions to the equation tanx+secx=2cosx within the interval [0,2π]. Specifically, the solutions are x=3π2 and x=π6.

  • Option (b) is incorrect because there is more than one solution to the equation within the interval [0,2π]. The correct number of solutions is two.

  • Option (d) is incorrect because there are not three solutions to the equation within the interval [0,2π]. The correct number of solutions is two.

54. The value of sinπ18+sinπ9+sin2π9+sin5π18 is

(a) sin7π18+sin4π9

(b) 1

(c) cosπ6+cos3π7

(d) cosπ9+sinπ9

Show Answer

Thinking Process

Here, apply the formulae i.e., sinA+sinB=2sinA+B2cosAB2.

Solution

(a) Given expression, sinπ18+sinπ9+sin2π9+sin5π18

=sin10+sin20+sin40+sin50=sin50+sin10+sin40+sin20=sin130+sin10+sin140+sin20=2sin70cos60+2sin80cos60[sinx+siny=2sinx+y2cosxy2]=212sin70+212sin80[cos60=12]=sin70+sin80=sin7π18+sin4π9

  • Option (b) 1: The given expression sinπ18+sinπ9+sin2π9+sin5π18 does not simplify to 1. The trigonometric identities and angle sum formulas used in the solution show that the expression simplifies to sin7π18+sin4π9, not 1.

  • Option (c) cosπ6+cos3π7: The given expression involves only sine functions, and there is no transformation or identity that converts it into a sum of cosine functions like cosπ6+cos3π7. The angles involved in the original expression do not correspond to the angles in the cosine terms provided in this option.

  • Option (d) cosπ9+sinπ9: The given expression sinπ18+sinπ9+sin2π9+sin5π18 does not simplify to a combination of cosπ9 and sinπ9. The trigonometric identities used in the solution show that the expression simplifies to sin7π18+sin4π9, which does not match the form of cosπ9+sinπ9.

55. If A lies in the second quadrant and 3tanA+4=0, then the value of 2cotA5cosA+sinA is

(a) 5310

(b) 2310

(c) 3710

(d) 710

Show Answer

Thinking Process

Use the formulae i.e., secA=1+tan2A and sinA=1cos2A,secA=1cosA and tanA=1cotA.

Solution (b)

Given equation,3tanA+4=03tanA=4tanA=43cotA=34secA=1+169=259=±53 [since, A lies in second quadrant] secA=53cosA=35sinA=1925=25925=±45sinA=45 [since, A lies in second quadrant] 

2cotA5cosA+sinA=234535+45=64+3+45=30+60+1620=4620=2310

  • Option (a) 5310: This option is incorrect because the calculations for 2cotA5cosA+sinA do not yield a negative value. The correct value is positive, as shown in the solution.

  • Option (c) 3710: This option is incorrect because the calculations for 2cotA5cosA+sinA result in 2310, not 3710. The arithmetic steps in the solution confirm this.

  • Option (d) 710: This option is incorrect because the calculations for 2cotA5cosA+sinA result in 2310, not 710. The detailed steps in the solution show that the correct value is 2310.

56. The value of cos248sin212 is

(a) 5+18

(b) 518

(c) 5+15

(d) 5+122

Show Answer

Solution

(a) Given expression, cos248sin212

=cos(48+12)cos(4812)=cos60cos36=125+14=5+18

  • Option (b) 518: This option is incorrect because the given expression cos248sin212 simplifies to 5+18, not 518. The value 518 does not match the derived result.

  • Option (c) 5+15: This option is incorrect because the denominator is 5 instead of 8. The correct simplification of the given expression results in 5+18, not 5+15.

  • Option (d) 5+122: This option is incorrect because the denominator is 22 instead of 8. The correct simplification of the given expression results in 5+18, not 5+122.

57. If tanα=17 and tanβ=13, then cos2α is equal to

(a) sin2β

(b) sin4β

(c) sin3β

(d) cos2β

Show Answer

Thinking Process

Use cos2α=1tan2α1+tan2α and sin2α=2tanα1+tan2α

Solution

(b) Given that,

cos2α=11491+149=48495049=4850=2425cos2α=2425..(i) We know that, sin4β=2tan2β1+tan22β..(ii) and tan2β=2tan21tan2β=2×13119=239=2×93×8=34

tan=17 and tanβ=13

From Eq, (ii),

sin4β=2×341+916=642516=6×164×25

sin4β=2425

sin4β=cos2α

cos2α=sin4β

  • Option (a) sin2β: This option is incorrect because sin2β is not equal to cos2α. The correct relationship is derived from the double-angle formula for sine, which is sin2β=2tanβ1+tan2β. Given tanβ=13, sin2β would be 2×131+(13)2=231+19=23109=23×910=35, which is not equal to cos2α=2425.

  • Option (c) sin3β: This option is incorrect because sin3β is not equal to cos2α. The triple-angle formula for sine is sin3β=3sinβ4sin3β. Given tanβ=13, we can find sinβ using sinβ=tanβ1+tan2β=131+(13)2=13109=13×310=110. Therefore, sin3β=3×1104(110)3=31041010=3102510=152510=13510, which is not equal to cos2α=2425.

  • Option (d) cos2β: This option is incorrect because cos2β is not equal to cos2α. The double-angle formula for cosine is cos2β=1tan2β1+tan2β. Given tanβ=13, cos2β=1(13)21+(13)2=1191+19=89109=810=45, which is not equal to cos2α=2425.

58. If tanθ=ab, then bcos2θ+asin2θ is equal to

(a) a

(b) b

(c) ab

(d) None of these

Show Answer

Solution

(b) Given that, tanθ=ab

bcos2θ+asin2θ=b(1tan2θ1+tan2θ)+a(2tanθ1+tan2θ)=b(1a2b21+a2b2)+a(2ab1+a2b2)=b(b2a2b2+a2)+2a2ba2+b2=ba2+b2[b2a2+2a2]=(a2+b2)b(a2+b2)=b

  • Option (a): a
    This option is incorrect because the expression ( b \cos 2\theta + a \sin 2\theta ) simplifies to ( b ) and not ( a ). The derivation shows that the terms involving ( a ) and ( b ) combine in such a way that the final result is ( b ).

  • Option (c): (\frac{a}{b})
    This option is incorrect because the expression ( b \cos 2\theta + a \sin 2\theta ) does not simplify to (\frac{a}{b}). The derivation clearly shows that the final result is ( b ), and there is no division by ( b ) that would result in (\frac{a}{b}).

  • Option (d): None of these
    This option is incorrect because the correct answer is indeed one of the given options, specifically option (b). The derivation confirms that ( b \cos 2\theta + a \sin 2\theta ) simplifies to ( b ), making option (d) incorrect.

59. If for real values of x,cosθ=x+1x, then

(a) θ is an acute angle

(b) θ is right angle

(c) θ is an obtuse angle

(d) No value of θ is possible

Show Answer

Thinking Process

The quadratic equation ax2+bx+c=0 has real roots, then b24ac=0, use this condition to solve the above problem.

Solution

(d)

Here,cosθ=x+1xcosθ=x2+1xx2xcosθ+1=0

For real value of x,(cosθ)24×1×1=0

cos2θ=4cosθ=±2

which is not possible.

[1cosθ1]

  • (a) θ is an acute angle: This option is incorrect because for θ to be an acute angle, cosθ must lie within the range 0<cosθ1. However, the given equation cosθ=x+1x leads to cosθ=±2, which is outside the valid range for cosθ.

  • (b) θ is right angle: This option is incorrect because for θ to be a right angle, cosθ must be 0. The given equation cosθ=x+1x does not yield cosθ=0 for any real value of x.

  • (c) θ is an obtuse angle: This option is incorrect because for θ to be an obtuse angle, cosθ must lie within the range 1cosθ<0. However, the given equation cosθ=x+1x leads to cosθ=±2, which is outside the valid range for cosθ.

Fillers

60. The value of sin50sin130 is ……

Show Answer

Solution

Here,

sin50sin130=sin(180130)sin130=sin130sin130=1

61. If k=sin(π18)sin(5π18)sin(7π18), then the numerical value of k is ……

Show Answer

Solution Here, k=sin(π18)sin(5π18)sin(7π18)

=sin10sin50sin70

=sin10cos40cos20=12sin10[2cos40cos20]=12sin10[cos60+cos20][2cosxcosy=cos(x+y)+cos(xy)]=12sin1012+12sin10cos20=14sin10+14[sin30sin10]=18

62. If tanA=1cosθsinB, then tan2A= ……

Show Answer

Thinking Process

Use cosθ=12sin2θ2 and tan2θ=2tanθ1tan2θ.

Solution

Given that,

tanA=1cosBsinB=11+2sin2B22sinB2cosB2=tanB2

Now,tan2A=2tanA1tan2A

tan2A=2tanB21tan2B2

tan2A=tanB

63. If sinx+cosx=a, then

(i) sin6x+cos6x=.

(ii) |sinxcosx|=

Show Answer

Solution

Given that, sinx+cosx=a

On squaring both sides, we get

(sinx+cosx)2=(a)2sin2x+cos2x+2sinxcosx=a2sinxcosx=12(a21)(i)sin6x+cos6x=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)=sin4x+cos4x14(a21)2=(sin2x+cos2x)22sin2xcos2x14(a21)2=1214(a21)214(a21)2=14[43(a21)2]

(ii) |sinxcosx|=(sinxcosx)2

=sin2x+cos2x2sinxcosx=1212(a21)=1a2+1=2a2

64. In right angled ABC with C=90 the equation whose roots aretanA and tanB is ……

Show Answer

Solution

In right angled ABC,C=90

tan(A+B)=tanA+tanB1tanAtanB10=tanA+tanB1tanAtanBtanAtanB=1tanA+tanB=sinAcosA+sinBcosB=sinAcosA+cosAsinA=sin2A+cos2AsinAcosA=1sinAcosA=22sinAcosA

=sinAcosA+sin(90A)cos(90A)[C=90,B=90A]=sinAcosA+cosAsinA=sin2A+cos2AsinAcosA=1sinAcosA=22sinAcosA=2sin2A[sin2x=2sinxcosx]

So, the required equation is x22sinAx+1.

sin2x=2sinxcosx

65. 3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)= ……

Show Answer

Thinking Process

Use formulae i.e., (a3+b3)=(a+b)(a2ab+b2) and a2+b2=(a+b)22ab.

Solution

Given expression, 3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)

=3[sin2x+cos2x2sinxcosx]2+6[sin2x+cos2x+2sinxcosx]+4[(sin2x)3+(cos2x)3]=3(1sin2x)2+6(1+sin2x)+4[(sin2+cos2x)(sin4xsinxcos2x+cos4x).=3(1+sin223x2sin2x)+6+6sin2x+4[(sin2x+cos2x)23sinxcos2x]=3+3sin22x6sin2x+6+6sin2x=43sin22x=13

66. Given x>0, the value of f(x)=3cos3+x+x2 lie in the interval ……

Show Answer

Solution

Given function, f(x)=3cos3+x+x2

We know that,1cosx133cosx333cosx33cosx3

So, the value of f(x) lies in [3,3].

67. The maximum distance of a point on the graph of the function y=3sinx+cosx from X-axis is ……

Show Answer

Solution

Given that, y=3sinx+cosx

y=2[32sinx+12cosx]=2[sinxcosπ6+cosxsinπ6]=2sin(x+π/6)

Graph of y=2sinx

Hence, the maximum distance is 2 units.

True/False

68. In each of the questions 68 to 75 , state whether the statements is True or False? Also, give justification.

Show Answer

Thinking Process

 If tanA=1cosBsinB, then tan2A=tanB

Solution

True

Given that,tanA=1cosBsinB=11+2sin2B22sinB2cosB2=tanB2Now,tan2A=2tanA1tan2A=2tanB21tan2B2=tanB

69. The equality sinA+sin2A+sin3A=3 holds for some real value of A.

Show Answer

Solution

False

Given that, sinA+sin2A+sin3A=3

It is possible only if sinA,sin2A,sin3A each has a value one because maximum value of sinA is a certain angle is 1 . Which is not possible because angle are different.

70. sin10 is greater than cos10.

Show Answer

Solution

False

sin10=sin(9080)

sin10=cos80

cos80<cos10

Hence,sin10<cos10

71. cos2π15cos4π15cos8π15cos16π15=116

Show Answer

Solution

True

 LHS =cos2π15cos4π15cos8π15cos16π15=cos24cos48cos96cos192=116sin24[(2sin24cos24)(2cos48)(2cos96)(2cos192)]=116sin24[2sin48cos48(2cos96)(2cos192)]=116sin24[(2sin96cos96)(2cos192)]=116sin24[2sin192cos192)=116sin24sin384=sin(360+24)16sin24=116=RHS Hence proved. 

72. One value of θ which satisfies the equation sin4θ2sin2θ1 lies between 0 and 2π.

Show Answer

Solution

False

Given equation, sin4θ2sin2θ1=0

sin2θ=2±4+42

sin2θ=2±222

sin2θ=(1+2) or (12)1sinθ1

sin2θ1

sin2θ=2+1 or (12)

which is not possible.

73. If cosecx=1+cotx, then x=2nπ,2nπ+π2

Show Answer

Solution

True

Given that,

cosecx=1+cotx1sinx=1+cosxsinx1sinx=sinx+cosxsinx

sinx+cosx=1

12sinx+12cosx=12

sinπ4sinx+cosxcosπ4=12

cos(xπ4)=cosπ4

xπ4=2nπ±π4

For positive sign,x=2nπ+π4+π4=2nπ+π2For negative sign,x=2nππ4+π4=2nπ

74. If tanθ+tan2θ+3tanθtan2θ=3, then θ=nπ3+π9.

Show Answer

Solution

True

tanθ+tan2θ+3tanθtan2θ=3tanθ+tan2θ=33tanθtan2θtanθ+tan2θ=3(1tanθtan2θ)tanθ+tan2θ1tanθtan2θ=3tan(θ+2θ)=tanπ3tan3θ=tanπ33θ=nπ+π3θ=nπ3+π9

75. If tan(πcosθ)=cot(πsinθ), then cosθπ4=±122.

Show Answer

Thinking Process

Use the formulae i.e., tanπ2θ=cotθ and cos(AB)=cosAcosB+sinAsinB.

Solution

True

We have,tan(πcosθ)=cot(πsinθ)

tan(πcosθ)=tanπ2(πsinθ)

πcos=π2πsinθ

π(sinθ+cosθ)=π2

sinθ+cosθ=12

12sinθ+12cosθ=122

sinθsinπ4+cosθcosπ4=122

cosθπ4=122

76. In the following match each item given under the Column I to its correct answer given under the Column II.

Column I Column II
(i) sin(x+y)sin(xy) (a) cos2xsin2y
(ii) cos(x+y)cos(xy) (b) 1tanθ/1+tanθ
(iii) cot(π4+θ) (c) 1+tanθ/1tanθ
(iv) tan(π4+θ) (d) sin2xsin2y
Show Answer

Solution

(i) sin(x+y)sin(xy)=sin2xsin2y

(ii) cos(x+y)cos(xy)=cos2xsin2y

(iii) cotπ4+θ=cotπ4cotθ1cotπ4+cotθ

=1+cotθ1+cotθ=1tanθ1+tanθ

(iv) tanπ4+θ=tanπ4+tanθ1tanπ4tanθ=1+tanθ1tanθ

Hence, the correct mathes are (i) \rarr (d), (ii) \rarr (a), (iii) \rarr (b), (iv) \rarr (c).