Statistics

Short Answer Type Questions

1. Find the mean deviation about the mean of the distribution.

Show Answer

Solution

Size 20 214 22 24
Frequency 6 5 4
Size Frequency fixi di=|xix| fidi
20 6 120 1.65 9.90
21 4 84 0.65 2.60
22 5 110 0.35 1.75
23 1 23 1.35 1.35
24 4 96 2.35 9.40
Total 20 433 25
x¯=fixifi=43320=21.65
MD=fi|xix¯|fi=2520=1.25

2. Find the mean deviation about the median of the following distribution.

Marks obtained 10 11 12 14 15
Number of students 2 3 8 3 4
Show Answer

Solution

Marks obtained fi cf di=∣xiMe f_id_i
10 2 2 2 4
11 3 5 1 3
12 8 13 0 0
14 3 16 2 6
15 4 20 3 12
Total fi=20 fidi=25

 Now, Me=20+12 th item =212=10.5 th item Me=12MD=fidifi=2520=1.25

3. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an odd number.

Show Answer

Solution

Consider first natural number when n is an odd i.e., 1, 2, 3, 4, … n, [odd].

 Mean x¯=1+2+3++nn=n(n+1)2n=n+12 MD =|1n+12|+|2n+12|+|3n+12|++|nn+12|n=+|n+12n+12|+|n+32n+12|++|n+12|+|2n+12|++|n12n+12|+|nn+12|n=2n1+2++n32+n12n12 terms =2nn12n12+12 sum of first n natural numbers =n(n+1)2=2n12n12n+12=1nn214=n214n

4. Calculate the mean deviation about the mean of the set of first n natural numbers when n is an even number.

Show Answer

Solution

Consider first n natural number, when n is even i.e., 1,2,3,4,.n.

 Mean x¯=1+2+3++nn=n(n+1)2n=n+12MD=1n|1n+12|+|2n+12|+|3n+12|+|n22n+12|+|n2n+12|+|n+22n+12|++|nn+12|=1n|1n2|+|3n2|+|5n2|+.+|32|+|12|++|n12|=2n12+32+.+n12n2 terms =1nn22[ sum of first n natural numbers =n2]=1nn24=n4

5. Find the standard deviation of first n natural numbers.

Show Answer

Solution

xi 1 2 3 4 5 n
(xi)2 1 4 9 16 25 n2

 Now, Σxi=1+2+3+4++n=n(n+1)2 and xi2=12+22+32++n2=n(n+1)(2n+1)6=xi2Nxi2N=n(n+1)(2n+1)6nn2(n+1)24n2=(n+1)(2n+1)6(n+1)24=2(2n2+3n+1)3(n2+2n+1)12=4n2+6n+23n26n312=n2112

6. The mean and standard deviation of some data for the time taken to complete a test are calculated with the following results

Number of observation =25, mean =18.2s, standard, deviation =3.25s Further, another set of 15 observations x1x2x15, also in seconds, is now available and we have i=115xi=279 and i=115xi2=5524. Calculate the standard derivation based on all 40 observations.

Show Answer

Solution

Given,

ni=25,x¯i=18.2,σ1=3.25

n2=15,i=115xi=279 and i=115xi2=5524

For first set,

xi=25×18.2=455σ12=xi225(18.2)2252=xi225331.241.24=xi225Σxi2=25×(10.5625)=25×341.8025=8545.0625

σ12=Σxi225(18.2)2(3.25)2=Σxi225331.2410.5625+331.24=Σxi225Σxi2=25×(10.5625+331.24)

For combined SD of the 40 observations n=40,

 Now Σxi2=5524+8545.0625=14069.0625 and Σxi=455+279=734SD=14069.062540734402=351.726(18.35)2=351.726336.7225=15.0035=3.87

7. The mean and standard deviation of a set of n1 observations are x¯1 and s1, respectively while the mean and standard deviation of another set of n2 observations are x¯2 and s2, respectively. Show that the standard deviation of the combined set of (n1+n2) observations is given by

SD=n1(s1)2+n2(s2)2n1+n2+n1n2(x¯1x¯2)2(n1n2)2

Show Answer

Solution

Let

xi,i=1,2,3,n1 and yj,j=1,2,3,,n2

x¯1=1n1i=1n1xi and x¯2=1n2j=1n2yj

σ12=1n1i=1n1(xix¯1)2

and

σ22=1n2j=1n(yjx¯2)2

Now, mean x¯ of the given series is given by

x¯=1n1+n2i=1n1xi+j=1n2yj=n1x¯1+n2x¯2n1+n2

The variance σ2 of the combined series is given by

σ2=[1n1+n2i=1n1(xix¯)2+j=1n2(yjx¯)2]

Now,

i=1n1(xix¯)2=i=1n1(xix¯jx¯)2

But i=1n1(xix¯i)=0

[algebraic sum of the deviation of values of first series from their mean is zero]

Also,

i=1n1(xix¯)2=n1s12+n1(x¯1x¯)2=n1s12+n1d12

Where,

d1=(x¯1x¯)

Similarly, j=1n2(yjx¯)2=j=1n2(yjx¯i+x¯ix¯)2=n2s22+n2d22

where,

d2=x¯2x¯

Combined SD

σ=[n1(s12+d12)+n2(s22+d22)]n1+n2

where,

d1=x¯1x¯=x¯1n1x¯1+n2x¯2n1+n2=n2(x¯1x¯2)n1+n2

and

d2=x¯2x¯=x¯2n1x¯1+n2x¯2n1+n2=n1(x¯2x¯1)n1+n2

σ2=1n1+n2n1s12+n2s22+n1n2(x¯1x¯2)2(n1+n2)2+n2n1(x¯2x¯1)2(n1+n2)2

Also,

σ=n1s12+n2s22n1+n2+n1n2(x¯1x¯2)2(n1+n2)2

8. Two sets each of 20 observations, have the same standard deviation 5. The first set has a mean 17 and the second mean 22 .

Determine the standard deviation of the x sets obtained by combining the given two sets.

Show Answer

Solution

Given, n1=20,σ1=5,x¯1=17 and n2=20,σ2=5,x¯2=22

We know that, σ=n1s12+n2s22n1+n2+n1n2(x¯1x¯2)2(n1+n2)2

=20×(5)2+20×(5)220+20+20×20(1722)2(20+20)2=100040+400×251600=25+254=1254=31.25=5.59

9. The frequency distribution

x A 2A 3A 4A 5A 6A
f 2 1 1 1 1 1

where, A is a positive integer, has a variance of 160 . Determine the value of A.

Show Answer

Solution

x fi fixi fixi2
A 2 2A 2A2
2A 1 2A 4A2
3A 1 3A 9A2
4A 1 4A 16A2
5A 1 5A 25A2
6A 1 6A 36A2
Total 7 22A 92A2
n=7 Σfini=22A Σfini2=92A2

σ2=Σfixi2nΣfixin160=92A2722A27160=92A27484A249160=(644484)A249160=160A249A2=49A=7

10. For the frequency distribution

x 2 3 4 5 6 7
f 4 9 16 14 11 6

Find the standard distribution.

Show Answer

Solution

xi fi di=xi4 fidi fidi2
2 4 -2 -8 16
3 9 -1 -9 9
4 16 0 0 0
5 14 1 14 14
6 11 2 22 44
7 6 3 18 54
Total 60 Σfidi=37 Σfidi2=137
SD =Σfidi2NΣfidi2N
=1376037260
=2.2833(0.616)2
=2.28330.3794
=1.9037=1.38

11. There are 60 students in a class. The following is the frquency distribution of the marks obtained by the students in a test.

Marks 0 1 2 3 4 5
Frequency x2 x x2 (x+1)2 2x x+1

where, x is positive integer. Determine the mean and standard deviation of the marks

Show Answer

Solution

Sum of frequencies,

x2+x+x2+(x+1)2+2x+x+1=602x2+x2+x2+1+2x+2x+x+1=602x2+7x=602x2+7x60=02x2+15x8x60=0x(2x+15)4(2x+15)=0(2x+15)(x4)=0 x=152,4x=152  [inaddmisible] [x/+]

xifidi=xi3fidifidi202361814281621611616A=325000481885521020 Total Σfi=60Σfidi=12Σfidi2=78

 Mean =A+fidiΣfi=3+1260=2.8σ=fidi2Σfifidi2Σfi=786012260=1.30.04=1.26=1.12

12. The mean life of a sample of 60 bulbs was 650h and the standard deviation was 8h. If a second sample of 80 bulbs has a mean life of 660 h and standard deviation 7h, then find the over all standard deviation.

Show Answer

Solution

Here, n1=60,x¯1=650,s1=8 and n2=80,x¯2=660,s2=7

σ=n1s12+n2s22n1+n2+n1n2(x¯1x¯2)2(n1+n2)2

=60×(8)2+80×(7)260+80+60×80(650660)2(60+80)2

=6×64+8×4914+60×80×100140×140

=192+1967+120049=3887+120049

=2716+120049=391649=62.587=8.9

13. If mean and standard deviation of 100 items are 50 and 4 respectively, then find the sum of all the item and the sum of the squares of item.

Show Answer

Solution

Here, x¯=50,n=100 and σ=4

Σxi100=50Σxi=5000 and σ2=Σfixi2ΣfiΣfixiΣfi(4)2=Σfixi2100(50)216=Σfixi21002500Σfixi2100=16+25002516fixi2=251600

14. If for distribution Σ(x5)=3,Σ(x5)2=43 and total number of item is 18 . Find the mean and standard deviation.

Show Answer

Solution

Given,

n=18,Σ(x5)=3 and Σ(x5)2=43=5+318=5+0.1666=5.1666=5.17 SD =(x5)2n(x5)2n=4318318=2.3944(0.166)2=2.39440.2755=1.59

 Mean =A+(x5)18 and 

15. Find the mean and variance of the frequency distribution given below.

x 1x3 3x5 5x7 7x10
f 6 4 5 1
Show Answer

Solution

x fi xi fixi fixi2
13 6 2 12 24
35 4 4 16 64
57 5 6 30 180
710 1 8.5 8.5 72.25
Total n=16 Σfixi=66.5 Σfixi2=340.25

Mean =ΣfixiΣfi=66.516=4.15

 variance =σ2=Σfixi2ΣfiΣfixiΣfi=340.2516(4.15)2=21.265617.2225=4.043

Long Answer Type Questions

16. Calculate the mean deviation about the mean for the following frequency distribution.

 Class interval 044881212161620 Frequency 46852

Show Answer

Solution

Class internalfixifixidi=xixfidi044287.228.84866363.219.2812810800.86.41216514704.824.01620218368.817.6TotalΣfi=25Σfixi=230Σfidi=96

 Mean =ΣfixiΣfi=23025=9.2 and  mean deviation =ΣfdiΣfi=9625=3.84

17. Calculate the mean deviation from the median of the following data.

Class interval 06 612 1218 1824 2430
Frequency 4 5 3 6 2
Show Answer

Solution

Class interval fi xi cf di=∣xim¯d fidi
06 4 3 4 11 44
6-12 5 9 9 5 25
1218 3 15 12 1 3
1824 6 21 18 7 42
2430 2 27 20 13 26
Total N=20 N2=202=10

So, the median class is 1218.

 Median =l+N2cff×i=12+63(109)=12+2=14MD=ΣfidiΣfi=14020=7

18. Determine the mean and standard deviation for the following distribution.

Marks 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 6 6 8 8 2 2 3 0 2 1 0 0 0 1
Show Answer

Solution

Marks fi fixi di=xix¯ fidi fidi2
2 1 2 26=4 -4 16
3 6 18 36=3 -18 54
4 6 24 46=2 -12 24
5 8 40 56=1 -8 8
6 8 48 66=0 0 0
7 2 14 76=1 2 2
8 2 16 86=2 4 8
9 3 27 96=3 9 27
10 0 0 106=4 0 0
11 2 22 116=5 10 50
12 1 12 126=6 6 36
13 0 0 136=7 0 0
14 0 0 146=8 0 0
15 0 0 156=9 0 0
16 1 16 166=10 10 100
Total Σfi=40 Σfixi=239 Σfidi=1 Σfixi2=325

 Mean x¯=ΣfixiΣfi=23940=5.9756 and σ=Σfidi2ΣfiΣfidi2Σfi=325401402=8.1250.000625=8.124375=2.85

19. The weights of coffee in 70 jars is shown in the following table

Weight (in g) Frequency
200201 13
201202 27
202203 18
203204 10
204205 1
205206 1

Determine variance and standard deviation of the above distribution.

Show Answer

Solution

Cl fi xi di=xix¯ fidi fidi2
200-201 13 200.5 -2 -26 52
201202 27 201.5 -1 -27 27
202-203 18 202.5 0 0 0
203-204 10 203.5 1 10 10
204-205 1 204.5 2 2 4
205-206 1 205.5 3 3 9

Σfi=70 Σfidi=
-38 Σfidi2=102 | Tfifi

Now,
=1.45710.2916=1.1655σ=1.1655=1.08g

20. Determine mean and standard deviation of first n terms of an AP whose first term is a and common difference is d.

Show Answer

Solution

xi xxia (xia)2
a 0 0
a+d d d2
a+2d 2d 4d2
9d2
.
.
a+(n1)d (n1)d (n1)2d2
xi=n2[2a+(n1)]
Mean =xin=1nn2(2a)+(n1)d
= a+(n1)2d

Σ(xia)=d[1+2+3++(n1)d]=d(n1)n2 and (xia)2=d2[12+22+32++(n1)2]=d2(n1)n(2n1)6σ=(xia)2nxia2n=d2(n1)(n)(2n1)6nd(n1)n22n=d2(n1)(2n1)6d2(n1)24=d(n1)(2n1)6(n1)24=d(n1)22n13n12=d(n1)24n23n+36=d(n1)(n+1)12=d(n21)12

21. Following are the marks obtained, out of 100, by two students Ravi and Hashina in 10 tests

Ravi 25 50 45 30 70 42 36 48 35 60
Hashina 10 70 50 20 95 55 42 60 48 80

Who is more intelligent and who is more consistent?

Show Answer

Solution

For Ravi,

xi di=xi45 di2
25 -20 400
50 5 25
45 0 0
30 -15 225
70 25 625
42 -3 9
36 -9 81
48 3 9
35 -10 100
60 15 225
Total Σdi=14 Σdi2=1699

Now,

σ=Σd2inΣdi2n=16991014210=169.90.0196=169.88=13.03x¯=A+ΣdiΣfi=451410=43.6

For Hashina,

xi di=xi55 di2
10 -45 2025
70 25 625
50 -5 25
20 -35 1225
95 40 1600
55 0 0
42 -13 169
60 5 25
48 -7 49
80 25 625
Total Σdi=0 di2=6368

 Mean =55σ=636810=636.8=25.2CV=σx¯×100=13.0343.6×100=29.88CV=σx¯×100=25.255×100=45.89

Hence, Hashina is more consistent and intelligent.

22. Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, then find the correct standard deviation.

Show Answer

Solution

Given,

n=100,x¯=40,σ=10 and x¯=40xin=40Σxi100=40Σxi=4000 Corrected Σxi=40003070+3+27=4030100=3930 Corrected mean =2930100=39.3

σ2=Σxi2n(40)2100=Σxi21001600Σxi2=170000

Corrected Σxi2=170000(30)2(70)2+32+(27)2

=164939 Corrected σ=164939100(39.3)2=1649.3939.3×39.3=1649.391544.49=104.9=10.24

23. While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16, respectively. Find the correct mean and the variance.

Show Answer

Solution

Given,

n=10,x¯=45 and σ2=16x¯=45Σxin=45Σxi10=45Σxi=450

Corrected Σxi=45052+25=423

x¯=42310=42.3

σ2=Σxi2nΣxin

16=Σxi210(45)2

Σxi2=10(2025+16)

Σxi2=20410

Corrected Σxi2=20410(52)2+(25)2=18331

and

corrected σ2=1833110(42.3)2=43.81

Objective Type Questions

24. The mean deviation of the data 3,10,10,4,7,10,5 from the mean is

(a) 2

(b) 2.57

(c) 3

(d) 3.75

Show Answer

Solution

(b) Given, observations are 3,10,10,4,7,10 and 5.

=497=7
xi di=xix¯
3 4
10 3
10 3
4 3
7 0
10 3
5 2
Total Σdi=18
Now, MD=diN=187=2.57
  • Option (a) is incorrect because the mean deviation calculated from the given data is not 2. The correct mean deviation is 2.57.
  • Option (c) is incorrect because the mean deviation calculated from the given data is not 3. The correct mean deviation is 2.57.
  • Option (d) is incorrect because the mean deviation calculated from the given data is not 3.75. The correct mean deviation is 2.57.

25. Mean deviation for n observations x1,x2,,xn from their mean x¯ is given by

(a) i=1n(xix¯)

(b) 1ni=1n|xix¯|

(c) i=1n(xix¯)2

(d) 1ni=1n(xix¯)2

Show Answer

Solution

(b) MD=1ni=1n|xix¯|

  • Option (a): i=1n(xix¯) is incorrect because the sum of deviations from the mean is always zero. This is due to the property of the mean, which balances the data points such that the positive and negative deviations cancel each other out.

  • Option (c): i=1n(xix¯)2 is incorrect because this represents the sum of squared deviations from the mean, which is used to calculate the variance, not the mean deviation.

  • Option (d): 1ni=1n(xix¯)2 is incorrect because this represents the mean of the squared deviations from the mean, which is the definition of variance, not the mean deviation.

26. When tested, the lives (in hours) of 5 bulbs were noted as follows

1357,1090,1666,1494,1623

The mean deviations (in hours) from their mean is

(a) 178

(b) 179

(c) 220

(d) 356

Show Answer

Solution

(a) Since, the lives of 5 bulbs are 1357, 1090, 1666, 1494 and 1623.

 Mean =1357+1090+1666+1494+16235=72305=1446

xi di=∣xix¯
1357 89
1090 356
1666 220
1494 48
1623 177
Total di=890
MD =ΣdiN=8905=178
  • Option (b) 179 is incorrect because the correct mean deviation calculated from the given data is 178, not 179. The sum of the absolute deviations from the mean is 890, and dividing this by the number of bulbs (5) gives 178.

  • Option (c) 220 is incorrect because it represents the absolute deviation of one of the bulbs (1666) from the mean, not the mean deviation of all bulbs.

  • Option (d) 356 is incorrect because it represents the absolute deviation of one of the bulbs (1090) from the mean, not the mean deviation of all bulbs.

27. Following are the marks obtained by 9 students in a mathematics test 50,69,20,33,53,39,40,65,59

The mean deviation from the median is

(a) 9

(b) 10.5

(c) 12.67

(d) 14.76

Show Answer

Solution

(c) Since, marks obtained by 9 students in Mathematics are 50, 69, 20, 33, 53, 39, 40, 65 and 59.

Rewrite the given data in ascending order.

20,33,39,40,50,53,59,65,69,

Here

n=9

[odd]

Median =9+12 term =5 th term

Me=50
xi di=∣xiMe
20 30
33 17
39 11
40 10
50 0
53 3
59 9
65 15
69 19
N=2 Σdi=114
MD =1149=12.67
  • Option (a) 9 is incorrect because the sum of the absolute deviations from the median is 114, and dividing this by the number of students (9) gives a mean deviation of 12.67, not 9.

  • Option (b) 10.5 is incorrect because, as calculated, the mean deviation from the median is 12.67, not 10.5.

  • Option (d) 14.76 is incorrect because the correct mean deviation from the median, based on the given data, is 12.67, not 14.76.

28. The standard deviation of data 6,5,9,13,12,8 and 10 is

(a) 527

(b) 527

(c) 6

(d) 6

Show Answer

Solution

(a) Given, data are 6, 5, 9, 13, 12, 8, and 10.

xixi2636525981131691214486410100Σxi=63Σxi2=619

SD=σ=Σxi2NΣxiN2=61976372=7×619396949=4333396949=36449=527

  • Option (b) 527 is incorrect because it represents the variance, not the standard deviation. The standard deviation is the square root of the variance.

  • Option (c) 6 is incorrect because it does not match the calculated value of the standard deviation, which is 527.

  • Option (d) 6 is incorrect because it is not derived from the given data set and does not match the calculated standard deviation.

29. If x1,x2,,xn be n observations and x¯ be their arithmetic mean. Then, formula for the standard deviation is given by

(a) Σ(xix¯)2

(c) (xix¯)2n

(b) Σ(xix¯)2n

(d) xi2n+x¯2

Show Answer

Solution

(c) SD is given by

σ=(xix¯)2n

  • Option (a) Σ(xix¯)2 is incorrect because it represents the sum of squared deviations from the mean, not the standard deviation. The standard deviation requires taking the square root of the average of these squared deviations.

  • Option (b) Σ(xix¯)2n is incorrect because it represents the variance, not the standard deviation. The standard deviation is the square root of the variance.

  • Option (d) xi2n+x¯2 is incorrect because it does not correctly represent the formula for standard deviation. The term x¯2 is not part of the standard deviation formula and the correct formula involves the squared deviations from the mean, not the sum of squares of the observations divided by the number of observations.

30. If the mean of 100 observations is 50 and their standard deviation is 5 , than the sum of all squares of all the observations is

(a) 50000

(b) 250000

(c) 252500

(d) 255000

Show Answer

Solution

(c) Given,

x¯=50,n=100 and σ=5Σxi2=?x¯=Σxin

50=Σxi100Σxi=50×100=5000

 Now, σ=Σxi2nxi2nσ2=xi2n(x¯)225=Σxi2100(50)225=Σxi210025002525=Σxi2100Σxi2=252500

  • Option (a) 50000: This option is incorrect because it significantly underestimates the sum of the squares of the observations. Given the mean and standard deviation, the sum of the squares must be much larger.

  • Option (b) 250000: This option is incorrect because it is close to the correct answer but still slightly underestimates the sum of the squares. The correct calculation shows that the sum of the squares is 252500.

  • Option (d) 255000: This option is incorrect because it overestimates the sum of the squares of the observations. The correct calculation shows that the sum of the squares is 252500, not 255000.

31. If a,b,c,d and e be the observations with mean m and standard deviation s, then find the standard deviation of the observations a+k, b+k,c+k,d+k and e+k is

(a) s

(b) ks

(c) s+k

(d) sk

Show Answer

Solution

(a) Given observations are a,b,c,d and e.

 Mean =m=a+b+c+d+e5Σxi=a+b+c+d+e=5m Now,  mean =a+k+b+k+c+k+d+k+e+k5=(a+b+c+d+e)+5k5=m+kSD=(xi+k)2n(m+k)2=(xi2+k2+2kxi)n(m2+k2+2mk)=Σxi2nm2+2kΣxin2mk=Σxi2nm2+2km2mkΣxin=m=Σxi2nm2=s

  • Option (b) ( ks ): This option is incorrect because adding a constant ( k ) to each observation does not affect the spread or dispersion of the data, which is what the standard deviation measures. The standard deviation remains the same regardless of the constant added.

  • Option (c) ( s+k ): This option is incorrect because the standard deviation is a measure of the spread of the data around the mean, and adding a constant ( k ) to each observation shifts the mean but does not change the spread. Therefore, the standard deviation does not increase by ( k ).

  • Option (d) ( \frac{s}{k} ): This option is incorrect because dividing the standard deviation by the constant ( k ) implies that the spread of the data decreases when a constant is added to each observation. However, adding a constant does not affect the spread of the data, so the standard deviation remains unchanged.

32. If x1,x2,x3,x4 and x5 be the observations with mean m and standard deviation s then, the standard deviation of the observations kx1,kx2, kx3,kx4 and kx5 is

(a) k+s

(b) sk

(c) ks

(d) s

Show Answer

Solution

(c) Here,

m=Σxi5,s=Σxi25Σxi5SD=k2Σxi25kΣxi25=k2Σxi25k2Σxi25=Σxi25Σxi52=ks

  • Option (a) ( k + s ): This option is incorrect because the standard deviation of a set of observations scaled by a factor ( k ) is not simply the original standard deviation plus ( k ). The standard deviation measures the spread of the data, and scaling the data by ( k ) scales the spread by ( k ), not by adding ( k ).

  • Option (b) ( \frac{s}{k} ): This option is incorrect because dividing the original standard deviation ( s ) by ( k ) would imply that the spread of the data decreases when the data is scaled by ( k ). However, scaling the data by ( k ) actually increases the spread by a factor of ( k ), not decreases it.

  • Option (d) ( s ): This option is incorrect because it suggests that the standard deviation remains unchanged when the data is scaled by ( k ). However, scaling the data by ( k ) changes the spread of the data, and thus the standard deviation must also change by the same factor ( k ).

33. Let x1,x2,xn be n observations. Let wi=lxi+k for i=1,2,,n, where l and k are constants. If the mean of xis is 48 and their standard deviation is 12, the mean of wis is 55 and standard deviation of wi ’s is 15 , then the value of l and k should be

(a) l=1.25,k=5

(b) l=1.25,k=5

(c) l=2.5,k=5

(d) l=2.5,k=5

Show Answer

Solution

(a) Given, wi=xi+k,x¯i=48,sxi=12,wi=55 and swi=15

Then, w¯i=x¯i+k

[where, w¯i is mean wi ’s and x¯i is mean of xis ]

55=48+k

Now, SD of wi= SD of xi

15=12

l=1512

=1.25

From Eqs. (i) and (ii),

k=551.25×48

=5

  • Option (b) l=1.25,k=5:

    • The value of l should be positive because the standard deviation of wi is greater than the standard deviation of xi. A negative l would imply a reduction in the spread, which contradicts the given standard deviations.
    • The value of k should be negative to satisfy the equation 55=48+k. Here, k=5 does not satisfy this equation.
  • Option (c) l=2.5,k=5:

    • The value of l should be 1.25, not 2.5, because the standard deviation of wi is 15 and the standard deviation of xi is 12. The correct l is calculated as 1512=1.25.
    • Although k=5 is correct, the incorrect value of l makes this option invalid.
  • Option (d) l=2.5,k=5:

    • The value of l should be 1.25, not 2.5, for the same reason as in option (c).
    • The value of k should be negative to satisfy the equation 55=48+k. Here, k=5 does not satisfy this equation.

34. The standard deviations for first natural numbers is

(a) 5.5

(b) 3.87

(c) 2.97

(d) 2.87

Show Answer

Solution

(d) We know that, SD of first n natural number =n2112

SD of first 10 natural numbers =(10)2112

=100112=9912=8.25=2.87

  • Option (a) 5.5 is incorrect because the standard deviation of the first 10 natural numbers is calculated using the formula n2112, which does not yield 5.5.

  • Option (b) 3.87 is incorrect because, when applying the formula n2112 to the first 10 natural numbers, the result is not 3.87.

  • Option (c) 2.97 is incorrect because the correct calculation using the formula n2112 for the first 10 natural numbers results in 2.87, not 2.97.

35. Consider the numbers 1,2,3,4,5,6,7,8,9, and 10 . If 1 is added to each number the variance of the numbers, so obtained is

(a) 6.5

(b) 2.87

(c) 3.87

(d) 8.25

Show Answer

Solution

(d) Given numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

If 1 is added to each number, then observations will be 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 .

xi=2+3+4++11=102[2×2+9×1]=5[4+9]=65Σxi2=22+32+42+52++112=(12+22+32++112)(12)=11×12×2361=11×12×2366=505

s2=Σxi2nΣxin2=5051065102=50.5(6.5)2=50.542.25=8.25

  • Option (a) 6.5: This option is incorrect because it represents the mean of the original numbers (1 to 10) rather than the variance. The variance calculation involves squaring the deviations from the mean, which results in a different value.

  • Option (b) 2.87: This option is incorrect because it is not derived from the correct formula for variance. The variance of a set of numbers is calculated using the sum of the squared deviations from the mean, divided by the number of observations. The value 2.87 does not match the result of this calculation for the given set of numbers.

  • Option (c) 3.87: This option is incorrect because it does not match the correct variance calculation for the given set of numbers. The correct variance is obtained by subtracting the square of the mean from the mean of the squares of the numbers, which results in 8.25, not 3.87.

36. Consider the first 10 positive integers. If we multiply each number by -1 and, then add 1 to each number, the variance of the numbers, so obtained is

(a) 8.25

(b) 6.5

(c) 3.87

(d) 2.87

Show Answer

Solution

(a) Since, the first 10 positive integers are1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

On multiplying each number by -1 , we get

1,2,3,4,5,6,7,8,9,10

On adding 1 in each number, we get

0,1,2,3,4,5,6,7,8,9=9×102=45 and Σxi2=02+(1)2+(2)2++(9)2=9×10×196=285SD=285104510=285102025100=28502025100=8.25 Now,  variance =(SD)2=(8.25)2=8.25

  • Option (b) 6.5: This option is incorrect because the variance calculation involves squaring the deviations from the mean. The correct variance, as derived, is 8.25, not 6.5. The steps in the solution show that the sum of the squared deviations divided by the number of observations results in 8.25.

  • Option (c) 3.87: This option is incorrect because it significantly underestimates the variance. The correct variance calculation involves summing the squares of the deviations from the mean and then dividing by the number of observations, which results in 8.25, not 3.87.

  • Option (d) 2.87: This option is incorrect because it also underestimates the variance. The correct variance, as shown in the solution, is derived from the sum of the squared deviations from the mean, which results in 8.25, not 2.87.

37. The following information relates to a sample of size 60,Σx2=18000, and Σx=960. Then, the variance is

(a) 6.63

(b) 16

(c) 22

(d) 44

Show Answer

Solution

(d)

 Variance =Σxi2nΣxin=1800060960602=300256=44

  • Option (a) 6.63: This value is incorrect because it is significantly lower than the calculated variance. The variance formula used, (\frac{\Sigma x_i^{2}}{n} - \left(\frac{\Sigma x_{i}}{n}\right)^2), results in a value of 44, not 6.63. This option might be a result of a miscalculation or misunderstanding of the formula.

  • Option (b) 16: This value is incorrect because it does not match the calculated variance. The correct calculation, (\frac{18000}{60} - \left(\frac{960}{60}\right)^2), results in 44. The value 16 could be a result of an incorrect intermediate step or a different formula.

  • Option (c) 22: This value is incorrect because it is half of the correct variance. The correct variance calculation yields 44. This option might be a result of an error in the final subtraction step or a misinterpretation of the formula.

38. If the coefficient of variation of two distributions are 50,60 and their arithmetic means are 30 and 25 respectively, then the difference of their standard deviation is

(a) 0

(b) 1

(c) 1.5

(d) 2.5

Show Answer

Solution

(a) Here

CV1=50,CV2=60,x¯1=30 and x¯2=25

CV1=σ1x¯1×10050=σ130×100

σ1=30×50100=15 and CV2=σ2x¯2×100

60=σ225×100

σ2=60×25100=15

 Now, σ1σ2=1515=0

  • Option (b) is incorrect because the calculated standard deviations for both distributions are equal (15), so their difference cannot be 1.
  • Option (c) is incorrect because the calculated standard deviations for both distributions are equal (15), so their difference cannot be 1.5.
  • Option (d) is incorrect because the calculated standard deviations for both distributions are equal (15), so their difference cannot be 2.5.

39. The standard deviation of some temperature data in C is 5 . If the data were converted into F, then the variance would be (a) 81 (b) 57 (c) 36 (d) 25

Show Answer

Solution

(a) Given,

σC=559(F32)=C

F=9C5+32σF=95σC=95×5=9

Here,

σF2=(9)2=81

  • Option (b) 57 is incorrect because the variance is calculated as the square of the standard deviation. Given the standard deviation in Fahrenheit is 9, the variance should be (9^2 = 81), not 57.

  • Option (c) 36 is incorrect because, similar to option (b), the variance is the square of the standard deviation. Since the standard deviation in Fahrenheit is 9, the variance should be (9^2 = 81), not 36.

  • Option (d) 25 is incorrect because it represents the variance if the standard deviation were 5. However, the standard deviation in Fahrenheit is 9, so the variance should be (9^2 = 81), not 25.

Fillers

40. Coefficient of variation = Mean ×100

Show Answer

Solution

CV=SD Mean ×100

41. If x¯ is the mean of n values of x, then i=1n(x1x¯) is always equal to ……

If a has any value other than x, then i=1n(xix)2 …… is than Σ(xia)2

Show Answer

Solution

If x¯ is the mean of n values of x, then i=1n(xix¯)=0 and if a has any value other than x¯, then i=1n(xix¯)2 is less than (xia)2

42. If the variance of a data is 121 , then the standard deviation of the data is ……

Show Answer

Solution

If the variance of a data is 121 .

Then,

SD= Variance =121=11

43. The standard deviation of a data is …… of any change in origin, but is …… on the change of scale.

Show Answer

Solution

The standard deviation of a data is independent of any change in origin but is dependent of change of scale.

44. The sum of squares of the deviations of the values of the variable is …… when taken about their arithmetic mean.

Show Answer

Solution

The sum of the squares of the deviations of the values of the variable is minimum when taken about their arithmetic mean.

45. The mean deviation of the data is …… when measured from the median.

Show Answer

Solution

The mean deviation of the data is least when measured from the median.

46. The standard deviation is …… to the mean deviation taken from the arithmetic mean.

Show Answer

Solution

The SD is greater than or equal to the mean deviation taken from the arithmetic mean.