Limits and Derivatives

Short Answer Type Questions

1. Evaluate limx3x29x3.

Show Answer

Solution

Given,

limx3x29x3=limx3x2(3)2x3=limx3(x+3)(x3)(x3)=limx3(x+3)=3+3=6

2. Evaluate limx1/24x212x1.

Show Answer

Solution

Given,

limx1/24x212x1=limx1/2(2x)2(1)22x1=limx1/2(2x+1)(2x1)(2x1)=limx1/2(2x+1)=2×12+1=1+1=2

3. Evaluate limh0x+hxh.

Show Answer

Solution

Given, limh0x+hxh=limh0(x+h)1/2(x)1/2x+hx

=limh0(x+h)1/2(x)1/2(x+h)x [limxaxnanxa=nan1]

=12x121=12x1/2 [h0x+hx]

=12x

4. Evaluate limx0(x+2)1/321/3x.

Show Answer

Solution

Given, limx0(x+2)1/321/3x=limx0(x+2)1/321/3(x+2)2

=13×2131

=13×(2)2/3[limxaxnanxa=nan1]

=13(2)2/3[x0x+22]

5. Evaluate limx0(1+x)61(1+x)21.

Show Answer

Solution

Given, limx0(1+x)61(1+x)21=limx0(1+x)61x(1+x)21x [dividing numerator and denominator by x ]

=limx0(1+x)61(1+x)1(1+x)21(1+x)1 [x01+x1]

=limx0(1+x)6(1)6(1+x)1limx0(1+x)2(1)2(1+x)1[limxaf(x)g(x)=limxaf(x)limxag(x)]

=6(1)612(1)21[limxaxnanxa=nan1]

=6×12×1=62=3

6. Evaluate limxa(2+x)5/2(a+2)5/2xa.

Show Answer

Solution

Given, limxa(2+x)5/2(a+2)5/2xa=limxa(2+x)5/2(a+2)5/2(2+x)(a+2)

=52(a+2)521[limxaxnanxa=nan1]

=52(a+2)3/2[xax+2a+2]

7. Evaluate limx1x4xx1.

Show Answer

Solution

Given, limx1x4xx1=limx1x[(x)7/21]x1

=limx1(x)7/21x1limx1x[limxaf(x)g(x)=limxaf(x)limxag(x)]=limx1x7/21x1(x)1/21x11=limx1x7/21x1limx1(x)1/21x1=72(1)7217212=712(1)12112

8. Evaluate limx2x243x2x+2.

Show Answer

Solution

Given, limx2x243x2x+2=limx2(x24)3x2+x+2)(3x2x+2)(3x2x+2)

=limx2(x24)(3x2+x+2)(3x2)2(x+2)2

[(a+b)(ab)=a2b2]=limx2(x24)(3x2+x+2)(3x2)(x+2)=limx2(x24)(3x2+x+2)3x2x2=limx2(x24)(3x2+x+2)2x4=limx2(x+2)(x2)(3x2+x+2)2(x2)=limx2(x+2)(3x2+x+2)2=(2+2)(62+2+2)2=4(2+2)2=8

9. Evaluate limx2x44x2+32x8.

Show Answer

Solution

Given, limx2x44x2+32x8=limx2(x2)2(2)2x2+32x8

=limx2(x22)(x2+2)x2+42x2x8=limx2(x2)(x+2)(x2+2)x(x+42)2(x+42)=limx2(x2)(x+2)(x2+2)(x2)(x+42)=limx2(x+2)(x2+2)(x+42)=(2+2)[(2)2+2](2+42)=22(2+2)52=85

10. Evaluate limx1x72x5+1x33x2+2.

Show Answer

Solution

Given,

limx1x72x5+1x33x2+2=limx1x7x5x5+1x3x22x2+2=limx1x5(x21)1(x51)x2(x1)2(x21)

On dividing numerator and denominator by (x1), then

=limx1x5(x21)(x1)1(x21)(x1)x2(x1)(x1)2(x21)(x1)=limx1x5(x+1)limx1x51x1limx1x2limx1(x+1)=1×25×(1)412×2=2514=33=1

11. Evaluate limx01+x31x3x2.

Show Answer

Solution

Given, limx01+x31x3x2=limx01+x31x3x21+x3+1x31+x3+1x3

=limx0(1+x3)(1x3)x2(1+x3+1x3) =limx01+x31+x3x2(1+x3+1x3)

=limx02x3x2(1+x3+1x3)

=limx02x(1+x3+1x3)

=0

12. Evaluate limx3x3+27x5+243.

Show Answer

Solution

Given, limx3x3+27x5+243=limx3x3+27x+3x5+243x+3

=limx3x3(3)3x(3)x5(3)5x(3)=limx3x3(3)3x(3)limx3x5(3)5x(3)[limxaf(x)g(x)=limxaf(x)limxag(x)]=3(3)315(3)51=35(3)2(3)4[limxaxnanxa=nan1]=35(3)2=345=115

13. Evaluate limx1/2(8x32x14x2+14x21).

Show Answer

Solution

Given, limx1/2(8x32x14x2+14x21)=limx1/2[(8x3)(2x+1)(4x2+1)(4x21)]

=limx1/2[16x2+8x6x34x214x21]=limx1/2[12x2+2x44x21]=limx1/2[2(6x2+x2)4x21]

=limx1/22(6x2+4x3x2)4x21=limx1/22[2x(3x+2)1(3x+2)]4x21=limx1/22[(3x+2)(2x1)](2x)2(1)2=limx1/22(3x+2)(2x1)(2x1)(2x+1)=limx1/22(3x+2)2x1=2(3×12+2)2×12+1=32+2=72

14. Find the value of n, if limx2xn2nx2=80,nN.

Show Answer

Solution

Given,

limx2xn2nx2=80

n(2)n1=80[limxaxnanxa=nan1]n(2)n1=5×16n×2n1=5×(2)4n×2n1=5×(2)51n=5

15. Evaluate limx0sin3xsin7x.

Show Answer

Solution

Given, limx0sin3x3x3xsin7x7x7x=limx0sin3x3xlimx0sin7x7x3x7x

=37limx0sin3x3xlimx0sin7x7x

=37[x0(kx0), here k is real number ]

16. Eavaluate limx0sin22xsin24x.

Show Answer

Solution

Given, limx0sin22xsin24x=limx0sin22x[sin2(2x)]2

=limx0sin22x(2sin2xcos2x)2=limx0sin22x4sin22xcos22x[sin2θ=2sinθcosθ]=limx014cos22x=14[cos0=1]

17. Evaluate limx01cos2xx2.

Show Answer

Solution

Given, limx01cos2xx2=limx011+2sin2xx2[cos2x=12sin2x]

=limx02sin2xx2=2limx0sin2xx2=2limx0(sinxx)2[limx0(sinxx)2=1]=2×1=2

18. Evaluate limx02sinxsin2xx3.

Show Answer

Solution

Given, limx02sinxsin2xx3=limx02sinx2sinxcosxx3[sin2x=2sinxcosx]

=limx02sinx(1cosx)x3=2limx0sinxxlimx0(1cosxx2)

=21limx01cosxx2[limx0sinxx=1]=2limx011+2sin2x2x2=2limx02sin2x24×x24=224limx0(sinx2x2)2=limx0(sinx22x2)2=1

19. Evaluate limx01cosmx1cosnx.

Show Answer

Solution

Given, limx01cosmx1cosnx=limx011+2sin2mx211+2sin2nx2

[cosmx=12sin2mx2

and sinnx=12sin2nx2]

=limx0sin2mx2sin2nx2=limx0sin2mx2(mx2)2(mx2)2sin2nx2(nx2)2(nx2)2\=limx0(sinmx2mx2)2limx0(sinnx2nx2)2m2n2

[limx0sinxx=1]

[x0kx0]

20. Evaluate limxπ/31cos6x2π3x.

Show Answer

Solution

Given, limxπ/31cos6x2(π3x)=limxπ/311+2sin23x2(π3x)

[cos2x=12sin2x]

=limxπ/32sin3x2(π3x)=limxπ/3sin3xπ3x

=limxπ/3sin(π3x)π3x3[sin(πθ)=sinθ]

=3limxπ/3sin(π3x)(π3x)=3×1[limx0sinxx=1]

=3[xπ3xπ30]

21. Evaluate limxπ4sinxcosxxπ4.

Show Answer

Solution

Given, limxπ/42(sinx12cosx12)(xπ4)=limxπ/42(sinxcosπ4cosxsinπ4)(xπ4)

=limxπ/42sinxπ4xπ4=2limxπ/4sinxπ4xπ4=2[limx0sinxx=1]

[xπ4xπ40]

22. Evaluate limxπ/63sinxcosxxπ6.

Show Answer

Solution

Given, limxπ/63sinxcosxxπ6=limxπ/6232sinx12cosxxπ6

=limxπ/62(sinxcosπ6cosxsinπ6)(xπ6) =2limxπ/6sin(xπ6)(xπ6)

=2[sinAcosBcosAsinB=sin(AB)]

[limx0sinxx=1]

[xπ6(xπ6)0]

23. Evaluate limx0sin2x+3x2x+tan3x.

Show Answer

Solution

Given, limx0sin2x+3x2x+tan3x=limx0sin2x+3x2x2x2x+tan3x3x3x

=limx0(sin2x2x+3x2x)2x(2x3x+tan3x3x)3x=limx0sin2x2x+3223+tan3x3x23

=23limx0sin2x2x+3223+limx0tan3x3x=23(1+3223+1)[limx0sinxx=1 and limx0tanxx=1]=23×2553=23×52×35=1

24. Evaluate limxasinxsinaxa.

Show Answer

Solution

Given, limxasinxsinaxa=limx02cos(x+a2)sin(xa2)xa

=limxa2cos(x+a2)sin(xa2)(x+a)(xa)(x+a)=limx02cos(x+a2)sin(xa2)(x+a)xa=2limxacos(x+a2)(x+a)limx0sin(xa2)xa2=2limx0cos(x+a2)(x+a)12limx0sin(xa2)xa2=2cosa2a12=acosa2

25. Evaluate limxπ/6cot2x3cosecx2.

Show Answer

Solution

Given limxπ/6cot2x3cosecx2=limxπ/6cosec2x13cosecx2[cosec2x=1+cot2x]

=limxπ/6cosec2x4cosecx2=limxπ/6(cosecx)2(2)2cosecx2=limxπ/6(cosecx+2)(cosecx2)(cosecx2)=limxπ/6(cosecx+2)=cosecπ6+2=2+2=4

26. Evaluate limx021+cosxsin2x.

Show Answer

Solution

Given, limx021+cosxsin2x=limx021+2cos2x21sin2x[cosx=2cos2x21]

=limx022cos2x2sin2x=limx02(1cosx2)sin2x=limx02(11+2sin2x4)sin2x=limx02(2sin2x4)sin2x=limx022sin2x4(x4)2(x4)2sin2x=22limx0(sinx4x4)2limx0(xsinx)2116=2211116=142

27. Evaluate limx0sinx2sin3x+sin5xx.

Show Answer

Solution

Given,

limx0sinx2sin3x+sin5xx=limx0sin5x+sinx2sin3xx=limx02sin3xcos2x2sin3xx=limx02sin3x(cos2x1)x=limx02sin3x13×3x(cos2x1)=6limx0sin3x3x(cos2x1)=6limx0sin3x3xlimx0(cos2x1)=6×1×0=0

28. If limx1x41x1=limxkx3k3x2k2, then find the value of k.

Show Answer

Solution

Given,

limx1x41x1=limxkx3k3x2k2

4(1)41=limxkx3k3xkx2k2xk

4=limxkx3k3xklimxkx2k2xk14=3k22k4=32kk=4×23=83

Differentiate each of the functions w.r.t. x in following questions

29. x4+x3+x2+1x

Show Answer

Solution

ddx(x4+x3+x2+1x)=ddx(x3+x2+x+1x)

=ddxx3+ddxx2+ddxx+ddx(1x)=3x2+2x+1+(1x2)=3x2+2x+11x2=3x4+2x3+x21x2

30. (x+1x)3

Show Answer

Solution

Let

y=(x+1x)3

dydx=ddx(x+1x)3=3(x+1x)31ddx(x+1x)=3(x+1x)2(11x2)=3x23x23x4+3

31. (3x+5)(1+tanx)

Show Answer

Solution

Let

y=(3x+5)(1+tanx)dydx=ddx[(3x+5)(1+tanx)]=(3x+5)ddx(1+tanx)+(1+tanx)ddx(3x+5) [by product rule] =(3x+5)(sec2x)+(1+tanx)3=(3x+5)sec2x+3(1+tanx)=3xsec2x+5sec2x+3tanx+3

dydx=ddx[(3x+5)(1+tanx)]

32. (secx1)(secx+1)

Show Answer

Solution

Let

y=(secx1)(secx+1)y=(sec21)[(a+b)(ab)=a2b2]=tan2xdydx=2tanxddxtanx=2tanxsec2x [by chain rule] 

33. 3x+45x27x+9

Show Answer

Solution

Let y=3x+45x27x+9

dydx=(5x27x+9)ddx(3x+4)(3x+4)ddx(5x27x+9)(5x27x+9)2 [by quotient rule] =(5x27x+9)3(3x+4)(10x7)(5x27x+9)2=15x221x+2730x2+21x40x+28(5x27x+9)2=15x240x+55(5x27x+9)2=5515x240x(5x27x+9)2

34. x5cosxsinx

Show Answer

Solution

Let

y=x5cosxsinxdydx=sinxddx(x5cosx)(x5cosx)ddxsinx(sinx)2 [by quotient rule] =sinx(5x4+sinx)(x5cosx)cosxsin2x=5x4sinx+sin2xx5cosx+cos2xsin2x=5x4sinxx5cosx+sin2x+cos2xsin2x=5x4sinxx5cosx+1sin2x

35. x2cosπ4sinx

Show Answer

Solution

Let

y=x2cosπ4sinx=x22sinxy=12x2sinxdydx=12[sinxddxx2x2ddxsinxsin2x]=12[sinx2xx2cosxsin2x]=122xsinxx2cosxsin2x=x2[2cosecxxcotxcosecx]=x2cosec[2xcotx] [dydx=12sinxddxx2x2ddxsinxsin2x]

36. (ax2+cotx)(p+qcosx)

Show Answer

Solution

Let y=(ax2+cotx)(p+qcosx)

dydx=(ax2+cotx)ddx(p+qcosx)+(p+qcosx)ddx(ax2+cotx) [by product rule] =(ax2+cotx)(qsinx)+(p+qcosx)(2axcosec2x)=qsinx(ax2+cotx)+(p+qcosx)(2axcosec2x)

37. a+bsinxc+dcosx

Show Answer

Solution

Let y=a+bsinxc+dcosx

dydx=(c+dcosx)ddx(a+bsinx)(a+bsinx)ddx(c+dcosx)(c+dcosx)2 [by quotinet rule] =(c+dcosx)(bcosx)(a+bsinx)(dsinx)(c+dcosx)2=bcosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2=bcosx+adsinx+bd(cos2x+sin2x)(c+dcosx)2=bccosx+adsinx+bd(c+dcosx)2

38. (sinx+cosx)2

Show Answer

Solution

Let

y=(sinx+cosx)2dydx=2(sinx+cosx)(cosxsinx)=2(cos2xsin2x) [by chain rule] =2cos2x[cos2x=cos2xsin2x]

39. (2x7)2(3x+5)3

Show Answer

Solution

Let

y=(2x7)2(3x+5)3dydx=(2x7)2ddx(3x+5)3+(3x+5)3ddx(2x7)2 [by product rule] =(2x7)2(3)(3x+5)2(3)+(3x+5)32(2x7)(2) [by chain rule] =9(2x7)2(3x+5)2+4(3x+5)3(2x7)=(2x7)(3x+5)2[9(2x7)+4(3x+5)]=(2x7)(3x+5)2(18x63+12x+20)=(2x7)(3x+5)2(30x43)

40. x2sinx+cos2x

Show Answer

Solution

Let

y=x2sinx+cos2xdydx=ddx(x2sinx)+ddxcos2x=x2cosx+sinx2x+(sin2x)2 [by product rule] =x2cosx+2xsinx2sin2x [by chain urle] 

41. sin3xcos3x

Show Answer

Solution

Let

y=sin3xcos3xdydx=sin3xddxcos3x+cos3xddxsin3x [by product rule] =sin3x3cos2x(sinx)+cos3x3sin2xcosx [by chain rule] =3cos2xsin4x+3sin2xcos4x=3sin2xcos2x(cos2xsin2x)=3sin2xcos2xcos2x=34(2sinxcosx)2cos2x=34sin22xcos2x

42. 1ax2+bx+c

Show Answer

Solution

Let y=1ax2+bx+c=(ax2+bx+c)1

dydx=(ax2+bx+c)2(2ax+b) [by chain rule] =(2ax+b)(ax2+bx+c)2

Long Answer Type Questions

Differentiate each of the functions with respect to x in following questions using first principle.

43. cos(x2+1)

Show Answer

Solution

Let

f(x)=cos(x2+1) and f(x+h)=cos{(x+h)2+1}ddxf(x)=limh0f(x+h)f(x)h=limh0cos{(x+h)2+1}cos(x2+1)h=limh02sin{(x+h)2+1+x2+12}sin{(x+h)2+1x212}h[cosCcosD=2sin{C+D2}sin{CD2}]=limh01h[2sin{(x+h)2+x2+22}sin{(x+h)2x22}]=limh01h[2sin{(x+h)2+x2+22}sin{x2+h2+2xhx22}]=limh01h[2sin{(x+h)2+x2+22}sin{h2+2hx2}]=2limh0sin{(x+h)2+x2+22}limh0{sinhh+2x2hh+2x2}×(h+2x2)=2limh0sin{(x+h)2+x2+22}limh0(h+2x2)[limx0sinxx=1]=2xsin(x2+1)

ddxf(x)=limh0f(x+h)f(x)h

44. ax+bcx+d

Show Answer

Solution

Let f(x)=ax+bcx+d

f(x+h)=a(x+h)+bc(x+h)+d

ddxf(x)=limh01h[f(x+h)f(x)]

=limh01h[a(x+h)+bc(x+h)+dax+bcx+d]

=limh01h[ax+b+ahc(x+h)+dax+bcx+d]

=limh01h[(ax+ah+b)(cx+d)(ax+bc(x+h)+dc(x+h)+d(cx+d)]

=limh01h[(ax+ah+b)(cx+d)(ax+b)(cx+ch+d){c(x+h)+d)}(cx+d)]

acx2+achx+bcx+adx+adh+bd

=limh01h[acx2+achx+adx+bcx+bch+bd{c(x+h)+d}(cx+d)]

acx2+achx+bcx+adx+adh+bd

=limh01h[acx2achxadxbcxbchbd{c(x+h)+d}(cx+d)]

=limh01h[adhbch{c(x+h)+d}(cx+d)]

=limh0acbdc(x+h)+d(cx+d)

=acbd(cx+d)2

45. x2/3

Show Answer

Solution

Let

Now, f(x)=x2/3f(x+h)=(x+h)2/3ddxf(x)=limh0f(x+h)f(x)h=limh01h[(x+h)2/3x2/3]=limh01h[x2/3(1+hx)2/3x2/3]

=limh01h[x2/3(1+hx23+23(231)h2x2+)1][(1+x)h=1+nx+h(n1)2!x2+]=limh01h[x2/3(23hx29h2x2+)]=limh0x2/3h23hx(113hx+)=23x2/31=23x1/3

Alternate Method

Let f(x)=x2/3f(x+h)=(x+h)2/3ddxf(x)=limh0f(x+h)f(x)h=lim(h0)[(x+h)2/3x2/3h]=lim(x+h)x[(x+h)2/3x2/3(x+h)x]=23(x)2/31[limxaxxanxa=nan1]=23x1/3

46. xcosx

Show Answer

Solution

Let

f(x)=xcosxf(x+h)=(x+h)cos(x+h)ddxf(x)=limh0f(x+h)f(x)h=limh01h[(x+h)cos(x+h)xcosx]=limh01h[xcos(x+h)+hcos(x+h)xcosx]=limh01h[x{cos(x+h)cosx}+hcos(x+h)]=limh01h[x{2sin2x+h2sinh2}+hcos(x+h)]=limh0[2x(sinx+h2)sinh2h+cos(x+h)]=2limh0(xsinx+h2)limh0sinh2h212+limh0cos(x+h)=212xsinx+cosx=cosxxsinx

Evaluate each of the following limits in following questions

47. limy0(x+y)sec(x+y)xsecxy

Show Answer

Solution

Given, limy0(x+y)sec(x+y)xsecxy

=limy0x+ycos(x+y)xcosxy=limy0(x+y)cosxxcos(x+y)ycosxcos(x+y)=limy0xcosx+ycosxxcos(x+y)ycosxcos(x+y)=limy0xcosxxcos(x+y)+ycosxycosxcos(x+y)=limy0x{cosxcos(x+y)}+ycosxycosxcos(x+y)=limy0x[2sin(x+y2)sin(y2)]+ycosxycosxcos(x+y)[cosCcosD=2sinC+D2sinCD2]

=limy0[x{2sin(x+y2)siny2}+ycosxycosxcos(x+y)]=limy02xsin(x+y2)cosxcos(x+y)limy0siny2y212+limy0sec(x+y)[limx0sinxx=1 and x0kx0]

=limy02xsin(x+y2)cosxcos(x+y)12+limy0sec(x+y)=2xsinxcosxcosx12+secx=xtanxsecx+secx=secx(xtanx+1)

48. limx0sin(α+β)x+sin(αβ)x+sin2αxcos2βxcos2αxx

Show Answer

Solution

Given, limx0[sin(α+β)x+sin(αβ)x+sin2αx]cos2βxcos2αxx

=limx0[2sinαxcosβx+sin2αx]cos2βxsin+cos2αx=2sinC+D2cosCD2

=limx0[2sinαxcosβx+sin2αx]x2sin(α+β)xsin(αβ)x[cosCcosD=2sinC+D2sinDC2]=limx0[2sinαxcosβx+2sinαxcosαx]x2sin(α+β)xsin(αβ)x=limx02sinαx[cosβx+cosαx]x2sin(α+β)xsin(αβ)x=limx0sinαx[2cosα+β2xcosαβ2]×x2sinα+β2xcosα+β2x2sinαβ2xcosαβ2x[cosC+cosD=2cosC+D2cosCD2 and sin2θ=2sinθcosθ]=limx0sinαxx2sinα+β2xsinαβ2x=12limx0sinαxαxx(αx)2sinα+β2xα+β2xsinαβ2xαβ2xα+β2xαβ2x=12limx0sinαxαxαx2limx0sinα+β2xα+β2limx0αβ2xαβ2xα2β24x2

limx0sinxx=1 and x0kx0

=12α4α2β2[limx0sinαxαxlimx0sinα+β2xα+β2xlimx0sinαβ2xαβ2x]=124αα2β2=2αα2β2

49. limxπ/4tan3xtanxcos(x+π4)

Show Answer

Solution

Given, limxπ/4tan3xtanxcos(x+π4)

=limxπ/4tanx(tan2x1)cos(x+π4)=limxπ/4tanxlimxπ/4(1tan2xcos(x+gπ4))=1×limxπ/4(1+tanx)(1tanx)cos(x+π4)[a2b2=(a+b)(ab)]

=limxπ/4(1+tanx)limxπ/4[cosxsinxcosxcos(x+π4)]

=(1+1)×limxπ/42[12cosx12sinx]cosxcosx+π4=22limxπ/4[cosπ4cosxsinπ4sinxcosxcosx+π4][cosAcosBsinAsinB=cos(A+B)]=22limxπ/4cos(x+π4)cosxcos(x+π4)=22×112=22×2=4

50. limxπ1sinx2cosx2(cosx4sinx4)

Show Answer

Solution

Given, limxπ1sinx2cosx2(cosx4sinx4)

=limxπcos2x4+sin2x42sinx4cosx4cosx2(cosx4sinx4)[sin2θ+cos2θ=1sin2θ=2sinθcosθ]=limxπ(cosx4sinx4)2(cos2x4sin2x4)(cosx4sinx4)[cos22θ=cos2θsin2θ]

=limxπcosx4sinx4(cosx4+sinx4)(cosx4sinx4)limxπ1cosx4+sinx4=112+12=22=12

51. Show that limxπ/4|x4|x4 does not exist,

Show Answer

Solution

Given,

limxπ/4|x4|x4

LHL=limxπ4(x4)x4[|x4|=(x4),x<4]

=1

RHL=limxπ+4(x4)x4=1[|x4|=(x4),x>4]

LHL RHL

So, limit does not exist.

52. If f(x)={kcosxπ2x, when xπ23, when x=π2 and limxπ/2f(x)=fπ2, then find the

value of k.

Show Answer

Solution

Given,

f(x)={kcosxπ2x,xπ23,x=π2

LHL=limxπ2kcosxπ2x=limh0kcosπ2hπ2π2h

=limh0ksinhππ+2h=limh0ksinh2h

=k2limh0sinhh=k21=k2limh0sinxx=1

RHL=limxπ+2kcosxπ2x=limxπ2+kcosπ2+hπ2π2+h

=limh0ksinhππ2h=limh0ksinh2h=k2limh0sinh2h=k2 and fπ2=3

 It is given that, limxπ/2f(x)=fπ2k2=3

k=6

53. If f(x)={x+2,x1cx2,x>1 then find c when limx1f(x) exists.

Show Answer

Solution

Given,

f(x)={x+2,x1cx2,x>1LHL=limx1f(x)=limx(x+2)=limh0(1h+2)=limh0(1h)=1RHL=limx1+f(x)=limx1+cx2=limh0c(1+h)2

 If limx1f(x) exist, then LHL=RHL=cc=1

Objective Type Questions

54. limxπsinxxπ is equal to

(a) 1

(b) 2

(c) -1

(d) -2

Show Answer

Solution

(c) Given, limxπsinxxπ=limxπsin(πx)(πx)

[sinθ=sin(πθ)]

=limxπsin(πx)(πx)=1[limx0sinxx=1 and πx0xπ]

  • Option (a) 1: This is incorrect because the limit limxπsinxxπ does not simplify to 1. The correct simplification involves recognizing that sin(πx)=sinx and using the limit property limx0sinxx=1, which results in -1, not 1.

  • Option (b) 2: This is incorrect because there is no mathematical operation or simplification in the given limit that would result in a factor of 2. The limit limxπsinxxπ simplifies to -1, not 2.

  • Option (d) -2: This is incorrect because the limit limxπsinxxπ does not involve any factor that would result in -2. The correct simplification results in -1, not -2.

55. limx0x2cosx1cosx is equal to

(a) 2

(b) 32

(c) 32

(d) 1

Show Answer

Solution

(a) Given, limx0x2cosx1cosx=limx0x2cosx2sin2x2

[1cosx=2sin2x2]

=2limx0x2sin2x2limx0cosx=21=2

  • Option (b) 32 is incorrect because the limit calculation does not yield 32. The correct limit, as shown, is 2.

  • Option (c) 32 is incorrect because the limit calculation does not yield a negative value. The correct limit is positive and equals 2.

  • Option (d) 1 is incorrect because the limit calculation does not yield 1. The correct limit, as shown, is 2.

56. limx0(1+x)n1x is equal to

(a) n

(b) 1

(c) n

(d) 0

Show Answer

Solution

(a) Given, limx0(1+x)n1x=limx0(1+x)n1(1+x)1=limx0(1+x)n1(1+x)1

=limx0(1+x)n1n(1+x)1=lim(1+x)1(1+x)n1n(1+x)1=n(1)n1=nlimxaxnanxa=nan1

  • Option (b) 1: The limit evaluates to ( n ), not 1. The expression (\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}) simplifies to ( n ) using the binomial expansion or derivative approach, not to 1.

  • Option (c) -n: The limit evaluates to ( n ), not (-n). The expression (\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}) simplifies to ( n ) using the binomial expansion or derivative approach, not to (-n).

  • Option (d) 0: The limit evaluates to ( n ), not 0. The expression (\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}) simplifies to ( n ) using the binomial expansion or derivative approach, not to 0.

57. limx1xm1xn1 is equal to

(a) 1

(b) mn

(c) mn

(d) m2n2

Show Answer

Solution

(b) Given, limx1xm1xn1=limx1xm1x1xn1x1=limx1xm1mx1limx1xn1nx1

=m(1)m1n(1)n1=mn[limxaxnanxa=nan1]

  • Option (a) 1 is incorrect because the limit limx1xm1xn1 depends on the exponents (m) and (n). It simplifies to (\frac{m}{n}), not 1, unless (m = n).

  • Option (c) mn is incorrect because the limit limx1xm1xn1 results in a positive ratio (\frac{m}{n}) when both (m) and (n) are positive. There is no negative sign involved in the simplification.

  • Option (d) m2n2 is incorrect because the limit limx1xm1xn1 simplifies directly to (\frac{m}{n}), not (\frac{m^{2}}{n^{2}}). The exponents do not get squared in the process.

58. limθ01cos4θ1cos6θ is equal to

(a) 49

(b) 12

(c) 12

(d) -1

Show Answer

Solution

(a) Given, limθ01cos4θ1cos6θ=limθ02sin22θ2sin23θ

[1cos2θ=2sin2θ]

=limθ0sin22θ(2θ)2(2θ)2limθ0sin23θ(3θ)2(3θ)2=49limθ0(sin2θ2θ)2limθ0(sin3θ3θ)2[limx0sinxx=1 and x0kx0]=49

  • Option (b) 12 is incorrect because the limit calculation shows that the ratio of the squared sine terms results in 49, not 12.

  • Option (c) 12 is incorrect because the limit calculation involves positive squared sine terms, which cannot result in a negative value.

  • Option (d) -1 is incorrect because the limit calculation involves positive squared sine terms, and the ratio of these terms results in a positive fraction, not a negative value.

59. limx0cosecxcotxx is equal to

(a) 12

(b) 1

(c) 12

(d) 1

Show Answer

Solution

(c) Given,

limx0cosecxcotxx=limx01sinxcosxsinxx=limx01cosxxsinx=limx02sin2x2x2sinx2cosx2=limx0tanx2x=limx0tanx2x212=12

[limθ0tanθθ=1]

  • Option (a) 12 is incorrect because the limit calculation shows that the expression evaluates to 12, not 12.
  • Option (b) 1 is incorrect because the limit calculation shows that the expression evaluates to 12, not 1.
  • Option (d) 1 is incorrect because the limit calculation shows that the expression evaluates to 12, not 1.

60. limx0sinxx+11x is equal to

(a) 2

(b) 0

(c) 1

(d) -1

Show Answer

Solution

(c) Given, limx0sinxx+11x

=limx0sinxx+11xx+1+1xx+1+1x=limx0sinx(x+1+1x)(x+1)(1x)=limx0sinx(x+1+1x)x+11+x=12limx0sinxxlimx0(x+1+1x)=1212=1

  • Option (a) 2 is incorrect because the limit calculation shows that the final result is 1, not 2. The steps involve simplifying the expression and using the limit properties, which do not lead to the value 2.

  • Option (b) 0 is incorrect because the limit calculation shows that the final result is 1, not 0. The expression simplifies in such a way that the numerator and denominator do not cancel out to zero.

  • Option (d) -1 is incorrect because the limit calculation shows that the final result is 1, not -1. The steps involve rationalizing the denominator and using the limit properties, which do not lead to a negative value.

61. limxπ/4sec2x2tanx1 is

(a) 3

(b) 1

(c) 0

(d) 2

Show Answer

Solution

(d) Given,

limxπ/4sec2x2tanx1=limxπ/41+tan2x2tanx1=limxπ/4tan2x1tanx1=limxπ/4(tanx+1)(tanx1)(tanx1)=limxπ/4(tanx+1)=2

  • Option (a) 3: This option is incorrect because when evaluating the limit, the expression simplifies to (\lim_{x \rightarrow \pi / 4} (\tan x + 1)). Since (\tan(\pi / 4) = 1), the limit evaluates to (1 + 1 = 2), not 3.

  • Option (b) 1: This option is incorrect because the simplified expression (\lim_{x \rightarrow \pi / 4} (\tan x + 1)) evaluates to (2) when (\tan(\pi / 4) = 1). Therefore, the limit is not 1.

  • Option (c) 0: This option is incorrect because the limit (\lim_{x \rightarrow \pi / 4} (\tan x + 1)) evaluates to (2) when (\tan(\pi / 4) = 1). Hence, the limit is not 0.

62. limx1(x1)(2x3)2x2+x3 is equal to

(a) 110

(b) 110

(c) 1

(d) None of these

Show Answer

Solution

(b) Given, limx1(x1)(2x3)2x2+x3=limx1(x1)(2x3)(2x+3)(x1)

=limx1(x1)(2x3)(2x+3)(x1)(x+1)=limx12x3(2x+3)(x+1)=15×2=110

  • Option (a) 110 is incorrect because the correct limit calculation results in a negative value, specifically 110, not a positive value.

  • Option (c) 1 is incorrect because the correct limit calculation does not simplify to 1. The numerator and denominator do not cancel out in a way that would result in the limit being 1.

  • Option (d) None of these is incorrect because the correct answer is indeed one of the provided options, specifically option (b) 110.

63. If f(x)={sin[x][x],[x]0, where [] denotes the greatest integer 0,[x]=0

function, then limx0f(x) is equal to

(a) 1

(b) 0

(c) -1

(d) Does not exist

Show Answer

Solution

(d) Given,

f(x)= {sin[x][x],[x]00,[x]=0

LHL=limx0f(x)

=limx0sin[x][x]=limh0sin[0h][0h]=limh0sin[h][h]=1RHL=limx0+f(x)=limx0+sin[x][x]=limx0+sin[0+h][0+h]=limh0sin[h][h]=1

LHLRHL

So, limit does not exist.

  • Option (a) 1: This option is incorrect because the left-hand limit (LHL) and the right-hand limit (RHL) are not equal. The LHL is -1 and the RHL is 1, so the limit does not exist and cannot be 1.

  • Option (b) 0: This option is incorrect because neither the left-hand limit (LHL) nor the right-hand limit (RHL) is 0. The LHL is -1 and the RHL is 1, so the limit does not exist and cannot be 0.

  • Option (c) -1: This option is incorrect because the left-hand limit (LHL) is -1, but the right-hand limit (RHL) is 1. Since the LHL and RHL are not equal, the limit does not exist and cannot be -1.

64. limx0|sinx|x is equal to

(a) 1

(b) =1

(c) Does not exist

(d) None of these

Show Answer

Solution

(c) Given,

 limit =limx0|sinx|xLHL=limx0sinxx=limx0sinxx=1RHL=limx0+sinxx=1

LHLRHL

So, limit does not exist.

  • Option (a) is incorrect because the left-hand limit (LHL) and the right-hand limit (RHL) are not equal. For the limit to exist and be equal to 1, both LHL and RHL must be equal to 1, but in this case, LHL is -1 and RHL is 1.

  • Option (b) is incorrect because the limit is not equal to -1. The right-hand limit (RHL) is 1, not -1. For the limit to be -1, both LHL and RHL must be equal to -1, but they are not.

  • Option (d) is incorrect because the correct answer is provided in option (c), which states that the limit does not exist due to the inequality of LHL and RHL.

65. If f(x)={x21,0<x<22x+3,2x<33 then the quadratic equation whose roots are limx2f(x) and limf(x)x2+ is

(a) x26x+9=0

(b) x27x+8=0

(c) x214x+49=0

(d) x210x+21=0

Show Answer

Solution

(d) Given,

f(x)={x21,0<x<22x+3,2x<3

limx2f(x)=limx2(x21)=limh0[(2h)21]=limh0(4+h24h1)=limh0(h24h+3)=3

and limx2+f(x)=limx2+(2x+3)

=limh0[2(2+h)+3]=limh0(4+2h+3)=7

So, the quadratic equation whose roots are 3 and 7 is x2(3+7)x+3×7=0 i.e., x210x+21=0.

  • Option (a) (x^{2}-6x+9=0):

    • The roots of this quadratic equation are 3 and 3 (since ((x-3)^2 = 0)).
    • However, the limits (\lim_{x \rightarrow 2^{-}} f(x)) and (\lim_{x \rightarrow 2^{+}} f(x)) are 3 and 7, respectively. Therefore, the roots should be 3 and 7, not 3 and 3.
  • Option (b) (x^{2}-7x+8=0):

    • The roots of this quadratic equation are 1 and 7 (since ((x-1)(x-7) = 0)).
    • The limits (\lim_{x \rightarrow 2^{-}} f(x)) and (\lim_{x \rightarrow 2^{+}} f(x)) are 3 and 7, respectively. Therefore, the roots should be 3 and 7, not 1 and 7.
  • Option (c) (x^{2}-14x+49=0):

    • The roots of this quadratic equation are 7 and 7 (since ((x-7)^2 = 0)).
    • The limits (\lim_{x \rightarrow 2^{-}} f(x)) and (\lim_{x \rightarrow 2^{+}} f(x)) are 3 and 7, respectively. Therefore, the roots should be 3 and 7, not 7 and 7.

66. limx0tan2xx3xsinx is equal to

(a) 2

(b) 12

(c) 12

(d) 14

Show Answer

Solution

(b) Given,

limx0tan2xx3xsinx=limx0x[tan2xx1]x[3sinxx]=limx02×tan2x2x13limx0sinxx=2131=12

  • Option (a) 2: This option is incorrect because the limit calculation shows that the numerator approaches 1 and the denominator approaches 2, resulting in a limit of (\frac{1}{2}), not 2.

  • Option (c) (\frac{-1}{2}): This option is incorrect because the limit calculation shows that both the numerator and the denominator are positive as (x) approaches 0, resulting in a positive limit of (\frac{1}{2}), not a negative value.

  • Option (d) (\frac{1}{4}): This option is incorrect because the limit calculation shows that the numerator approaches 1 and the denominator approaches 2, resulting in a limit of (\frac{1}{2}), not (\frac{1}{4}).

67. If f(x)=x[x],R, then f12 is equal to

(a) 32

(b) 1

(c) 0

(d) -1

Show Answer

Solution

(b) Given, f(x)=x[x]

Now, first we have to check the differentiability of f(x) at x=12.

Lf12=LHD=limh0f(12h)f(12)h

=limn0(12h)(12h)12+12h=limh0121h012+0=1h

and Rf12=RHDlimh0f(12+h)f(12)h

=limh012+h12+h12+12h=limh012+h012+0h=1

LHL=RHD

f12=1

  • Option (a) 32 is incorrect because the derivative of f(x)=x[x] at x=12 is calculated to be 1, not 32. The function f(x) is a piecewise linear function with a slope of 1, so the derivative cannot be 32.

  • Option (c) 0 is incorrect because the derivative of f(x)=x[x] at x=12 is calculated to be 1, not 0. The function f(x) has a constant slope of 1 between integer points, so the derivative is not zero.

  • Option (d) -1 is incorrect because the derivative of f(x)=x[x] at x=12 is calculated to be 1, not -1. The function f(x) has a positive slope of 1, so the derivative cannot be negative.

68. If y=x+1x, then dydx at x=1 is equal to

(a) 1

(b) 12

(c) 12

(d) 0

Show Answer

Solution

(d) Given,

 Now, dydx=1212=0

y=x+1x

  • Option (a) 1: This is incorrect because the derivative of ( y = \sqrt{x} + \frac{1}{\sqrt{x}} ) is not equal to 1 at ( x = 1 ). The correct derivative calculation shows that the derivative at ( x = 1 ) is 0.

  • Option (b) (\frac{1}{2}): This is incorrect because the derivative of ( y = \sqrt{x} + \frac{1}{\sqrt{x}} ) at ( x = 1 ) does not yield (\frac{1}{2}). The correct derivative calculation shows that the derivative at ( x = 1 ) is 0.

  • Option (c) (\frac{1}{\sqrt{2}}): This is incorrect because the derivative of ( y = \sqrt{x} + \frac{1}{\sqrt{x}} ) at ( x = 1 ) does not yield (\frac{1}{\sqrt{2}}). The correct derivative calculation shows that the derivative at ( x = 1 ) is 0.

69. If f(x)=x42x, then f(1) is equal to

(a) 54

(b) 45

(c) 1

(d) 0

Show Answer

Solution

(a) Given,

f(x)5=x42x

 Now, f(x)=2x(x4)212x4x=2x(x4)4x3/2=2xx+44x3/2=x+44x3/2f(1)=1+44×(1)3/2=54

  • Option (b) 45: This option is incorrect because the correct derivative calculation yields 54, not 45. The numerator in the final expression for f(1) is 5, and the denominator is 4, leading to 54.

  • Option (c) 1: This option is incorrect because the correct derivative calculation does not simplify to 1. The final expression for f(1) is 54, not 1.

  • Option (d) 0: This option is incorrect because the derivative f(1) is not zero. The correct calculation shows that f(1)=54, indicating a non-zero value.

70. If y=1+1x211x2, then dydx is equal to

(a) 4x(x21)2

(b) 4xx21

(c) 1x24x

(d) 4xx21

Show Answer

Solution

(a) Given,

y=1+1x211x2y=x2+1x21dydx=(x21)2x(x2+1)(2x(x21)2dydx=2x(x21x21)(x21)2=2x(2)(x21)2=4x(x21)2

dydx=(x21)2x(x2+1)(2x)(x21)2 [by quotient rule] 

  • Option (b) 4xx21 is incorrect because the denominator should be (x21)2, not x21. The correct differentiation results in a squared term in the denominator.

  • Option (c) 1x24x is incorrect because the numerator and denominator do not match the result of the differentiation. The correct differentiation results in a numerator of 4x and a denominator of (x21)2.

  • Option (d) 4xx21 is incorrect because the sign of the numerator is wrong and the denominator should be squared. The correct differentiation results in a negative numerator and a squared term in the denominator.

71. If y=sinx+cosxsinxcosx, then dydx at x=0 is equal to

(a) -2

(b) 0

(c) 12

(d) Does not exist

Show Answer

Solution

(a) Given, y=sinx+cosxsinxcosx

dydx=(sinxcosx)(cosxsinx)(sinx+cosx)(cosx+sinx)(sinxcosx)2 [by quotient rule] =(sinxcosx)2(sinx+cosx)2(sinxcosx)2=[(sinxcosx)2+(sinx+cosx)2](sinxcosx)2=[sin2x+cos2x2sinxcosx+sin2x+cos2x+2sinxcosx](sinxcosx)2=2(sinxcosx)2dydx=2

  • Option (b) 0: This option is incorrect because the derivative (\frac{d y}{d x}) at (x=0) is calculated to be (-2), not 0. The detailed differentiation process shows that the result is (-2), and there is no step in the calculation that would yield 0.

  • Option (c) (\frac{1}{2}): This option is incorrect because the derivative (\frac{d y}{d x}) at (x=0) is (-2), not (\frac{1}{2}). The differentiation process clearly shows that the numerator simplifies to (-2), and the denominator does not affect this result to make it (\frac{1}{2}).

  • Option (d) Does not exist: This option is incorrect because the derivative (\frac{d y}{d x}) at (x=0) does exist and is calculated to be (-2). The differentiation process does not encounter any undefined expressions or discontinuities at (x=0).

72. If y=sin(x+9)cosx, then dydx at x=0 is equal to

(a) cos9

(b) sin9

(c) 0

(d) 1

Show Answer

Solution

(a) Given, y=sin(x+9)cosx

dydx=cosxcos(x+9)sin(x+9)(sinx)(cosx)2 [by quotient rule] =cosxcos(x+9)+sinxsin(x+9)cos2xdydxx=0=cos91=cos9

  • Option (b) sin9: This option is incorrect because the derivative of the given function at ( x = 0 ) results in ( \cos 9 ), not ( \sin 9 ). The calculation involves the cosine and sine functions evaluated at specific points, leading to the final result of ( \cos 9 ).

  • Option (c) 0: This option is incorrect because the derivative of the given function at ( x = 0 ) does not simplify to zero. The correct evaluation of the derivative at ( x = 0 ) yields ( \cos 9 ), which is generally not zero unless ( 9 ) is an odd multiple of ( \frac{\pi}{2} ), which it is not in this context.

  • Option (d) 1: This option is incorrect because the derivative of the given function at ( x = 0 ) results in ( \cos 9 ), not 1. The value of ( \cos 9 ) is not equal to 1 unless ( 9 ) is an even multiple of ( \pi ), which it is not in this context.

73. If f(x)=1+x+x22++x100100, then f(1) is equal to

(a) 1100

(b) 100

(c) 0

(d) Does not exist

Show Answer

Solution

(b) Given,

f(x)=1+x+x22++x100100

f(x)=0+1+2×x2++100x99100f(x)=1+x+x2++x99f(1)=1+1+1++1 (100 times) =100

  • Option (a) 1100: This option is incorrect because the derivative of the given function at ( x = 1 ) results in a sum of 100 terms, each equal to 1, which sums to 100, not (\frac{1}{100}).

  • Option (c) 0: This option is incorrect because the derivative of the given function at ( x = 1 ) is a sum of 100 terms, each equal to 1, which sums to 100, not 0.

  • Option (d) Does not exist: This option is incorrect because the function ( f(x) ) is a polynomial, and the derivative of a polynomial always exists. Therefore, ( f’(1) ) exists and is equal to 100.

74. If f(x)=xnanxa for some constant a, then f(a) is equal to

(a) 1

(b) 0

(c) 12

(d) Does not exist

Show Answer

Solution(d) Given,

f(x)=xnanxa

f(x)=(xa)nxn1(xnan)(1)(xa)2 [by quotient rule] f(x)=nxn1(xa)xn+an(xa)2 Now, f(a)=nan1(0)an+an(xa)2f(a)=00

So, f(a) does not exist,

Since, f(x) is not defined at x=a.

Hence, f(x) at x=a does not exist.

  • Option (a) 1: This is incorrect because the derivative ( f’(a) ) does not simplify to 1. The expression for ( f’(x) ) at ( x = a ) results in an indeterminate form ( \frac{0}{0} ), which means the derivative does not exist at that point.

  • Option (b) 0: This is incorrect because the derivative ( f’(a) ) does not simplify to 0. The expression for ( f’(x) ) at ( x = a ) results in an indeterminate form ( \frac{0}{0} ), which means the derivative does not exist at that point.

  • Option (c) ( \frac{1}{2} ): This is incorrect because the derivative ( f’(a) ) does not simplify to ( \frac{1}{2} ). The expression for ( f’(x) ) at ( x = a ) results in an indeterminate form ( \frac{0}{0} ), which means the derivative does not exist at that point.

75. If f(x)=x100+x99++x+1, then f(1) is equal to

(a) 5050

(b) 5049

(c) 5051

(d) 50051

Show Answer

Solution

(a) Given,

f(x)=x100+x99++x+1

f(x)=100x99+99x98++1+0=100x99+99x98++1 Now, f(1)=100+99++1=1002[2×100+(1001)(1)]=50[20099]=50×101=5050

  • Option (b) 5049: This option is incorrect because the sum of the series (100 + 99 + \ldots + 1) is calculated using the formula for the sum of the first (n) natural numbers, which is (\frac{n(n+1)}{2}). For (n = 100), the sum is (\frac{100 \times 101}{2} = 5050), not 5049.

  • Option (c) 5051: This option is incorrect because the sum of the series (100 + 99 + \ldots + 1) is exactly 5050, as derived from the formula (\frac{n(n+1)}{2}). Adding 1 to this sum to get 5051 is incorrect.

  • Option (d) 50051: This option is incorrect because it is significantly larger than the correct sum of the series (100 + 99 + \ldots + 1). The correct sum is 5050, and 50051 does not follow from any reasonable miscalculation of the series sum.

76. If f(x)=1x+x2x3+x99+x100, then f(1) is equal to

(a) 150

(b) -50

(c) -150

(d) 50

Show Answer

Solution

(d) Given, f(x)=1x+x2x3+x99+x100

f(x)=01+2x3x2+99x98+100x99=1+2x3x2+99x98+100x99f(1)=1+23+99+100=(13599)+(2+4++100)Sn=n22a+(n1)d=502[2×1+(501)2]+502[2×2+(501)2]=25[2+49×2]+25[4+49×2]=25(2+98)+25(4+98)=25×100+25×102=2500+2550=50

  • Option (a) 150: This option is incorrect because the sum of the series of derivatives evaluated at ( x = 1 ) does not result in 150. The correct calculation shows that the sum is 50, not 150.

  • Option (b) -50: This option is incorrect because the sum of the series of derivatives evaluated at ( x = 1 ) does not result in -50. The correct calculation shows that the sum is 50, not -50.

  • Option (c) -150: This option is incorrect because the sum of the series of derivatives evaluated at ( x = 1 ) does not result in -150. The correct calculation shows that the sum is 50, not -150.

Fillers

77. If f(x)=tanxxπ, then limxπf(x)= ……

Show Answer

Solution

Given, f(x)=tanxxπ=limxπtanxxπ=limπx0tan(πx)(πx)[limx0tanxx=1]

=1

78. limx0sinmxcotx3=2, then m= ……

Show Answer

Solution

Given, limx0sinmxcotx3=2

limx0sinmxmxmx1tanx3=2limx0sinmxmxmxx3tanx31x3=2limx0sinmxmxlimx0x3tanx3limx0mxx3=23x=2m=233

79. If y=1+x1!+x22!+x33!+, then dydx= ……

Show Answer

Solution

Given,

y=1+x1!+x22!+x33!+x44!+dydx=0+1+2x2+3x26+4x34!=1+x+x22+x36+=1+x1!+x22!+x33!+=y

80. limx3+x[x]= ……

Show Answer

Solution

Given,

limx3+x[x]=limh0(3+h)[3+h]=limh0(3+h)3=1