Chapter 09 Circles
Multiple Choice Questions (MCQs)
1 If radii of two concentric circles are $4 cm$ and $5 cm$, then length of each chord of one circle which is tangent to the other circle, is
(a) $3 cm$ $\quad$ (b) $6 cm$ $\quad$ (c) $9 cm$ $\quad$ (d) $1 cm$
Solution (b) Let $O$ be the centre of two concentric circles $C_1$ and $C_2$, whose radii are $r_1=4 cm$ and $r_2=5 cm$. Now, we draw a chord $A C$ of circle $C_2$, which touches the circle $C_1$ at $B$. Also, join $O B$, which is perpendicular to $A C$. [Tangent at any point of circle is perpendicular to radius throughly the point of contact] Now, in right angled $\triangle O B C$, by using Pythagoras theorem, $
O C^{2}=B C^{2}+B O^{2}
$ $\Rightarrow \quad 5^{2}=B C^{2}+4^{2}$ $[\because.$ hypotenuse $.^{2}=(\text{ base })^{2}+(\text{ perpendicular })^{2}]$ $\Rightarrow \quad B C^{2}=25-16=9 \Rightarrow B C=3 cm$ $\therefore$ Length of chord $A C=2 B C=2 \times 3=6 cm$Show Answer
(a) $62.5^{\circ}$ $\quad$ (b) $45^{\circ}$ $\quad$ (c) $35^{\circ}$ $\quad$ (d) $55^{\circ}$
Show Answer
Solution
(d) We know that, the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
i.e.,
$ \begin{aligned} \angle A O B+\angle C O D = 180^{\circ} \\ \angle C O D = 180^{\circ}-\angle A O B \\ & =180^{\circ}-125^{\circ}=55^{\circ} \end{aligned} $
$ \Rightarrow \quad \angle C O D=180^{\circ}-\angle A O B $
3 In figure, $A B$ is a chord of the circle and $A O C$ is its diameter such that $\angle A C B=50^{\circ}$. If $A T$ is the tangent to the circle at the point $A$, then $\angle B A T$ is equal to
(a) $45^{\circ}$ $\quad$ (b) $60^{\circ}$ $\quad$ (c) $50^{\circ}$ $\quad$ (d) $55^{\circ}$
Solution (c) In figure, $A O C$ is a diameter of the circle. We know that, diameter subtends an angle $90^{\circ}$ at the circle. So, $
\begin{aligned}
\angle A B C = 90^{\circ} \\
\angle A+\angle B+\angle C = 180^{\circ}
\end{aligned}
$ In $\triangle A C B$, $\Rightarrow$[since, sum of all angles of a triangle is $180^{\circ}$ ] $\Rightarrow$
$\angle A+90^{\circ}+50^{\circ}=180^{\circ}$ $\Rightarrow$
$
\angle A+140=180
$ $
\begin{aligned}
\angle A=180^{\circ}-140^{\circ} = 40^{\circ} \\
\angle A \text{ or } \angle O A B = 40^{\circ}
\end{aligned}
$ Now, $A T$ is the tangent to the circle at point $A$. So, $O A$ is perpendicular to $A T$. $
\begin{aligned}
& \therefore \quad \angle O A T=90^{\circ} \quad \text{ [from figure] } \\
& \Rightarrow \quad \angle O A B+\angle B A T=90^{\circ} \\
& \text{ On putting } \angle O A B=40^{\circ} \text{, we get } \\
& \Rightarrow \quad \angle B A T=90^{\circ}-40^{\circ}=50^{\circ}
\end{aligned}
$Show Answer
(a) $60 cm^{2}$ $\quad$ (b) $65 cm^{2}$ $\quad$ (c) $30 cm^{2}$ $\quad$ (d) $32.5 cm^{2}$
Solution (a) Firstly, draw a circle of radius $5 cm$ having centre $O . P$ is a point at a distance of $13 cm$ from $O$. A pair of tangents $P Q$ and $P R$ are drawn. Thus, quadrilateral $P Q O R$ is formed. $
\begin{matrix}
\because & O Q & \perp Q P & \text{ [since, } A P \text{ is a tangent line] } \\
\text{ In right angled } \triangle P Q O, & O P^{2} = O Q^{2}+Q P^{2} \\
\Rightarrow \quad & 13^{2} = 5^{2}+Q P^{2} \\
\Rightarrow \quad & Q P^{2} = 169-25=144 \\
\Rightarrow \quad & Q P = 12 cm \\
& & \\
\text{ Now, } \quad & = \dfrac{1}{2} \times 12 \times 5=30 cm^{2} \\
\therefore \quad & \text{ area of } \triangle O Q P = \dfrac{1}{2} \times Q P \times Q O \\
& &
\end{matrix}
$Show Answer
(a) $4 cm$ $\quad$ (b) $5 cm$ $\quad$ (c) $6 cm$ $\quad$ (d) $8 cm$
Solution (d) First, draw a circle of radius $5 cm$ having centre $O$. A tangent $X Y$ is drawn at point $A$. A chord $C D$ is drawn which is parallel to $X Y$ and at a distance of $8 cm$ from $A$. Now, $\angle O A Y=90^{\circ}$ [Tangent and any point of a circle is perpendicular to the radius through the point of contact] $\Rightarrow$
$
\triangle O A Y+\triangle O E D=180^{\circ}
$ Also, $
\triangle O E D=180^{\circ}
$ Now, in right angled $\triangle O E C$, $
A E=8 cm . \text{ Join } O C
$ $\Rightarrow$
$
O C^{2}=O E^{2}+E C^{2}
$ $
\begin{matrix}
E C^{2} = O C^{2}-O E^{2} & {[\text{ by Pythagoras theorem }]} \\
& =5^{2}-3^{2} &
\end{matrix}
$ $[\because O C=$ radius $=5 cm, O E=A E-A O=8-5=3 cm]$ $=25-9=16$ $\Rightarrow$
$E C=4 cm$ Hence, length of chord $C D=2 C E=2 \times 4=8 cm$ [since, perpendicular from centre to the chord bisects the chord]Show Answer
(a) $4 cm$ $\quad$ (b) $2 cm$ $\quad$ (c) $2 \sqrt{3} cm$ $\quad$ (d) $4 \sqrt{3} cm$
Solution (c) Join $O A$. We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact. $\therefore$ $\angle O A T$ $=90^{\circ}$ In $\triangle O A T$, $\cos 30^{\circ}$ $=\dfrac{A T}{O T}$ $\Rightarrow$ $\dfrac{\sqrt{3}}{2}$ $=\dfrac{A T}{4}$ $\Rightarrow$ $A T$ $=2 \sqrt{3} cm$Show Answer
(a) $100^{\circ}$ $\quad$ (b) $80^{\circ}$ $\quad$ (c) $90^{\circ}$ $\quad$ (d) $75^{\circ}$
Solution (a) Given, $\angle Q P R=50^{\circ}$ We know that, the tangent at any point of a circle is perpendicular to the radius through the point of contact. $\therefore$
$\angle O P R=90^{\circ}$ $\Rightarrow$
$\angle O P Q+\angle Q P R=90^{\circ}$ [from figure] $\Rightarrow$
$\angle O P Q=90^{\circ}-50^{\circ}=40^{\circ}$ $[\because \angle Q P R=50^{\circ}]$ Now, $O P=O Q=$ Radius of circle $
\therefore \quad \angle O Q P=\angle O P Q=40^{\circ}
$ In $\triangle O P Q$ [since, angles opposite to equal sides are equal] [since, sum of angles of a triangle $=180^{\circ}$ ] $\Rightarrow$
$
\angle O+\angle P+\angle Q=180^{\circ}
$ $.+40^{\circ}) \quad[\because \angle P=40^{\circ}=\angle Q]$ $
\begin{aligned}
\angle O = 180^{\circ}-(40^{\circ}+40^{\circ}) \\
& =180^{\circ}-80^{\circ}=100^{\circ}
\end{aligned}
$Show Answer
(a) $25^{\circ}$ $\quad$ (b) $30^{\circ}$ $\quad$ (c) $40^{\circ}$ $\quad$ (d) $50^{\circ}$
Solution (a) Given, $P A$ and $P B$ are tangent lines. [since, tangent at any point of a circle is perpendicular to the radius through the point of contact] $
\begin{matrix}
\therefore & \angle P A O = 90^{\circ} \\
\Rightarrow & \angle P A B+\angle B A O = 90^{\circ} \\
\Rightarrow & 65^{\circ}+\angle B A O = 90^{\circ} \\
\Rightarrow & \angle B A O = 90^{\circ}-65^{\circ}=25^{\circ}
\end{matrix}
$Show Answer
(a) $\dfrac{3}{2} \sqrt{3} cm$ $\quad$ (b) $6 cm$ $\quad$ (c) $3 cm$ $\quad$ (d) $3 \sqrt{3} cm$
Solution (d) Let $P$ be an external point and a pair of tangents is drawn from point $P$ and angle between these two tangents is $60^{\circ}$. Join $O A$ and $O P$. Also, $O P$ is a bisector line of $\angle A P C$. $
\begin{matrix}
\therefore & \angle A P O=\angle C P O=30^{\circ} \\
\text{ Also, } & O A \perp A P
\end{matrix}
$ Tangent at any point of a circle is perpendicular to the radius through the point of contact. In right angled $\triangle O A P$, $
\begin{aligned}
\tan 30^{\circ} = \dfrac{O A}{A P}=\dfrac{3}{A P} \\
\dfrac{1}{\sqrt{3}} = \dfrac{3}{A P} \\
A P = 3 \sqrt{3} cm
\end{aligned}
$ $
\Rightarrow \quad \dfrac{1}{\sqrt{3}}=\dfrac{3}{A P}
$ $\Rightarrow$
Hence, the length of each tangent is $3 \sqrt{3} cm$.Show Answer
(a) $20^{\circ}$ $\quad$ (b) $40^{\circ}$ $\quad$ (c) $35^{\circ}$ $\quad$ (d) $45^{\circ}$
Show Answer
Solution
(b) Given, $A B | P R$
Very Short Answer Type Questions
1 If a chord $A B$ subtends an angle of $60^{\circ}$ at the centre of a circle, then angle between the tangents at $A$ and $B$ is also $60^{\circ}$.
Solution False Since a chord $A B$ subtends an angle of $60^{\circ}$ at the centre of a circle. i.e., $\angle A O B=60^{\circ}$ As $\quad O A=O B=$ Radius of the circle $\therefore \quad \angle O A B=\angle O B A=60^{\circ}$ The tangent at points $A$ and $B$ is drawn, which intersect at $C$. We know, $O A \perp A C$ and $O B \perp B C$. $\therefore \quad \angle O A C=90^{\circ}, \angle O B C=90^{\circ}$ $\Rightarrow \quad \angle O A B+\angle B A C=90^{\circ}$ and $\quad \angle O B A+\angle A B C=90^{\circ}$ $\Rightarrow \quad \angle B A C=90^{\circ}-60^{\circ}=30^{\circ}$ and $\quad \angle A B C=90^{\circ}-60^{\circ}=30^{\circ}$ In $\triangle A B C, \quad \angle B A C+\angle C B A+\angle A C B=180^{\circ}$ $\Rightarrow \quad \angle A C B=180^{\circ}-(30^{\circ}+30^{\circ})=120^{\circ}$Show Answer
Solution False Because the length of tangent from an external point $P$ on a circle may or may not be greater than the radius of the circle.Show Answer
Solution True $P T$ is a tangent drawn from external point $P$. Join $O T$. $\because \quad O T \perp P T$ So, OPT is a right angled triangle formed. In right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.
$\therefore$
or
$O P>P T$
$P T<O P$Show Answer
Solution True This may be possible only when both tangent lines coincide or are parallel to each other.Show Answer
Solution True From point $P$, two tangents are drawn. Given, $O T=a$ Also, line $O P$ bisects the $\angle R P T$. $\therefore$
Also, In right angled $\triangle O T P$, $\angle T P O=\angle R P O=45^{\circ}$ $O T \perp P T$ $\Rightarrow \quad \dfrac{1}{\sqrt{2}}=\dfrac{a}{O P} \Rightarrow O P=a \sqrt{2}$Show Answer
Solution False From point $P$, two tangents are drawn. Given, $
O T=a
$ Also, line $O P$ bisects the $\angle R P T$. $
\begin{matrix}
\therefore & \angle T P O=\angle R P O=30^{\circ} \\
\text{ Also, } & O T \perp P T
\end{matrix}
$ In right angled $\triangle O T P$, $
\begin{matrix}& \sin 30^{\circ} = \dfrac{O T}{O P} \\
\Rightarrow & \dfrac{1}{2} = \dfrac{a}{O P} \\
\Rightarrow & O P = 2 a
\end{matrix}
$Show Answer
Solution True Let $E A F$ be tangent to the circumcircle of $\triangle A B C$. To prove Here, $\Rightarrow$ $E A F | B C$
$
\angle E A B=\angle A B C
$ $
A B=A C
$ $
\angle A B C=\angle A C B
$ [angle between tangent and is chord equal to angle made by chord in the alternate segment]
$\therefore$ Also, $\quad \angle E A B=\angle B C A$ From Eqs. (i) and (ii), we get $\Rightarrow \quad E A F | B C$Show Answer
Solution False Given that $P Q$ is any line segment and $S_1, S_2, S_3, S_4, \ldots$ circles are touch a line segment $P Q$ at a point $A$. Let the centres of the circles $S_1, S_2, S_3, S_4, \ldots$ be $C_1, C_2, C_3, C_4, \ldots$ respectively. To prove Centres of these circles lie on the perpendicular bisector of $P Q$. Now, joining each centre of the circles to the point $A$ on the line segment $P Q$ by a line segment i.e., $C_1 A, C_2 A, C_3 A, C_4 A$,… so on. We know that, if we draw a line from the centre of a circle to its tangent line, then the line is always perpendicular to the tangent line. But it not bisect the line segment $P Q$. So, Since, each circle is passing through a point $A$. Therefore, all the line segments $C_1 A, C_2 A, C_3 A, C_4 A, \ldots$, so on are coincident. So, centre of each circle lies on the perpendicular line of $P Q$ but they do not lie on the perpendicular bisector of $P Q$. Hence, a number of circles touch a given line segment $P Q$ at a point $A$, then their centres lieShow Answer
$C_1 A \perp P Q$
$[.$ for $.S_1]$
$C_2 A \perp P Q$
$[.$ for $.S_2]$
$C_3 A \perp P Q$
$[.$ for $.S_3]$
$C_4 A \perp P Q$
$[.$ for $.S_4]$
$\ldots$ so on.
Solution True We draw two circle with centres $C_1$ and $C_2$ passing through the end points $P$ and $Q$ of a line segment $P Q$. We know, that perpendicular bisectors of a chord of a circle always passes through the centre of circle. Thus, perpendicular bisector of $P Q$ passes through $C_1$ and $C_2$. Similarly, all the circle passing through $P Q$ will have their centre on perpendiculars bisectors of $P Q$.Show Answer
Show Answer
Solution
True
To Prove, $B C=B D$
Join $B C$ and $O C$.
Given,
$\Rightarrow$ $\angle B A C=30^{\circ}$
$\angle B C D=30^{\circ}$
[angle between tangent and chord is equal to angle made by chord in the alternate
$ \begin{aligned} & \therefore \quad \angle A C D=\angle A C O+\angle O C D=30^{\circ}+90^{\circ}=120^{\circ} \\ & {[\because O C \perp C D \text{ and } O A=O C=\text{ radius } \Rightarrow \angle O A C=\angle O C A=30^{\circ}]} \\ & \text{ In } \triangle A C D \\ & \angle C A D+\angle A C D+\angle A D C=180^{\circ} \\ & \Rightarrow \quad 30^{\circ}+120^{\circ}+\angle A D C=180^{\circ} \\ & \Rightarrow \quad \angle A D C=180^{\circ}-(30^{\circ}+120^{\circ})=30^{\circ} \\ & \text{ Now, in } \triangle B C D \\ & \angle B C D=\angle B D C=30^{\circ} \\ & B C=B D \end{aligned} $
[since, sides opposite to equal angles are equal]
Short Answer Type Questions
1 Out of the two concentric circles, the radius of the outer circle is $5 cm$ and the chord $AC$ of length $8 cm$ is a tangent to the inner circle. Find the radius of the inner circle.
Solution Let $C_1$ and $C_2$ be the two circles having same centre $O$. $A C$ is a chord which touches the $C_1$ at point $D$.Show Answer
Solution Given Two tangents $P Q$ and $P R$ are drawn from an external point to a circle with centre $O$. To prove $Q O R P$ is a cyclic quadrilateral. proof Since, $P R$ and $P Q$ are tangents. So, $O R \perp P R$ and $O Q \perp P Q$ [since, if we drawn a line from centre of a circle to its tangent line. Then, the line always $
\begin{matrix}
\therefore & \angle O R P=\angle O Q P=90^{\circ} \\
\text{ Hence, } & \angle O R P+\angle O Q P=180^{\circ}
\end{matrix}
$ perpendicular to the tangent line] So, QOPR is cyclic quadrilateral. [If sum of opposite angles is quadrilateral in $180^{\circ}$, then the quadrilateral is cyclic] Hence proved.Show Answer
Solution Given Two tangents $P Q$ and $P R$ are drawn from an external point $P$ to a circle with centre $O$. To prove Centre of a circle touching two intersecting lines lies on the angle bisector of the lines. In $\angle R P Q$. Construction Join $O R$, and $O Q$. In $\triangle P O R$ and $\triangle P O Q$ $
\angle P R O=\angle P Q O=90^{\circ}
$ [tangent at any point of a circle is perpendicular to the radius through the point of contact] $
O R=O Q
$ [radii of some circle] Since, $O P$ is common.
$\therefore$
$\triangle P R O \cong \triangle P Q O$
Hence,
$\angle R P O=\angle Q P O$ [RHS] [by $CPCT]$ Thus, $O$ lies on angle bisecter of $P R$ and $P Q$. Hence proved.Show Answer
Solution Two tangents $B D$ and $B C$ are drawn from an external point $B$. To prove Given, Join $O C, O D$ and $B O$. Since, $B C$ and $B D$ are tangents. $\therefore \quad O C \perp B C$ and $O D \perp B D$ We know, $O B$ is a angle bisector of $\angle D B C$. $\therefore \quad \angle O B C=\angle D B O=60^{\circ}$ In right angled $\triangle O B C$, $\cos 60^{\circ}=\dfrac{B C}{O B}$ $\Rightarrow \quad \dfrac{1}{2}=\dfrac{B C}{O B}$ $\Rightarrow \quad O B=2 B C$ Also, $\quad B C=B D$ [tangent drawn from internal point to circle are equal] $\therefore \quad O B=B C+B C$ $\Rightarrow \quad O B=B C+B D$Show Answer
Prove that $A B=C D$
Solution Given $A B$ and $C D$ are common tangent to two circles of unequal radius To prove $A B=C D$ Construction Produce $A B$ and $C D$, to intersect at $P$. Proof $\quad P A=P C$ [the length of tangents drawn from an internal point to a circle are equal] Also, $
P B=P D
$ [the lengths of tangents drawn from an internal point to a circle are equal] $
\therefore \quad P A-P B=P C-P D
$ $
A B=C D
$ Hence proved.Show Answer
Solution Given $A B$ and $C D$ are tangents to two circles of equal radii. To prove $A B=C D$ Construction Join $O A, O C, O^{\prime} B$ and $O^{\prime} D$ Proof Now, $\angle O A B=90^{\circ}$ [tangent at any point of a circle is perpendicular to radius through the point of contact] Thus, $A C$ is a straight line. Also, $\therefore$ Similarly, $B D$ is a straight line and Also, In quadrilateral $A B C D$, and $A B C D$ is a rectangle Hence, $
\begin{gathered}
\angle O A B+\angle O C D=180^{\circ} \\
A B | C D
\end{gathered}
$ $
\begin{aligned}
\angle O^{\prime} B A = \angle O^{\prime} D C=90^{\circ} \\
A C = B D \quad \text{ [radii of two circles are equal] } \\
\angle A = \angle B=\angle C=\angle D=90^{\circ} \\
A C = B D
\end{aligned}
$ $A B=C D \quad$ [opposite sides of rectangle are equal]Show Answer
Solution Given Common tangents $A B$ and $C D$ to two circles intersecting at $E$. To prove $A$ $B=C D$ Proof $$
\begin{equation*}
E A=E C \tag{i}
\end{equation*}
$$ [the lengths of tangents drawn from an internal point to a circle are equal] $$
\begin{equation*}
E B=E D \tag{ii}
\end{equation*}
$$ On adding Eqs. (i) and (ii), we get $
\begin{aligned}
E A+E B = E C+E D \\
A B = C D
\end{aligned}
$ Hence proved.Show Answer
Solution Given Chord $P Q$ is parallel to tangent at $R$. To prove $R$ bisects the arc $P R Q$ $\angle 1=\angle 3$ [angle between tangent and chord is equal to angle made by chord in alternate segment] $
\begin{matrix}
\therefore & \angle 2=\angle 3 \\
\Rightarrow & P R=Q R \\
\Rightarrow & P R=Q R
\end{matrix}
$Show Answer
Solution To prove $\angle 1=\angle 2$, let $P Q$ be a chord of the circle. Tangents are drawn at the points $R$ and Q. Let $P$ be another point on the circle, then, join $P Q$ and $P R$. Since, at point $Q$, there is a tangent. $\therefore \quad \angle 2=\angle P \quad$ [angles in alternate segments are equal] Since, at point $R$, there is a tangent. $\therefore \quad \angle 1=\angle P \quad$ [angles in alternate segments are equal] $\therefore \quad \angle 1=\angle 2=\angle P$ Hence proved.Show Answer
Show Answer
Solution
Given, $A B$ is a diameter of the circle.
A tangent is drawn from point $A$. Draw a chord $C D$ parallel to the tangent MAN.
So, $C D$ is a chord of the circle and $O A$ is a radius of the circle.
$\angle M A O=90^{\circ}$
[tangent at any point of a circle is perpendicular to the radius through the point of contact] $\angle C E O=\angle M A O$ $\angle C E O=90^{\circ}$
[corresponding angles]
$\therefore$
Thus, $O E$ bisects $C D, \quad$ [perpendicular from centre of circle to chord bisects the chord] Similarly, the diameter $A B$ bisects all. Chords which are parallel to the tangent at the point $A$.
Long Answer Type Questions
1 If a hexagon $A B C D E F$ circumscribe a circle, prove that
$AB+CD+EF=BC+DE+FA$
Solution Given $A$ hexagon $A B C D E F$ circumscribe a circle. To prove $A B+C D+E F=B C+D E+F A$ Proof $A B+C D+E F=(A Q+Q B)+(C S+S D)+(E U+U F)$ $=A P+B R+C R+D T+E T+F P$ $=(A P+F P)+(B R+C R)+(D T+E T)$ $
\begin{aligned}
A B+C D+E F = A F+B C+D E \\
A Q = A P \\
Q B = B R \\
C S = C R \\
D S = D T \\
E U = E T
\end{aligned}
$ [tangents drawn from an external point to a circle are equal] Hence proved.Show Answer
Solution A circle is inscribed in the $\triangle A B C$, which touches the $B C, C A$ and $A B$. Given, $
B C=a, C A=b \text{ and } A B=c
$ By using the property, tangents are drawn from an external point to the circle are equal in length. $
\begin{aligned}
& \therefore \quad B D=B F=x \quad \text{ [say] } \\
& \text{ ond } \\
& \text{ Now, } \quad B C+C A+A B=a+b+c \\
& \Rightarrow \quad(B D+D C)+(C E+E A)+(A F+F B)=a+b+c \\
& \Rightarrow \quad(x+y)+(y+z)+(z+x)=a+b+c \\
& \Rightarrow \quad 2(x+y+z)=2 s \\
& \Rightarrow \quad s=x+y+z \\
& \Rightarrow \quad x=s-(y+z) \\
& \Rightarrow \quad B D=s-b \quad[\because b=A E+E C=z+y]
\end{aligned}
$Show Answer
Solution Two tangents $P A$ and $P B$ are drawn to a circle with centre $O$ from an external point $P$.Show Answer
Solution Since, $A C$ is a diameter line, so angle in semi-circle makes an angle $90^{\circ}$.
$\therefore$
In $\triangle A B C$,
$\angle A B C=90^{\circ}$
$\angle C A B+\angle A B C+\angle A C B=180^{\circ}$
[by property] $[\because.$ sum of all interior angles of any triangle is $.180^{\circ}]$ $\Rightarrow \quad \angle C A B+\angle A C B=180^{\circ}-90^{\circ}=90^{\circ}$ Since, diameter of a circle is perpendicular to the tangent. i.e. $\therefore$
$C A \perp A T$ $\angle C A T=90^{\circ}$ $\Rightarrow$
$\angle C A B+\angle B A T=90^{\circ}$ From Eqs. (i) and (ii), $
\begin{aligned}
\Rightarrow & \angle C A B+\angle A C B = \angle C A B+\angle B A T \\
\angle A C B = \angle B A T
\end{aligned}
$ Hence proved.Show Answer
Solution Here, two circles are of radii $O P=3 cm$ and $P O^{\prime}=4 cm$. These two circles intersect at $P$ and $Q$. Here, $O P$ and $P O^{\prime}$ are two tangents drawn at point $P$. $
\angle O P O^{\prime}=90^{\circ}
$ [tangent at any point of circle is perpendicular to radius through the point of contact] Join $O O^{\prime}$ and $P N$. In right angled $\triangle O P O^{\prime}$, $
\begin{aligned}
& (O O^{\prime})^{2}=(O P)^{2}+(P O^{\prime})^{2} \quad \text{ [by Pythagoras theorem] } \\
& \text{ i.e., } \quad(\text{ Hypotenuse })^{2}=(\text{ Base })^{2}+(\text{ Perpendicular })^{2} \\
& =(3)^{2}+(4)^{2}=25 \\
& \Rightarrow \quad O O^{\prime}=5 cm \\
& \text{ Also, } \quad P N \perp O O^{\prime}
\end{aligned}
$ $
(O P)^{2}=(O N)^{2}+(N P)^{2} \quad[\text{ by Pythagoras theorem }]
$ $$
\begin{equation*}
\Rightarrow \quad(N P)^{2}=3^{2}-x^{2}=9-x^{2} \tag{i}
\end{equation*}
$$ and in right angled $\triangle P N O^{\prime}$, $
\begin{aligned}
& (P O^{\prime})^{2}=(P N)^{2}+(N O^{\prime})^{2} \quad[\text{ by Pythagoras theorem }] \\
& \Rightarrow \quad(4)^{2}=(P N)^{2}+(5-x)^{2} \\
& \Rightarrow \quad(P N)^{2}=16-(5-x)^{2}
\end{aligned}
$ From Eqs. (i) and (ii), $
9-x^{2}=16-(5-x)^{2}
$ $\Rightarrow \quad 7+x^{2}-(25+x^{2}-10 x)=0$ $
\Rightarrow \quad 10 x=18
$ $
\therefore \quad x=1.8
$ Again, in right angled $\triangle O P N$, $
\begin{matrix}
\Rightarrow & 3^{2}=(1.8)^{2}+(N P)^{2} \\
\Rightarrow & (N P)^{2} = 9-3.24=5.76 \\
\therefore & (N P) = 2.4 \\
\therefore \text{ Length of common chord, } & P Q = 2 P N=2 \times 2.4=4.8 cm
\end{matrix}
$ [by Pythagoras theorem]Show Answer
Solution Let $O$ be the centre of the given circle. Suppose, the tangent at $P$ meets $B C$ at $Q$. Join $B P$. Proof [tangent at any point of circle is perpendicular to radius through the point of contact] $\therefore \ln \triangle A B C, \quad \begin{aligned} \angle 1+\angle 5 = 90^{\circ} \\ \angle 3 = \angle 1\end{aligned} \quad$ [angle sum property, $\angle A B C=90^{\circ}$ ] [angle between tangent and the chord equals angle made by the chord in alternate segment] $\therefore$ $\angle 3+\angle 5=90^{\circ}$ $\ldots$ (i) Also, $\angle A P B=90^{\circ}$ [angle in semi-circle] $\Rightarrow$ $\angle 3+\angle 4=90^{\circ}$ $[\angle A P B+\angle B P C=180^{\circ}.$, linear pair] From Eqs. (i) and (ii), we get $\Rightarrow$ $\angle 3+\angle 5=\angle 3+\angle 4$ $\Rightarrow$ $\angle 5=\angle 4$ Also, $P Q=Q C$ [sides opposite to equal angles are equal] $\Rightarrow$ $Q P=Q B$ $\Rightarrow$ $[$ tangents drawn from an internal point to a circle are equal] $Q B=Q C$Show Answer
Solution $P Q$ and $P R$ are two tangents drawn from an external point $P$. $\therefore \quad P Q=P R$ [the lengths of tangents drawn from an external point to a circle are equal] $\Rightarrow$
$\angle P Q R=\angle Q R P$ [angles opposite to equal sides are equal] Now, in $\triangle P Q R \quad \angle P Q R+\angle Q R P+\angle R P Q=180^{\circ}$ [sum of all interior angles of any triangle is $180^{\circ}$ ] $\Rightarrow \quad \angle P Q R+\angle P Q R+30^{\circ}=180^{\circ}$ $\Rightarrow \quad 2 \angle P Q R=180^{\circ}-30^{\circ}$ $\Rightarrow \quad \angle P Q R=\dfrac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$ Since, $\quad S R | Q P$ $\therefore \quad \angle S R Q=\angle R Q P=75^{\circ} \quad$ [alternate interior angles] Also, $\quad \angle P Q R=\angle Q S R=75^{\circ} \quad$ [by alternate segment theorem] In $\triangle Q R S, \quad \angle Q+\angle R+\angle S=180^{\circ}$ [sum of all interior angles of any triangle is $180^{\circ}$ ] $
\begin{matrix}
\Rightarrow & \angle Q = 180^{\circ}-(75^{\circ}+75^{\circ}) \\
& =30^{\circ} \\
\therefore & \angle R Q S = 30^{\circ}
\end{matrix}
$Show Answer
Solution A circle is drawn with centre $O$ and $A B$ is a diameter. $A C$ is a chord such that $\angle B A C=30^{\circ}$. Given $A B$ is $\alpha$ diameter and $A C$ is a chord of circle with certre $O, \angle B A C=30^{\circ}$. To prove $\ln \triangle A B C$, $
\begin{aligned}
& \angle A+\angle B+\angle C=180^{\circ} \\
& 30^{\circ}+\angle B+90^{\circ}=180^{\circ} \\
& \Rightarrow \\
& \text{ Also, } \\
& \Rightarrow \\
& \angle C B A+\angle C B D=180^{\circ} \\
& \angle C B D=180^{\circ}-60^{\circ}-120^{\circ} \\
& {[\because \angle C B A=60^{\circ}]} \\
& \Rightarrow \quad 120^{\circ}+\angle B D C+30^{\circ}=180^{\circ} \\
& \Rightarrow \quad \angle B D C=30^{\circ} \\
& \text{ From Eqs. (i) and (ii), } \\
& \angle B C D=\angle B D C \\
& B C=B D
\end{aligned}
$Show Answer
Solution Let mid-point of an $arc A M B$ be $M$ and $T M T^{\prime}$ be the tangent to the circle. Join $A B, A M$ and $M B$. Since, $
\begin{aligned}
arc A M = arc M B \\
\text{ Chord } A M = \text{ Chord } M B \\
A M = M B \\
\angle M A B = \angle M B A
\end{aligned}
$ $\Rightarrow$
In $\triangle A M B$, $\Rightarrow$
[equal sides corresponding to the equal angle] …(i) Since, $T M T^{\prime}$ is a tangent line.
$\therefore$
$\angle A M T=\angle M B A$
[angles in alternate segments are equal]
$=\angle M A B$
[from Eq. (i)] But $\angle A M T$ and $\angle M A B$ are alternate angles, which is possible only when $A B | T M T^{\prime}$ Hence, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc. Hence proved.Show Answer
Solution Joint $A O, O C$ and $O^{\prime} D, O^{\prime} B$. Now, in $\triangle E O^{\prime} D$ and $\triangle E O^{\prime} B$, $$
\begin{align*}
O^{\prime} D = O^{\prime} B \tag{radius}\\
O^{\prime} E = O^{\prime} E \tag{commonside}\\
E D = E B
\end{align*}
$$ [since, tangents drawn from an external point to the circle are equal in length] $
\begin{aligned}
& \therefore \quad \triangle E O^{\prime} D \cong \triangle E O^{\prime} B \quad \text{ [by SSS congruence rule] } \\
& \Rightarrow \quad \angle O^{\prime} E D=\angle O^{\prime} E B
\end{aligned}
$ $O^{\prime} E$ is the angle bisector of $\angle D E B$. Similarly, $O E$ is the angle bisector of $\angle A E C$. Now, in quadrilateral $D E B O^{\prime}$, $
\angle O^{\prime} D E=\angle O^{\prime} B E=90^{\circ}
$ $
\Rightarrow \quad \angle O^{\prime} D E+\angle O^{\prime} B E=180^{\circ}
$ $\therefore \quad \angle D E B+\angle D O^{\prime} B=180^{\circ}$ [since, $D E B O^{\prime}$ is cyclic quadrilateral] … (ii) Since, $A B$ is a straight line. $
\begin{aligned}
& \therefore \quad \angle A E D+\angle D E B=180^{\circ} \\
& \Rightarrow \quad \angle A E D+180^{\circ}-\angle D O^{\prime} B=180^{\circ} \\
& \Rightarrow \\
& \angle A E D=\angle D O^{\prime} B \\
& \angle A E D=\angle A O C \\
& \angle D E B=180^{\circ}-\angle D O^{\prime} B
\end{aligned}
$ Divided by 2 on both sides, we get $$
\begin{align*}
\Rightarrow \dfrac{1}{2} \angle D E B = 90^{\circ}-\dfrac{1}{2} \angle D O^{\prime} B \\
\angle D E O^{\prime} = 90^{\circ}-\dfrac{1}{2} \angle D O^{\prime} B \tag{v}
\end{align*}
$$ [since, $O^{\prime} E$ is the angle bisector of $\angle D E B$ i.e., $\dfrac{1}{2} \angle D E B=\angle D E O^{\prime}$ ] Similarly, $
\angle A E C=180^{\circ}-\angle A O C
$ Divided by 2 on both sides, we get $$
\begin{matrix}
\Rightarrow & \dfrac{1}{2} \angle A E C=90^{\circ}-\dfrac{1}{2} \angle A O C \\
\Rightarrow \quad \angle A E O=90^{\circ}-\dfrac{1}{2} \angle A O C \tag{vi}
\end{matrix}
$$ [since, $O E$ is the angle bisector of $\angle A E C$ i.e., $\dfrac{1}{2} \angle A E C=\angle A E O$ ] Now, $\angle A E D+\angle D E O^{\prime}+\angle A E O=\angle A E D+90^{\circ}-\dfrac{1}{2} \angle D O^{\prime} B+90^{\circ}-\dfrac{1}{2} \angle A O C$ $
\begin{aligned}
& =\angle A E D+180^{\circ}-\dfrac{1}{2}(\angle D O^{\prime} B+\angle A O C) \\
& =\angle A E D+180^{\circ}-\dfrac{1}{2}(\angle A E D+\angle A E D) \quad[\text{ from Eqs. (iii) and (iv) }] \\
& =\angle A E D+180^{\circ}-\dfrac{1}{2}(2 \times \angle A E D) \\
& =\angle A E D+180^{\circ}-\angle A E D=180^{\circ}
\end{aligned}
$ $
\therefore \quad \angle A E O+\angle A E D+\angle D E O^{\prime}=180^{\circ}
$ So, $O E O$ ’ is straight line. Hence, $O, E$ and $O^{\prime}$ are collinear. Hence proved.Show Answer
Solution Given, $O T=13 cm$ and $O P=5 cm$ Since, if we drawn a line from the centre to the tangent of the circle. It is always perpendicular to the tangent i.e., $O P \perp P T$. In right angled $\triangle O P T, \quad O T^{2}=O P^{2}+P T^{2}$ $
\begin{matrix}
\Rightarrow & P T^{2}=(13)^{2}-(5)^{2}=169-25=144 \\
\Rightarrow & P T=12 cm
\end{matrix}
$ $\therefore$ $\therefore$ $E T=O T-O E$ $[\therefore O E=5 cm=$ radius $]$ $\Rightarrow$ $E T=13-5$ $
[\text{ by Pythagoras theorem, }(\text{ hypotenuse })^{2}=(\text{ base })^{2}+(\text{ perpendicular })^{2}]
$ Since, the length of pair of tangents from an external point $T$ is equal. $$
\begin{matrix}
\therefore & Q T=12 cm \\
\text{ Now, } & T A=P T-P A \\
\Rightarrow & T A=12-P A \\
\text{ and } & T B=Q T-Q B \\
\Rightarrow & T B=12-Q B \tag{ii}
\end{matrix}
$$ Again, using the property, length of pair of tangents from an external point is equal. Since, $A B$ is a tangent and $O E$ is the radius. $
\therefore
$ $\Rightarrow \quad \angle O E A=90^{\circ}$ $\therefore \quad \angle A E T=180^{\circ}-\angle O E A$ $\Rightarrow$
$
\angle A E T=90^{\circ}
$ Now, in right angled $\triangle A E T$, $
(A T)^{2}=(A E)^{2}+(E T)^{2} \quad[\text{ by Pythagoras theorem }]
$ $
\begin{matrix}
\Rightarrow & (P T-P A)^{2}=(A E)^{2}+(8)^{2} & \\
\Rightarrow & (12-P A)^{2}=(P A)^{2}+(8)^{2} & \text{ [from Eq. (iii)] } \\
\Rightarrow & 144+(P A)^{2}-24 \cdot P A=(P A)^{2}+64 & \\
\Rightarrow & 24 \cdot P A=80 & \\
\Rightarrow & P A=\dfrac{10}{3} cm & \\
\therefore & A E=\dfrac{10}{3} cm & \text{ [from Eq. (iii)] }
\end{matrix}
$ Join OQ. Similarly $
\begin{aligned}
B E = \dfrac{10}{3} cm \\
A B = A E+E B \\
& =\dfrac{10}{3}+\dfrac{10}{3} \\
& =\dfrac{20}{3} cm
\end{aligned}
$ Hence, [linear pair] [from Eq. (iii)] Hence,the required length $A B$ is $\dfrac{20}{3} cm$.Show Answer
$\therefore$ $P A=A E$ and $Q B=E B$
$O T=13 cm$ …(iii)
Solution Here, $A B$ is a diameter of the circle from point $C$ and a tangent is drawn which meets at a point $P$. Join OC. Here, OC is radius. Since, tangent at any point of a circle is perpendicular to the radius through point of contact circle. Now $
\begin{gathered}
O C \perp P C \\
\angle P C A=110^{\circ}
\end{gathered}
$ $
\begin{aligned}
\Rightarrow & \angle P C O+\angle O C A = 110^{\circ} \\
\Rightarrow & 90^{\circ}+\angle O C A = 110^{\circ} \\
\Rightarrow & \angle O C A = 20^{\circ} \\
\therefore & O C = O A=\text{ Radius of circle } \\
\Rightarrow & \angle O C A = \angle O A C=20^{\circ}
\end{aligned}
$ [since, two sides are equal, then their opposite angles are equal] Since, $P C$ is a tangent, so $
\angle B C P=\angle C A B=20^{\circ}
$ [angles in a alternate segment are equal] In $\triangle P B C, \quad \angle P+\angle C+\angle A=180^{\circ}$ $
\begin{aligned}
\angle P = 180^{\circ}-(\angle C+\angle A) \\
& =180^{\circ}-(110^{\circ}+20^{\circ}) \\
& =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$ $\ln \triangle P B C$ $\angle B P C+\angle P C B+\angle P B C=180^{\circ}$ $\Rightarrow \quad 50^{\circ}+20^{\circ}+\angle P B C=180^{\circ}$ $\Rightarrow \quad \angle P B C=180^{\circ}-70^{\circ}$ $\Rightarrow \quad \angle P B C=110^{\circ}$ Since, $A P B$ is a straight line. $
\begin{aligned}
& \therefore \quad \angle P B C+\angle C B A=180^{\circ} \\
& \Rightarrow \quad \angle C B A=180^{\circ}-110^{\circ}=70^{\circ}
\end{aligned}
$Show Answer
Solution In a circle, $\triangle A B C$ is inscribed. Join $O B, O C$ and $O A$. Conside $\triangle A B O$ and $\triangle A C O$ $
\begin{aligned}
& A B=A C \quad \text{[given]}\\
& B O=C O \quad \text{[radii of same circle]}
\end{aligned}
$ $A O$ is common.
$\therefore$
$\triangle A B O \cong \triangle A C O$ $\therefore$ $\triangle A M B \cong \triangle A M C$ [by SAS congruence rule] $\angle A M B=\angle A M C$ [CPCT] Also, $
\begin{aligned}
& \angle A M B+\angle A M C = 180^{\circ} \\
\Rightarrow & \angle A M B = 90^{\circ}
\end{aligned}
$ [linear pair] $\angle 1=\angle 2$
[by SSS congruence rule] $
\begin{aligned}
& A B=A C \\
& \angle 1=\angle 2
\end{aligned}
$ [CPOT]
Now, in $\triangle A B M$ and $\triangle A C M$,
$A M$ is common.
[given]
[proved above] We know that a perpendicular from centre of circle bisects the chord. So, $O A$ is perpendicular bisector of $B C$.
Let $A M=x$, then $O M=9-x$
$[\because O A=$ radius $=9 cm]$ In right angled $\triangle A M C, \quad A C^{2}=A M^{2}+M C^{2}$ i.e., $(\text{ Hypotenuse })^{2}=(\text{ Base })^{2}+(\text{ Perpendicular })^{2}$ $$
\begin{equation*}
M C^{2}=6^{2}-x^{2} \tag{i}
\end{equation*}
$$ and in right $\triangle O M C, \quad O C^{2}=O M^{2}+M C^{2} \quad$ [by Pythagoras theorem] $\Rightarrow$
$M C^{2}=9^{2}-(9-x)^{2}$ From Eqs. (i) and (ii), In right angled $\triangle A B M$, From eqs. (i) and (ii), $\quad$
$
6^{2}-x^{2}=9^{2}-(9-x)^{2}
$ $
\begin{array}{ll}
\Rightarrow & 36-x^{2} = 81-(81+x^{2}-18 x) &\\
\Rightarrow & 36 = 18 x \Rightarrow x=2 \\
\therefore & A M = x=2 \\
\text{In right angled } \triangle ABM, & A B^{2} = B M^{2}+A M^{2} & \text{ [by Pythagoras theorem] } \\
6^{2} = B M^{2}+2^{2} \\
\Rightarrow & B M^{2} = 36-4=32 \\
\Rightarrow & B M = 4 \sqrt{2} \\
\therefore B C = 2 B M=8 \sqrt{2} cm \\
\therefore \text{ Area of } \triangle A B C = \dfrac{1}{2} \times \text{ Base } \times \text{ Height } \\
& =\dfrac{1}{2} \times B C \times A M \\
& =\dfrac{1}{2} \times 8 \sqrt{2} \times 2=8 \sqrt{2} cm^{2}
\end{array}
$ [by Pythagoras theorem] Hence, the required area of $\triangle A B C$ is $8 \sqrt{2} cm^{2}$.Show Answer
Show Answer
Solution
Given Two tangents are drawn from an external point $A$ to the circle with centre $O$,
$ O A=13 cm $
Tangent $B C$ is drawn at a point $R$. radius of circle equals $5 cm$.
To find perimeter of $\triangle A B C$. Proof
$ \angle O P A=90^{\circ} $
[tangent at any point of a circle is perpendicular to the radius through the point of contact]
$ \begin{aligned} & \therefore \quad O A^{2}=O P^{2}+P A^{2} \quad \text{ [by Pythagoras theorm] } \\ & \Rightarrow \quad P A^{2}=144=12^{2} \\ & \Rightarrow \quad P A=12 cm \\ & \text{ Now, } \quad \text{ perimeter of } \triangle A B C=A B+B C+C A \\ & =(A B+B R)+(R C+C A) \\ & =A B+B P+C Q+C A \end{aligned} $
$[A P=A Q$ tangent from internal point to a circle are equal $]$
Hence, the perimeter of $\triangle A B C=24 cm$.