Chapter 08 Introduction to Trigonometry and Its Applications
Multiple Choice Questions (MCQs)
1 If $\cos A=\dfrac{4}{5}$, then the value of $\tan A$ is
(a) $\dfrac{3}{5}$ $\quad$ (b) $\dfrac{3}{4}$
(c) $\dfrac{4}{3}$ $\quad$ (d) $\dfrac{5}{3}$
Thinking Process (i) First, we use the formula $\sin \theta=\sqrt{1-\cos ^{2} \theta}$ to get the value of $\sin \theta$. (ii) Second, we use the formula $\tan \theta=\dfrac{\sin \theta}{\cos \theta}$ to get the value of $\tan \theta$. Solution (b) Given, $\cos A=\dfrac{4}{5}$ $
\begin{aligned}
& \therefore \quad \sin A=\sqrt{1-\cos ^{2} A} \\
& =\sqrt{1-\dfrac{4}5^{2}}=\sqrt{1-\dfrac{16}{25}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5} \\
& \text{ Now, } \tan A=\dfrac{\sin A}{\cos A}=\dfrac{\dfrac{3}{5}}{\dfrac{5}{5}}=\dfrac{3}{4} \\
& \because \sin ^{2} A+\cos ^{2} A=1 \\
& \therefore \sin A=\sqrt{1-\cos ^{2} A}
\end{aligned}
$ Hence, the required value of $\tan A$ is $3 / 4$.Show Answer
Thinking Process (i) First, we use the formula $\cos \theta=\sqrt{1-\sin ^{2} \theta}$ to get the value of $\cos \theta$. (ii) Now, we use the trigonometric ratio $\cot \theta=\dfrac{\cos \theta}{\sin \theta}$ to get the value of $\cot \theta$. Solution (a) Given, $\quad \sin A=\dfrac{1}{2}$ $
\begin{array}{rl}
\therefore \cos A = \sqrt{1-\sin ^{2} A}=\sqrt{1-\dfrac{1}2^{2}} \\
& =\sqrt{1-\dfrac{1}{4}}=\sqrt{\dfrac{3}{4}}=\dfrac{\sqrt{3}}{2} \quad[\because \sin ^{2} A+\cos ^{2}=1 \Rightarrow \cos A=\sqrt{1-\sin ^{2} A}] \\
\text{ Now, } \cot A = \dfrac{\cos A}{\sin A}=\dfrac{\dfrac{\sqrt{3}}{\dfrac{1}{2}}}{\dfrac{1}{2}}=\sqrt{3}
\end{array}
$ Hence, the required value of $\cot A$ is $\sqrt{3}$.Show Answer
(a) -1 $\quad$ (b) 0 $\quad$ (c) 1 $\quad$ (d) $\dfrac{3}{2}$
Thinking Process We see that, the given trigonometric angle of the ratio are the reciprocal in the sense of sign. Then, use the following formulae (i) $cosec(90^{\circ}-\theta)=\sec \theta$
(ii) $\cot (90^{\circ}-\theta)=\tan \theta$ Solution (b) Given, expression $=cosec(75^{\circ}+\theta)-\sec (15^{\circ}-\theta)-\tan (55^{\circ}+\theta)+\cot (35^{\circ}-\theta)$ $
\begin{aligned}
& =cosec[90^{\circ}-(15^{\circ}-\theta)]-\sec (15^{\circ}-\theta)-\tan (55^{\circ}+\theta)+\cot {90^{\circ}-(55^{\circ}+\theta)} \\
& =\sec (15^{\circ}-\theta)-\sec (15^{\circ}-\theta)-\tan (55^{\circ}+\theta)+\tan (55^{\circ}+\theta) \\
& =0 \quad[\because cosec(90^{\circ}-\theta)=\sec \theta \text{ and } \cot (90^{\circ}-\theta)=\tan \theta]
\end{aligned}
$ Hence, the required value of the given expression is 0 .Show Answer
(a) $\dfrac{b}{\sqrt{b^{2}-a^{2}}}$ $\quad$ (b) $\dfrac{b}{a}$ $\quad$ (c) $\dfrac{\sqrt{b^{2}-a^{2}}}{b}$ $\quad$ (d) $\dfrac{a}{\sqrt{b^{2}-a^{2}}}$
Solution (c) Given, $
\begin{array}
\sin \theta = \dfrac{a}{b} \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta}] \\
\cos \theta = \sqrt{1-\sin ^{2} \theta} \\
=\sqrt{1-(\dfrac{a}{b})^2}=\sqrt{1-\dfrac{a^{2}}{b^{2}}}=\dfrac{\sqrt{b^{2}-a^{2}}}{b}
\end{array}
$ $
\therefore \quad \cos \theta=\sqrt{1-\sin ^{2} \theta}
$Show Answer
(a) $\cos \beta$ $\quad$ (b) $\cos 2 \beta$
(c) $\sin \alpha$ $\quad$ (d) $\sin 2 \alpha$
Solution (b) Given, $\cos (\alpha+\beta)=0=\cos 90^{\circ}$ $[\because \cos 90^{\circ}=0]$ $\Rightarrow$
$\alpha+\beta=90^{\circ}$ $\Rightarrow \quad \alpha=90^{\circ}-\beta$ Now, $\sin (\alpha-\beta)=\sin (90^{\circ}-\beta-\beta)$ $=\sin (90^{\circ}-2 \beta)$ $=\cos 2 \beta$ $[\because \sin (90^{\circ}-\theta)=\cos \theta]$ Hence, $\sin (\alpha-\beta)$ can be reduced to $\cos 2 \beta$.Show Answer
(a) 0 $\quad$ (b) 1 $\quad$ (c) 2 $\quad$ (d) $\dfrac{1}{2}$
Thinking Process Use the transformation $\tan (90^{\circ}-\theta)=\cot \theta$ from greater than trigonometric angle $\tan 45^{\circ}$ after that we use the trigonometric ratio, $\cot \theta=\dfrac{1}{\tan \theta}$. Solution (b) $\tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \ldots \tan 89^{\circ}$ $
\begin{aligned}
&= \tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \ldots \tan 44^{\circ} \cdot \tan 45^{\circ} \cdot \tan 46^{\circ} \ldots \tan 87^{\circ} \cdot \tan 88^{\circ} \cdot \tan 89^{\circ} \\
&= \tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \ldots \tan 44^{\circ} \cdot(1) \cdot \tan (90^{\circ}-44^{\circ}) \ldots \tan (90^{\circ}-3^{\circ}) \cdot \\
& \tan (90^{\circ}-2^{\circ}) \cdot \tan (90^{\circ}-1^{\circ}) \quad(\because \tan 45^{\circ}=1) \\
&=\tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \ldots \tan 44^{\circ} \cdot(1) \cdot \cot 44^{\circ} \ldots \ldots \cot 3^{\circ} \cdot \cot 2^{\circ} \cdot \cot 1^{\circ} \\
&= \quad[\because \tan (90^{\circ}-\theta)=\cot \theta] \\
&= \tan 1^{\circ} \cdot \tan 2^{\circ} \cdot \tan 3^{\circ} \ldots \tan 44^{\circ}(1) \cdot \dfrac{1}{\tan 44^{\circ}} \cdots \dfrac{1}{\tan 30^{\circ}} \cdot \dfrac{1}{\tan 2^{\circ}} \cdot \dfrac{1}{\tan 1^{\circ}} \quad \because \cot \theta=\dfrac{1}{\tan \theta} \\
&=1
\end{aligned}
$Show Answer
(a) $\dfrac{1}{\sqrt{3}}$ $\quad$ (b) $\sqrt{3}$ $\quad$ (c) 1 $\quad$ (d) 0
Show Answer
Solution
(c) Given,
$ \begin{aligned} & \cos 9 \alpha=\sin \alpha \text{ and } 9 \alpha<90^{\circ} \text{ i.e., acute angle. } \\ & \sin (90^{\circ}-9 \alpha)=\sin \alpha \quad[\because \cos A=\sin (90^{\circ}-A)] \\ \end{aligned} $
$ \begin{aligned} \Rightarrow & 90^{\circ}-9 \alpha = \alpha \\ \Rightarrow & 10 \alpha = 90^{\circ} \\ \Rightarrow & \alpha = 9^{\circ} \end{aligned} $
$ \therefore \quad \tan 5 \alpha=\tan (5 \times 9^{\circ})=\tan 45^{\circ}=1 \quad[\because \tan 45^{\circ}=1]$
not in between.
8 If $\triangle A B C$ is right angled at $C$, then the value of $\cos (A+B)$ is
(a) 0 $\quad$ (b) 1 $\quad$ (c) $\dfrac{1}{2}$ $\quad$ (d) $\dfrac{\sqrt{3}}{2}$
Solution (a) We know that, in $\triangle A B C$, sum of three angles $=180^{\circ}$
i.e.,
$\angle A+\angle B+\angle C=180^{\circ}$
But right angled at $C$ i.e., $\angle C=90^{\circ}$
[given]
$\angle A+\angle B+90^{\circ}=180^{\circ}$
$\begin{matrix} \Rightarrow & A+B = 90^{\circ} \\ \therefore & \cos (A+B) = \cos 90^{\circ}=0\end{matrix} \quad[\because \angle A=A]$Show Answer
(a) 1 $\quad$ (b) $\dfrac{1}{2}$ $\quad$ (c) 2 $\quad$ (d) 3
Solution (a) Given, $\sin A+\sin ^{2} A=1$ $\Rightarrow \quad \sin A=1-\sin ^{2} A=\cos ^{2} A$ $[\because \sin ^{2} \theta+\cos ^{2} \theta=1]$ On squaring both sides, we get $
\begin{matrix}
\Rightarrow & 1-\cos ^{2} A=\cos ^{4} A \\
\Rightarrow & \cos ^{2} A+\cos ^{4} A=1
\end{matrix}
$Show Answer
(a) $0^{\circ}$ $\quad$ (b) $30^{\circ}$
(c) $60^{\circ}$ $\quad$ (d) $90^{\circ}$
Solution (d) Given, $
\sin \alpha=\dfrac{1}{2}=\sin 30^{\circ}
$ $
\begin{aligned}
& \Rightarrow \quad \alpha=30^{\circ} \\
& \text{ and } \quad \cos \beta=\dfrac{1}{2}=\cos 60^{\circ} \\
& \Rightarrow \quad \beta=60^{\circ} \\
& \therefore \quad \alpha+\beta=30^{\circ}+60^{\circ}=90^{\circ}
\end{aligned}
$Show Answer
$ \dfrac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ} \text{ is } $
(a) 3 $\quad$ (b) 2 $\quad$ (c) 1 $\quad$ (d) 0
Show Answer
Solution
(b) Given expression, $\dfrac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}$
$ \begin{aligned} & =\dfrac{\sin ^{2} 22^{\circ}+\sin ^{2}(90^{\circ}-22^{\circ})}{\cos ^{2}(90^{\circ}-68^{\circ})+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin (90^{\circ}-63^{\circ}) \\ & =\dfrac{\sin ^{2} 22^{\circ}+\cos ^{2} 22^{\circ}}{\sin ^{2} 68^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \cdot \cos 63^{\circ} \quad \begin{matrix} [\because \sin (90^{\circ}-\theta)=\cos \theta \text{ and } \cos (90^{\circ}-\theta)=\sin \theta] \end{matrix} \\ & =\dfrac{1}{1}+(\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}) \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1] \\ & =1+1=2 \end{aligned} $
12 If $4 \tan \theta=3$, then $\dfrac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}$ is equal to
(a) $\dfrac{2}{3}$ $\quad$ (b) $\dfrac{1}{3}$
(c) $\dfrac{1}{2}$ $\quad$ (d) $\dfrac{3}{4}$
Show Answer
Solution
(c) Given,
$4 \tan \theta=3$
$\Rightarrow \quad \tan \theta=\dfrac{3}{4}$
$\therefore \quad \dfrac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}=\dfrac{4 \dfrac{\sin \theta}{\cos \theta}-1}{4 \dfrac{\sin \theta}{\cos \theta}+1}$
[divide by $\cos \theta$ in both numerator and denominator]
$=\dfrac{4 \tan \theta-1}{4 \tan \theta+1} \quad [\because \tan \theta=\dfrac{\sin \theta}{\cos \theta}]$
$=\dfrac{4 \dfrac{3}{4}-1}{4 \dfrac{3}{4}+1}=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2} \quad$
[put the value from Eq. (i)]
13 If $\sin \theta-\cos \theta=0$, then the value of $(\sin ^{4} \theta+\cos ^{4} \theta)$ is
(a) 1 $\quad$ (b) $\dfrac{3}{4}$ $\quad$ (c) $\dfrac{1}{2}$ $\quad$ (d) $\dfrac{1}{4}$
Thinking Process Firstly, from $\sin \theta-\cos \theta=0$ get the value of $\theta$. After that put the value of $\theta$ in the given expression to get the desired result. Solution (c) Given, $\Rightarrow \quad \tan \theta=1 \quad \because \tan \theta=\dfrac{\sin \theta}{\cos \theta}$ and $\tan 45^{\circ}=1$ $\Rightarrow \quad \tan \theta=\tan 45^{\circ}$ $\therefore \quad \theta=45^{\circ}$ Now, $\sin \theta-\cos \theta=0$ $\sin ^{4} \theta+\cos ^{4} \theta=\sin ^{4} 45^{\circ}+\cos ^{4} 45^{\circ}$ $
\begin{matrix}
=\dfrac{1}{\sqrt{2}}^{4}+\dfrac{1}{\sqrt{2}}^{4} \quad \because \sin 45^{\circ}=\cos 45^{\circ}=\dfrac{1}{\sqrt{2}} \\
=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{2}{4}=\dfrac{1}{2}
\end{matrix}
$Show Answer
(a) $2 \cos \theta$ $\quad$ (b) 0 $\quad$ (c) $2 \sin \theta$ $\quad$ (d) 1
Solution (b) $\sin (45^{\circ}+\theta)-\cos (45^{\circ}-\theta)=\cos [90^{\circ}-(45^{\circ}+\theta)]-\cos (45^{\circ}-\theta) \\ [\because \cos (90^{\circ}-\theta)=\sin \theta]$ $=\cos (45^{\circ}-\theta)-\cos (45^{\circ}-\theta)$ $=0$Show Answer
(a) $60^{\circ}$ $\quad$ (b) $45^{\circ}$ $\quad$ (c) $30^{\circ}$ $\quad$ (d) $90^{\circ}$ $\quad$
Show Answer
Solution
(a) Let $B C=6 m$ be the height of the pole and $A B=2 \sqrt{3} m$ be the length of the shadow on the ground. let the Sun’s makes an angle $\theta$ on the ground.
Now, in $\triangle B A C$,
$\tan \theta=\dfrac{B C}{A B}$
$\Rightarrow \quad \tan \theta=\dfrac{6}{2 \sqrt{3}}=\dfrac{3}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \quad \tan \theta=\dfrac{3 \sqrt{3}}{3}=\sqrt{3}=\tan 60^{\circ}$
$\therefore \quad \theta=60^{\circ}$
$[\because \tan 60^{\circ}=\sqrt{3}]$
Hence, the Sun’s elevation is $60^{\circ}$.
Very Short Answer Type Questions
Write whether True or False and justify your answer.
1. $\dfrac{\tan 47^{\circ}}{\cot 43^{\circ}}=1$
Solution True $
\dfrac{\tan 47^{\circ}}{\cot 43^{\circ}}=\dfrac{\tan (90^{\circ}-43^{\circ})}{\cot 43^{\circ}}=\dfrac{\cot 43^{\circ}}{\cot 43^{\circ}}=1 \quad[\because \tan (90^{\circ}-\theta)=\cot \theta]
$Show Answer
Solution False $
\begin{array}{lr}
\cos ^{2} 23^{\circ}-\sin ^{2} 67^{\circ} = (\cos 23^{\circ}-\sin 67^{\circ})(\cos 23^{\circ}+\sin 67^{\circ}) \quad[\because(a^{2}-b^{2})=(a-b)(a+b)] \\
=[\cos 23^{\circ}-\sin (90^{\circ}-23^{\circ})](\cos 23^{\circ}+\sin 67^{\circ}) \\
=(\cos 23^{\circ}-\cos 23^{\circ})(\cos 23^{\circ}+\sin 67^{\circ}) \quad[\because \sin (90^{\circ}-\theta)=\cos \theta] \\
=0 \cdot(\cos 23^{\circ}+\sin 67^{\circ})=0
\end{array}
$ which may be either positive or negative.Show Answer
Solution False We know that, $\sin \theta$ is increasing when, $0^{\circ} \leq \theta \leq 90^{\circ}$ and $\cos \theta$ is decreasing when, $0^{\circ} \leq \theta \leq 90^{\circ}$. $\therefore \quad \sin 80^{\circ}-\cos 80^{\circ}>0$ [positive]Show Answer
Solution True $
\begin{aligned}
& \sqrt{(1-\cos ^{2} \theta) \sec ^{2} \theta}=\sqrt{\sin ^{2} \theta \cdot \sec ^{2} \theta} \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1] \\
& =\sqrt{\sin ^{2} \theta \cdot \dfrac{1}{\cos ^{2} \theta}}=\sqrt{\tan ^{2} \theta}=\tan \theta \quad \because \sec \theta=\dfrac{1}{\cos \theta}, \tan \theta=\dfrac{\sin \theta}{\cos \theta}
\end{aligned}
$Show Answer
Solution True $\begin{array}{lrlrl} \because & \cos A+\cos ^2 A = 1 & \\
\Rightarrow & \cos A=1-\cos ^2 A = \sin ^2 A & & \left[\sin ^2 A+\cos ^2 A=1\right]\\
\Rightarrow & \cos ^2 A = \sin ^4 A & \\
\Rightarrow & 1-\sin ^2 A = \sin ^4 A & & \\
\Rightarrow & \sin ^2 A+\sin ^4 A = 1 & & \left[\cos ^2 A=1-\sin ^2 A\right]\end{array}$Show Answer
Solution False $
\begin{array}{ll}
\text{ LHS } = (\tan \theta+2)(2 \tan \theta+1) \\
=2 \tan ^{2} \theta+4 \tan \theta+\tan \theta+2 \\
=2(\sec ^{2} \theta-1)+5 \tan \theta+2 & [\because \sec ^{2} \theta-\tan ^{2} \theta=1]\\
=2 \sec ^{2} \theta+5 \tan \theta=\text{ RHS }
\end{array} \quad
$Show Answer
Solution False To understand the fact of this question, consider the following example I. A tower $2 \sqrt{3} m$ high casts a shadow $2 m$ long on the ground, then the Sun’s elevation is $60^{\circ}$. $
\begin{matrix}
\text{ In } \triangle A C B, & & \tan \theta = \dfrac{A B}{B C}=\dfrac{2 \sqrt{3}}{2} \\
\Rightarrow & \tan \theta = \sqrt{3}=\tan 60^{\circ} \\
\therefore & & \theta = 60^{\circ}
\end{matrix}
$ II. A same hight of tower casts a shadow $4 m$ more from preceding $
\begin{aligned}
& \text{ In } \triangle A P B, \quad \tan \theta=\dfrac{A B}{P B}=\dfrac{A B}{P C+C B} \\
& \Rightarrow \quad \tan \theta=\dfrac{2 \sqrt{3}}{4+2}=\dfrac{2 \sqrt{3}}{6} \\
& \Rightarrow \quad \tan \theta=\dfrac{\sqrt{3}}{3} \cdot \dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{3}{3 \sqrt{3}} \\
& \Rightarrow \quad \tan \theta=\dfrac{1}{\sqrt{3}}=\tan 30^{\circ} \\
& \therefore \quad \theta=30
\end{aligned}
$ Hence, we conclude from above two examples that if the length of the shadow of a tower is increasing, then the angle of elevation of the Sun is decreasing. Alternate Method False, we know that, if the elevation moves towards the tower, it increases and if its elevation moves away the tower, it decreases. Hence, if the shadow of a tower is increasing, then the angle of elevation of a Sun is not increasing.Show Answer
Solution False From figure, we observe that, a man standing on a platform at point $P, 3 m$ above the surface of a lake observes a cloud at point $C$. Let the height of the cloud from the surface of the platform is $h$ and angle of elevation of the cloud is $\theta_1$. Now at same point $P$ a man observes a cloud reflection in the lake at this time the height of reflection of cloud in lake is $(h+3)$ because in lake platform height is also added to reflection of cloud. So, angle of depression is different in the lake from the angle of elevation of the cloud above the surface of a lake. $
\begin{matrix}
\text{ In } \triangle M P C, & \tan \theta_1=\dfrac{C M}{P M}=\dfrac{h}{P M} \\
\Rightarrow & \dfrac{\tan \theta_1}{h}=\dfrac{1}{P M} & \ldots \text{(ii)}\\
\text{ In } \triangle C P M, & \tan \theta_2=\dfrac{C M}{P M}=\dfrac{O C}{F} \\
\Rightarrow & \dfrac{\tan \theta_2}{h+3}=\dfrac{1}{P M}
\end{matrix}
$ Hence, Alternate Method $
\dfrac{\tan \theta_1}{h}=\dfrac{\tan \theta_2}{h+3}
$ False, we know that, if $P$ is a point above the lake at a distance $d$, then the reflection of the point in the lake would be at the same distance $d$. Also, the angle of elevation and depression from the surface of the lake is same. Here, the man is standing on a platform $3 m$ above the surface, so its angle of elevation to the cloud and angle of depression to the reflection of the cloud is not same.Show Answer
Thinking Process Use the relation between arithmetic mean and geometric mean i.e., AM > GM. Solution False Given, $a$ is a positive number and $a \neq 1$, then $A M>G M$ $
\Rightarrow \quad \dfrac{a+\dfrac{1}{a}}{2}>\sqrt{a \cdot \dfrac{1}{a}} \Rightarrow a+\dfrac{1}{a}>2
$ [since, AM and GM of two number’s $a$ and $b$ are $\dfrac{(a+b)}{2}$ and $\sqrt{a b}$, respectively] $
\because 2 \sin \theta=a+\dfrac{1}{a}
$ $
\begin{matrix}
\Rightarrow & 2 \sin \theta>2 \\
\Rightarrow & \sin \theta>1
\end{matrix}
$ which is not possible. $
[\because-1 \leq \sin \theta \leq 1]
$ Hence, the value of $2 \sin \theta$ can not be $a+\dfrac{1}{a}$.Show Answer
Solution False Given, $a$ and $b$ are two distinct numbers such that $a b>0$. Using, $AM>GM$ [since, AM and GM of two number $a$ and $b$ are $\dfrac{a+b}{2}$ and $\sqrt{a b}$, respectively] $\Rightarrow \quad \dfrac{a^{2}+b^{2}}{2}>\sqrt{a^{2} \cdot b^{2}}$ $\Rightarrow \quad a^{2}+b^{2}>2 a b$ $\Rightarrow \quad \dfrac{a^{2}+b^{2}}{2 a b}>1 \quad \because \cos \theta=\dfrac{a^{2}+b^{2}}{2 a b}$ $\Rightarrow \quad \cos \theta>1 \quad[\because-1 \leq \cos \theta \leq 1]$ which is not possible. Hence, $\quad \cos \theta \neq \dfrac{a^{2}+b^{2}}{2 a b}$Show Answer
Thinking Process (i) Firstly, we find relation between $h$ and $x$ by putting angle of elevation is 30 in case 1. (ii) After that we take double height and taking angle of elevation is $\theta$. Now, use the relation (i) and get the desired result. Solution False Case I Let the height of the tower is $h$ and $B C=x m$ In $\triangle A B C$, $
\begin{aligned}
& \tan 30^{\circ}=\dfrac{A C}{B C}=\dfrac{h}{x} \\
& \Rightarrow \quad \dfrac{1}{\sqrt{3}}=\dfrac{h}{x}
\end{aligned}
$ Case II By condition, the height of the tower is doubled. i.e., $P R=2 h$. $
\begin{matrix}
\text{ In } \triangle P Q R, & & \tan \theta = \dfrac{P R}{Q R}=\dfrac{2 h}{x} \\
\Rightarrow & & \tan \theta = \dfrac{2}{x} \times \dfrac{x}{\sqrt{3}} \\
\Rightarrow & & \tan \theta = \dfrac{2}{\sqrt{3}}=1.15 \\
& \therefore & \theta = \tan ^{-1}(1.15)<60^{\circ}
\end{matrix}
$ $
\Rightarrow \quad \tan \theta=\dfrac{2}{x} \times \dfrac{x}{\sqrt{3}} \quad \because h=\dfrac{x}{\sqrt{3}} \text{, from Eq. (i) }
$ Hence, the required angle is not doubled.Show Answer
Show Answer
Solution
True
Case I Let the height of a tower be $h$ and the distance of the point of observation from its foot is $x$.
In $\triangle A B C$,
$ \begin{aligned}\tan \theta_1 = \dfrac{A C}{B C}=\dfrac{h}{x} \\ \Rightarrow \quad \theta_1 = \tan ^{-1} \dfrac{h}{x} & \ldots \text{(i)} \end{aligned} $
Case II Now, the height of a tower increased by $10 %=h+10 %$ of $h=h+h \times \dfrac{10}{100}=\dfrac{11 h}{10}$ and the distance of the point of observation from its foot $=x+10 %$ of $x$
$ \begin{matrix}& =x+x \times \dfrac{10}{100}=\dfrac{11 x}{10} \\ \ln \triangle P Q R, \quad \tan \theta_2 = \dfrac{P R}{Q R}=\dfrac{\dfrac{11 h}{10}}{\dfrac{11 x}{10}} \\ \Rightarrow \quad & \tan \theta_2 = \dfrac{h}{x} \\ \Rightarrow \quad & \theta_2 = \tan ^{-1} \dfrac{h}{x} & \ldots \text{(ii)} \end{matrix} $
From Eqs. (i) and (ii),
$ \theta_1=\theta_2 $
Hence, the required angle of elevation of its top remains unchanged.
Short Answer Type Questions
Prove the following questions 1 to 7.
1. $\dfrac{\sin \theta}{1+\cos \theta}+\dfrac{1+\cos \theta}{\sin \theta}=2 cosec \theta$
Solution $LHS=\dfrac{\sin \theta}{1+\cos \theta}+\dfrac{1+\cos \theta}{\sin \theta}=\dfrac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{\sin \theta(1+\cos \theta)}$ $
\begin{matrix}
=\dfrac{\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta}{\sin \theta(1+\cos \theta)} & {[\because(a+b)^{2}=a^{2}+b^{2}+2 a b]} \\
=\dfrac{1+1+2 \cos \theta}{\sin \theta(1+\cos \theta)} & \\
=\dfrac{2(1+\cos \theta)}{\sin \theta(1+\cos \theta)}=\dfrac{2}{\sin \theta} & \\
=2 cosec \theta=\text{ RHS } &
\end{matrix}
$Show Answer
Show Answer
Solution
$L H S=\dfrac{\tan A}{1+\sec A}-\dfrac{\tan A}{1-\sec A}=\dfrac{\tan A(1-\sec A-1-\sec A)}{(1+\sec A)(1-\sec A)}$
$ \begin{aligned} & =\dfrac{\tan A(-2 \sec A)}{(1-\sec ^{2} A)}=\dfrac{2 \tan A \cdot \sec A}{(\sec ^{2} A-1)} \\ & .(a+b)(a-b)=a^{2}-b^{2}] \\ & =\dfrac{2 \tan A \cdot \sec A}{\tan ^{2} A} \quad[\because \sec ^{2} A-\tan ^{2} A=1] \quad \because \sec \theta=\dfrac{1}{\cos \theta} \text{ and } \tan \theta=\dfrac{\sin \theta}{\cos \theta} \\ & =\dfrac{2 \sec A}{\tan A}=\dfrac{2}{\sin A}=2 cosec A=\text{ RHS } \quad \because cosec \theta=\dfrac{1}{\sin \theta} \end{aligned} $
3 If $\tan A=\dfrac{3}{4}$, then $\sin A \cos A=\dfrac{12}{25}$.
Thinking Process We know that, $\tan \theta=\dfrac{\text{ Perpendicular }}{\text{ Base }}$. Now, using Pythagoras theorem, get the value of hypotenuse. i.e., $(\text{ Hypotenuse })^{2}=(\text{ Base })^{2}+(\text{ Perpendicular })^{2}$ and then find the value of trigonometric ratios $\sin \theta$ and $\cos \theta$ and get the desired result. Solution Given, $
\tan A=\dfrac{3}{4}=\dfrac{P}{B}=\dfrac{\text{ Perpendicular }}{\text{ Base }}
$ Let $\quad P=3 k$ and $B=4 k$ By Pythagoras theorem, $
\begin{aligned}
H^{2} = P^{2}+B^{2}=(3 k)^{2}+(4 k)^{2} \\
& =9 k^{2}+16 k^{2}=25 k^{2} \\
\Rightarrow \quad H = 5 k \quad \text{ [since, side cannot be negative] } \\
\therefore \quad \sin A = \dfrac{P}{H}=\dfrac{3 k}{5 k}=\dfrac{3}{5} \quad \text{ and } \cos A=\dfrac{B}{H}=\dfrac{4 k}{5 k}=\dfrac{4}{5} \\
\text{ Now, } \quad \sin A \cos A = \dfrac{3}{5} \cdot \dfrac{4}{5}=\dfrac{12}{25}
\end{aligned}
$ Hence proved.Show Answer
Solution $LHS=(\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)$ $
\begin{matrix}
=(\sin \alpha+\cos \alpha) \dfrac{\sin \alpha}{\cos \alpha}+\dfrac{\cos \alpha}{\sin \alpha} & \because \tan \theta=\dfrac{\sin \theta}{\cos \theta} \text{ and } \cot \theta=\dfrac{\cos \theta}{\sin \theta} \\
=(\sin \alpha+\cos \alpha) \dfrac{\sin ^{2} \alpha+\cos ^{2} \alpha}{\sin \alpha \cdot \cos \alpha} & \\
=(\sin \alpha+\cos \alpha) \cdot \dfrac{1}{(\sin \alpha \cdot \cos \alpha)} \\
{[\because \sin ^{2} \theta+\cos ^{2} \theta=1]} & \\
=\dfrac{1}{\cos \alpha}+\dfrac{1}{\sin \alpha} & \\
=\sec \alpha+\cos \alpha=\text{ RHS } &
\end{matrix}
$Show Answer
Solution RHS $=\tan ^{3} 60^{\circ}-2 \sin 60^{\circ}=(\sqrt{3})^{3}-2 \dfrac{\sqrt{3}}{2}=3 \sqrt{3}-\sqrt{3}=2 \sqrt{3}$ LHS $.=(\sqrt{3}+1)(3-\cot 30^{\circ})=(\sqrt{3} + 1)(3 - \sqrt{3})$ ${[\because \tan 60^{\circ}}=\sqrt{3} \text{ and } \sin 60^{\circ}=\dfrac{\sqrt{3}}{2}]$ $=(\sqrt{3}+1) \sqrt{3}(\sqrt{3}-1) \cot 30^{\circ}=\sqrt{3}$ $=\sqrt{3}(\sqrt{3})^{2}-1)=\sqrt{3}(3-1)=2 \sqrt{3}$ $
\therefore \quad \text{ LHS }=\text{ RHS }
$ Hence proved.Show Answer
Solution LHS $=1+\dfrac{\cot ^{2} \alpha}{1+cosec \alpha}=1+\dfrac{\cos ^{2} \alpha / \sin ^{2} \alpha}{1+1 / \sin \alpha} \quad \because \cot \theta=\dfrac{\cos \theta}{\sin \theta}$ and $cosec \theta=\dfrac{1}{\sin \theta}$ $
\begin{matrix}
=1+\dfrac{\cos ^{2} \alpha}{\sin \alpha(1+\sin \alpha)}=\dfrac{\sin \alpha(1+\sin \alpha)+\cos ^{2} \alpha}{\sin \alpha(1+\sin \alpha)} & \\
=\dfrac{\sin \alpha+(\sin ^{2} \alpha+\cos ^{2} \alpha)}{\sin \alpha(1+\sin \alpha)} & {[\because \sin ^{2} \theta+\cos ^{2} \theta=1]} \\
=\dfrac{(\sin \alpha+1)}{\sin \alpha(\sin \alpha+1)}=\dfrac{1}{\sin \alpha} & \because cosec \theta=\dfrac{1}{\sin \theta} \\
=cosec \alpha=\text{ RHS } &
\end{matrix}
$Show Answer
Solution $LHS=\tan \theta+\tan (90^{\circ}-\theta)$ $
\begin{matrix}
=\tan \theta+\cot \theta=\dfrac{\sin \theta}{\cos \theta}+\dfrac{\cos \theta}{\sin \theta} & \\
=\dfrac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} & \because \tan \theta=\dfrac{\sin \theta}{\cos \theta} \text{ and } \cot \theta=\dfrac{\cos \theta}{\sin \theta} \\
=\dfrac{1}{\sin \theta \cos \theta} & {[\because \sec \theta=\dfrac{1}{\cos \theta} \text{ and } \cos \theta=\dfrac{1}{\sin \theta}.} \\
=\sec \theta cosec \theta & {[\because \sec (90^{\circ}-\theta)=cosec \theta]} \\
=\sec \theta \sec (90^{\circ}-\theta)=\text{ RHS } & .\cos ^{2} \theta=1] \\
&
\end{matrix}
$Show Answer
Solution Let the angle of elevation of the Sun is $\theta$. Given, $\quad$ height of pole $=h$ Now, in $\triangle A B C$, $
\begin{matrix}
\text{ Now, in } \triangle A B C, \\
& \tan \theta=\dfrac{A B}{B C}=\dfrac{h}{\sqrt{3} h} \\
\Rightarrow \quad \tan \theta=\dfrac{1}{\sqrt{3}}=\tan 30^{\circ} \Rightarrow \theta=30^{\circ}
\end{matrix}
$ Hence, the angle of elevation of the Sun is $30^{\circ}$.Show Answer
Show Answer
Thinking Process
From the given equation, get the value of $\theta$ and put the value of $\theta$ in the given expression, we get the required value.
Solution
Given that,
$\sqrt{3} \tan \theta=1$
$\Rightarrow$
$ \tan \theta=\dfrac{1}{\sqrt{3}}=\tan 30^{\circ} $
$\Rightarrow$
$ \theta=30^{\circ} $
Now,
$ \sin ^{2} \theta-\cos ^{2} \theta=\sin ^{2} 30^{\circ}-\cos ^{2} 30^{\circ} $
$ \begin{aligned} & =(\dfrac{1}{2})^2 - (\dfrac{\sqrt{3}}{2})^2 \\ & =\dfrac{1}{4}-\dfrac{3}{4}=\dfrac{1-3}{4}=-\dfrac{2}{4}=-\dfrac{1}{2} \end{aligned} $
10 A ladder $15 m$ long just reaches the top of a vertical wall. If the ladders makes an angle of $60^{\circ}$ with the wall, then find the height of the wall.
Solution Given that, the height of the ladder $=15 m$ Let the height of the vertical wall $=h$ and the ladder makes an angle of elevation $60^{\circ}$ with the wall i.e., $\theta=60^{\circ}$
In $\triangle Q P R$, $
\cos 60^{\circ}=\dfrac{P R}{P Q}=\dfrac{h}{15}
$ $
\begin{matrix}
\Rightarrow & \dfrac{1}{2}=\dfrac{h}{15} \\
\Rightarrow & h=\dfrac{15}{2} m .
\end{matrix}
$ Hence, the required height of the wall $\dfrac{15}{2} m$Show Answer
Solution $(1+\tan ^{2} \theta)(1-\sin \theta)(1+\sin \theta)=(1+\tan ^{2} \theta)(1-\sin ^{2} \theta)$ $
\begin{aligned}
& =\sec ^{2} \theta \cdot \cos ^{2} \theta \\
& \quad[\because 1+\tan ^{2} \theta=\sec ^{2} \theta \text{ and } \cos ^{2} \theta+\sin ^{2} \theta=1] \\
& =\dfrac{1}{\cos ^{2} \theta} \cdot \cos ^{2} \theta=1 \quad \because \sec \theta=\dfrac{1}{\cos \theta}
\end{aligned}
$Show Answer
Solution Given, $
2 \sin ^{2} \theta-\cos ^{2} \theta=2
$ $\Rightarrow \quad 2 \sin ^{2} \theta-(1-\sin ^{2} \theta)=2$ $[\because \sin ^{2} \theta+\cos ^{2} \theta=1]$ $\Rightarrow \quad 2 \sin ^{2} \theta+\sin ^{2} \theta-1=2$ $\Rightarrow \quad 3 \sin ^{2} \theta=3$ $\Rightarrow \quad \sin ^{2} \theta=1 \quad[\because \sin 90^{\circ}=1]$ $\Rightarrow \quad \sin \theta=1=\sin 90^{\circ}$ $\therefore \quad \theta=90^{\circ}$Show Answer
Solution LHS $=\dfrac{\cos ^{2}(45^{\circ}+\theta)+\cos ^{2}(45^{\circ}-\theta)}{\tan (60^{\circ}+\theta) \cdot \tan (30^{\circ}-\theta)}$ $
\begin{aligned}
& =\dfrac{\cos ^{2}(45^{\circ}+\theta)+[\sin {90^{\circ}-(45^{\circ}-\theta)}]^{2}}{\tan (60^{\circ}+\theta) \cdot \cot {90^{\circ}-(30^{\circ}-\theta)}} \\
& =\dfrac{\cos ^{2}(45^{\circ}+\theta)+\sin ^{2}(45^{\circ}+\theta)}{\tan (60^{\circ}+\theta) \cdot \cot (60^{\circ}+\theta)} \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1] \\
& =\dfrac{1}{\tan (60^{\circ}+\theta) \cdot \dfrac{1}{\tan (60^{\circ}+\theta)}}=1=RHS \quad[\because \cot \theta=1 / \tan \theta]
\end{aligned}
$Show Answer
Solution Let the angle of elevation of the top of the tower from the eye of the observe is $\theta$ Given that, and $\Rightarrow$ Now, in $\triangle A P M$, $\Rightarrow$ $
\therefore \quad \theta=45^{\circ}
$ Hence, required angle of elevation of the top of the tower from the eye of the observer is $45^{\circ}$.Show Answer
Show Answer
Solution
LHS $=\tan ^{4} \theta+\tan ^{2} \theta=\tan ^{2} \theta(\tan ^{2} \theta+1)$
$ \begin{matrix} =\tan ^{2} \theta \cdot \sec ^{2} \theta & {[\because \sec ^{2} \theta=\tan ^{2} \theta+1]} \\ =(\sec ^{2} \theta-1) \cdot \sec ^{2} \theta & {[\because \tan ^{2} \theta=\sec ^{2} \theta-1]} \\ =\sec ^{4} \theta-\sec ^{2} \theta=\text{ RHS } & \end{matrix} $
Long Answer Type Questions
1 If $cosec \theta+\cot \theta=p$, then prove that $\cos \theta=\dfrac{p^{2}-1}{p^{2}+1}$.
Thinking Process Reduce the given equation into $\sin \theta$ and $\cos \theta$ and simplify it. In simplification form, we use the componendo and dividendo rule to get the desired result. Solution Given, $
cosec \theta+\cot \theta=p
$ $
\begin{aligned}
& \Rightarrow \quad \dfrac{1}{\sin \theta}+\dfrac{\cos \theta}{\sin \theta}=p \quad \because cosec \theta=\dfrac{1}{\sin \theta} \text{ and } \cot \theta=\dfrac{\cos \theta}{\sin \theta} \\
& \Rightarrow \quad \dfrac{1+\cos \theta}{\sin \theta}=\dfrac{p}{1} \\
& \Rightarrow \quad \dfrac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}=\dfrac{p^{2}}{1} \quad \text{ [take square on both sides] } \\
& \Rightarrow \quad \dfrac{1+\cos ^{2} \theta+2 \cos \theta}{\sin ^{2} \theta}=\dfrac{p^{2}}{1}
\end{aligned}
$ Using componendo and dividendo rule, we get $
\begin{aligned}
& \dfrac{(1+\cos ^{2} \theta+2 \cos \theta)-\sin ^{2} \theta}{(1+\cos ^{2} \theta+2 \cos \theta)+\sin ^{2} \theta} = \dfrac{p^{2}-1}{p^{2}+1} \\
\Rightarrow & \dfrac{1+\cos ^{2} \theta+2 \cos \theta-(1-\cos ^{2} \theta)}{1+2 \cos \theta+(\cos ^{2} \theta+\sin ^{2} \theta)} = \dfrac{p^{2}-1}{p^{2}+1} \\
\Rightarrow & \dfrac{2 \cos ^{2} \theta+2 \cos \theta}{2+2 \cos \theta} = \dfrac{p^{2}-1}{p^{2}+1} \\
\Rightarrow & \dfrac{2 \cos \theta(\cos \theta+1)}{2(\cos \theta+1)} = \dfrac{p^{2}-1}{p^{2}+1}
\end{aligned}
$ $
\therefore \quad \cos \theta=\dfrac{p^{2}-1}{p^{2}+1}
$ Hence proved.Show Answer
Solution LHS $=\sqrt{\sec ^{2} \theta+cosec^{2} \theta}$ $
\begin{matrix}
=\sqrt{\dfrac{1}{\cos ^{2} \theta}+\dfrac{1}{\sin ^{2} \theta}} & \because \sec \theta=\dfrac{1}{\cos \theta} \text{ and } cosec \theta=\dfrac{1}{\sin \theta} \\
=\sqrt{\dfrac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta \cdot \cos ^{2} \theta}}=\sqrt{\dfrac{1}{\sin ^{2} \theta \cdot \cos ^{2} \theta}} & \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1] \\
=\dfrac{1}{\sin \theta \cdot \cos \theta}=\dfrac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cdot \cos \theta} & \quad[\because 1=\sin ^{2} \theta+\cos ^{2} \theta] \\
=\dfrac{\sin ^{2} \theta}{\sin \theta \cdot \cos \theta}+\dfrac{\cos ^{2} \theta}{\sin \theta \cdot \cos \theta} & \because \tan \theta=\dfrac{\sin \theta}{\cos \theta} \text{ and } \cot \theta=\dfrac{\cos \theta}{\sin \theta} \\
=\dfrac{\sin \theta}{\cos \theta}+\dfrac{\cos \theta}{\sin \theta} & \\
=\tan \theta+\cot \theta=\text{ RHS }
\end{matrix}
$Show Answer
Thinking Process (i) First, we drawn a right angle triangle from the given information in the question. (ii) Now, apply the suitable trigonometric ratio corresponding to given sides in the triangle and get the required value of which we want. Solution Let the height of the tower be $h$. also, Given that, and Now, in $\triangle P S R$, $
\begin{matrix}
\Rightarrow & & \tan \theta = \dfrac{P R}{S R}=\dfrac{h}{x} \\
\Rightarrow & & \tan \theta = \dfrac{h}{x} \\
\Rightarrow & & x=\dfrac{h}{\tan \theta} & \ldots \text{(i)}
\end{matrix}
$ Now, in $\triangle P Q R$, $
\begin{matrix} & \tan 30^{\circ}=\dfrac{P R}{Q R}=\dfrac{P R}{Q S+S R} \\
\Rightarrow & \tan 30^{\circ}=\dfrac{h}{20+x} \\
\Rightarrow & 20+x=\dfrac{h}{\tan 30^{\circ}}=\dfrac{h}{1 / \sqrt{3}} \\
\Rightarrow & 20+x=h \sqrt{3}
\end{matrix}
$ $
\Rightarrow \quad 20+\dfrac{h}{\tan \theta}=h \sqrt{3} \quad \ldots \text{ (ii) [from Eq. (i)] }
$ Since, after moving $20 m$ towards the tower the angle of elevation of the top increases by $15^{\circ}$. i.e., $\quad \angle P S R=\theta=\angle P Q R+15^{\circ}$ $\Rightarrow \quad \theta=30^{\circ}+15=45^{\circ}$ $\therefore \quad 20+\dfrac{h}{\tan 45^{\circ}}=h \sqrt{3}$ $\Rightarrow \quad 20+\dfrac{h}{1}=h \sqrt{3}$ $\Rightarrow \quad 20=h \sqrt{3}-h$ $\Rightarrow \quad h(\sqrt{3}-1)=20$ $\therefore \quad h=\dfrac{20}{\sqrt{3}-1} \cdot \dfrac{\sqrt{3}+1}{\sqrt{3}+1}$ [by rationalisation] $\Rightarrow \quad=\dfrac{20(\sqrt{3}+1)}{3-1}=\dfrac{20(\sqrt{3}+1)}{2}$ $\Rightarrow \quad=10(\sqrt{3}+1) m$ [from Eq. (i)] Hence, the required height of tower is $10(\sqrt{3}+1) m$.Show Answer
Thinking Process (i) First we reduce the given equation, with the help of trigonometric ratio and identities in the form of $\cot \theta$. (ii) Now, factorise the quadratic equation in $\cot \theta$ by splitting the middle term and get the desired result. Solution Given, $
1+\sin ^{2} \theta=3 \sin \theta \cdot \cos \theta
$ On dividing by $\sin ^{2} \theta$ on both sides, we get $
\begin{aligned}
& \dfrac{1}{\sin ^{2} \theta}+1=3 \cdot \cot \theta \\
& \because \cot \theta=\dfrac{\cos \theta}{\sin \theta} \\
& \Rightarrow \quad cosec^{2} \theta+1=3 \cdot \cot \theta \\
& cosec \theta=\dfrac{1}{\sin \theta} \\
& \Rightarrow \quad 1+\cot ^{2} \theta+1=3 \cdot \cot \theta \quad[\because cosec^{2} \theta-\cot ^{2} \theta=1] \\
& \Rightarrow \quad \cot ^{2} \theta-3 \cot \theta+2=0 \\
& \Rightarrow \quad \cot ^{2} \theta-2 \cot \theta-\cot \theta+2=0 \quad \text{ [by splitting the middle term] } \\
& \Rightarrow \cot \theta(\cot \theta-2)-1(\cot \theta-2)=0 \\
& \Rightarrow \quad(\cot \theta-2)(\cot \theta-1)=0 \Rightarrow \cot \theta=1 \text{ or } 2 \\
& \Rightarrow \quad \tan \theta=1 \text{ or } \dfrac{1}{2} \\
& \because \tan \theta=\dfrac{1}{\cot \theta}
\end{aligned}
$ Hence proved.Show Answer
Thinking Process Squaring both sides the given equation and use the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ to change $\sin ^{2} \theta$ into $\cos ^{2} \theta$ and vice-versa. Finally use the identity $(a-b)^{2}=a^{2}+b^{2}-2 a b$ and get the desired result. Solution Given, $
\sin \theta+2 \cos \theta=1
$ On squaring both sides, we get $
\begin{aligned}
& (\sin \theta+2 \cos \theta)^{2}=1 \\
& \Rightarrow \quad \sin ^{2} \theta+4 \cos ^{2} \theta+4 \sin \theta \cdot \cos \theta=1 \\
& \Rightarrow(1-\cos ^{2} \theta)+4(1-\sin ^{2} \theta)+4 \sin \theta \cdot \cos \theta=1 \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1] \\
& \Rightarrow \quad-\cos ^{2} \theta-4 \sin ^{2} \theta+4 \sin \theta \cdot \cos \theta=-4 \\
& \Rightarrow \quad 4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cdot \cos \theta=4 \\
& \Rightarrow \quad(2 \sin \theta-\cos \theta)^{2}=4 \quad[\because a^{2}+b^{2}-2 a b=(a-b)^{2}] \\
& \Rightarrow \quad 2 \sin \theta-\cos \theta=2 \quad \text{ Hence proved. }
\end{aligned}
$Show Answer
Thinking Process Use the concept of complementary angles in the angle of elevation. i.e., if two anlges are complementary to each other, then the sum of both angles is equal to $90^{\circ}$. $
\begin{matrix}
\Rightarrow & \alpha+\beta=90^{\circ} \\
\text{ where, } & \alpha=\theta \text{ and } \beta=(90^{\circ}-\theta)
\end{matrix}
$ Solution Let the height of the tower is $h$. and $\angle A B C=\theta$ Given that, $B C=s, P C=t$ and angle of elevation on both positions are complementary. i.e., $\angle A P C=90^{\circ}-\theta$ [if two angles are complementary to each other, then the sum of both angles is equal to Now in $\triangle A B C$, $
\tan \theta=\dfrac{A C}{B C}=\dfrac{h}{S}
$ and in $\triangle A P C$ $
\begin{aligned}
& \tan (90^{\circ}-\theta)=\dfrac{A C}{P C} \\
& \cot \theta=\dfrac{h}{t} \\
& \dfrac{1}{\tan \theta}=\dfrac{h}{t} \\
& {[\because \tan (90^{\circ}-\theta)=\cot \theta]} \\
& \because \cot \theta=\dfrac{1}{\tan \theta} \ldots \text{ (ii) }
\end{aligned}
$ On, multiplying Eqs. (i) and (ii), we get $
\begin{aligned}
\Rightarrow & \tan \theta \cdot \dfrac{1}{\tan \theta} = \dfrac{h}{s} \cdot \dfrac{h}{t} \\
\Rightarrow & \dfrac{h^{2}}{s t} = 1 \\
\Rightarrow & h = s t \\
& h = \sqrt{s t}
\end{aligned}
$ So, the required height of the tower is $\sqrt{s t}$. Hence proved.Show Answer
Thinking Process Consider the shadow of the tower be $x m$ when the angle of elevation in that position is $60^{\circ}$, when angle of elevation is $30^{\circ}$, then the distance becomes $(50+x) m$. Now, apply suitable trigonometric ratios in the triangle and get the desired result. Solution Let the height of the tower be $h$ and $R Q=x m$ Given that, and Now, in $\triangle S R Q$, $\Rightarrow$ $
P R=50 m
$ $
\begin{aligned}
\angle S P Q = 30^{\circ}, \angle S R Q=60^{\circ} \\
\tan 60^{\circ} = \dfrac{S Q}{R Q}
\end{aligned}
$ $$
\begin{equation*}
\sqrt{3}=\dfrac{h}{x} \Rightarrow x=\dfrac{h}{\sqrt{3}} \tag{i}
\end{equation*}
$$ and in $\triangle S P Q$, $\tan 30^{\circ}=\dfrac{S Q}{P Q}=\dfrac{S Q}{P R+R Q}=\dfrac{h}{50+x}$ $\Rightarrow \quad \dfrac{1}{\sqrt{3}}=\dfrac{h}{50+x}$ $\Rightarrow \quad \sqrt{3} \cdot h=50+x$ $\Rightarrow \quad \sqrt{3} \cdot h=50+\dfrac{h}{\sqrt{3}}$ [from Eq. (i)] $\Rightarrow \quad(\sqrt{3}-\dfrac{1}{\sqrt{3}}) h=50$ $\Rightarrow \quad \dfrac{(3-1)}{\sqrt{3}} h=50$ $\therefore \quad h=\dfrac{50 \sqrt{3}}{2}$ $h=25 \sqrt{3} m$ Hence, the required height of tower is $25 \sqrt{3} m$.Show Answer
Solution Let the height of the tower be $H$ and $O R=x$ Given that, height of flag staff $=h=F P$ and $\angle P R O=\alpha, \angle F R O=\beta$ Now, in $\triangle P R O, \quad \tan \alpha=\dfrac{P O}{R O}=\dfrac{H}{x}$ $\Rightarrow \quad x=\dfrac{H}{\tan \alpha}$ and in $\triangle F R O$, $
\begin{aligned}
\tan \beta=\dfrac{F O}{R O}=\dfrac{F P+P O}{R O} & \ldots \text{(i)}
\end{aligned}
$ $
\begin{aligned}
\tan \beta = \dfrac{h+H}{x} \\
\Rightarrow \quad x = \dfrac{h+H}{\tan \beta} & \ldots \text{(ii)}
\end{aligned}
$ From Eqs. (i) and (ii), $
\begin{aligned}
\dfrac{H}{\tan \alpha} = \dfrac{h+H}{\tan \beta} \\
\Rightarrow \quad H \tan \beta = h \tan \alpha+H \tan \alpha \\
\Rightarrow \quad H \tan \beta-H \tan \alpha = h \tan \alpha \\
\Rightarrow \quad H(\tan \beta-\tan \alpha) = h \tan \alpha \Rightarrow H=\dfrac{h \tan \alpha}{\tan \beta-\tan \alpha}
\end{aligned}
$ Hence the required height of tower is $\dfrac{h \tan \alpha}{\tan \beta-\tan \alpha}$ Hence proved.Show Answer
Thinking Process Firstly, we find the value of $(\tan \theta-\sec \theta)$. By using identity $\sec ^{2} \theta-\tan ^{2} \theta=1$ and get the desired result. If $\sec \theta+\tan \theta=a$ $$
\begin{aligned}
\Rightarrow \quad \sec \theta-\tan \theta=\dfrac{1}{a} & \ldots \text{(i)}
\end{aligned}
$$ Solution Given, $\quad \tan \theta+\sec \theta=l$ [multiply by ( $\sec \theta-\tan \theta$ ) on numerator and denominator LHS] $
\begin{aligned}
& \Rightarrow \quad \dfrac{(\tan \theta+\sec \theta)(\sec \theta-\tan \theta)}{(\sec \theta-\tan \theta)}=l \quad \Rightarrow \quad \dfrac{(\sec ^{2} \theta-\tan ^{2} \theta)}{(\sec \theta-\tan \theta)}=l \\
& \Rightarrow \quad \dfrac{1}{\sec \theta-\tan \theta}=l \quad[\because \sec ^{2} \theta-\tan ^{2} \theta=1] \\
& \Rightarrow \quad \sec \theta-\tan \theta=\dfrac{1}{l}
\end{aligned}
$ On adding Eqs. (i) and (ii), we get $
\begin{aligned}
2 \sec \theta = l+\dfrac{1}{l} \\
\sec \theta = \dfrac{l^{2}+1}{2 l}
\end{aligned}
$ Hence proved.Show Answer
Thinking Process (i) Firstly we will get the value of $\sin \theta \cdot \cos \theta$ with the help of given both equation. (ii) Now, squaring both sides of the equation $\sin \theta+\cos \theta=p$ and put the value of $\sin \theta \cdot \cos \theta$. Finally simplify it and get the desired result. Solution Given that $
\begin{aligned}
\sin \theta+\cos \theta=p & \ldots \text{(i)}
\end{aligned}
$ and $
\sec \theta+cosec \theta=q
$ $
\begin{matrix}
\Rightarrow & \dfrac{1}{\cos \theta}+\dfrac{1}{\sin \theta}=q \\
\Rightarrow & \dfrac{\sin \theta+\cos \theta}{\sin \theta \cdot \cos \theta}=q \\
\Rightarrow & \dfrac{p}{\sin \theta \cdot \cos \theta}=q \\
\Rightarrow & \sin \theta \cdot \cos \theta=\dfrac{p}{q} \\
& \sin \theta+\cos \theta=p
\end{matrix}
$ $
\because \sec \theta=\dfrac{1}{\cos \theta} \text{ and } cosec \theta=\dfrac{1}{\sin \theta}
$ On squaring both sides, we get $
\begin{aligned}
& (\sin \theta+\cos \theta)^{2}=p^{2} \\
& \Rightarrow \quad(\sin ^{2} \theta+\cos ^{2} \theta)+2 \sin \theta \cdot \cos \theta=p^{2} \quad[\because(a+b)^{2}=a^{2}+2 a b+b^{2}] \\
& \Rightarrow \quad 1+2 \sin \theta \cdot \cos \theta=p^{2} \quad[\because \sin ^{2} \theta+\cos ^{2} \theta=1] \\
& \begin{matrix}
\Rightarrow & 1+2 \cdot \dfrac{p}{q}=p^{2} & \text{ from Eq. (ii)] }
\end{matrix} \\
& \Rightarrow \quad q+2 p=p^{2} q \Rightarrow 2 p=p^{2} q-q \\
& \Rightarrow \quad q(p^{2}-1)=2 p
\end{aligned}
$Show Answer
Solution Given that, $a \sin \theta+b \cos \theta=c$ On squaring both sides, $
\begin{matrix}
\Rightarrow & a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cdot \cos \theta=c^{2} & {[\because(x+y)^{2}=x^{2}+2 x y+y^{2}]} \\
\Rightarrow & a^{2}(1-\cos ^{2} \theta)+b^{2}(1-\sin ^{2} \theta)+2 a b \sin \theta \cdot \cos \theta=c^{2} & {[\because \sin ^{2} \theta+\cos ^{2} \theta=1]} \\
\Rightarrow & a^{2}-a^{2} \cos ^{2} \theta+b^{2}-b^{2} \sin ^{2} \theta+2 a b \sin \theta \cdot \cos \theta=c^{2} \\
\Rightarrow & a^{2}+b^{2}-c^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cdot \cos \theta \\
\Rightarrow & (a^{2}+b^{2}-c^{2})=(a \cos \theta-b \sin \theta)^{2} & {[\because a^{2}+b^{2}-2 a b=(a-b)^{2}]} \\
\Rightarrow & (a \cos \theta-b \sin \theta)^{2}=a^{2}+b^{2}-c^{2} & \\
\Rightarrow & a \cos \theta-b \sin \theta=\sqrt{a^{2}+b^{2}-c^{2}} &
\end{matrix}
$Show Answer
Solution LHS $=\dfrac{1+\sec \theta-\tan \theta}{1+\sec \theta+\tan \theta}$ $
\begin{aligned}
& =\dfrac{1+1 / \cos \theta-\sin \theta / \cos \theta}{1+1 / \cos \theta+\sin \theta / \cos \theta} \quad \because \sec \theta=\dfrac{1}{\cos \theta} \text{ and } \tan \theta=\dfrac{\sin \theta}{\cos \theta} \\
& =\dfrac{\cos \theta+1-\sin \theta}{\cos \theta+1+\sin \theta}=\dfrac{(\cos \theta+1)-\sin \theta}{(\cos \theta+1)+\sin \theta}=\dfrac{2 \cos ^{2} \dfrac{\theta}{2}-2 \sin \dfrac{\theta}{2} \cdot \cos \dfrac{\theta}{2}}{2 \cos ^{2} \dfrac{\theta}{2}+2 \sin \dfrac{\theta}{2} \cdot \cos \dfrac{\theta}{2}} \\
& \because 1+\cos \theta=2 \cos ^{2} \dfrac{\theta}{2} \text{ and } \sin \theta=2 \sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2} \\
& =\dfrac{2 \cos ^{2} \dfrac{\theta}{2}-2 \sin \dfrac{\theta}{2} \cdot \cos \dfrac{\theta}{2}}{2 \cos ^{2} \dfrac{\theta}{2}+2 \sin \dfrac{\theta}{2} \cdot \cos \dfrac{\theta}{2}}=\dfrac{2 \cos \dfrac{\theta}{2} \cos \dfrac{\theta}{2}-\sin \dfrac{\theta}{2}}{2 \cos \dfrac{\theta}{2} \cos \dfrac{\theta}{2}+\sin \dfrac{\theta}{2}} \\
& =\dfrac{\cos \dfrac{\theta}{2}-\sin \dfrac{\theta}{2}}{\cos \dfrac{\theta}{2}+\sin \dfrac{\theta}{2}} \times \dfrac{\cos \dfrac{\theta}{2}-\sin \dfrac{\theta}{2}}{\cos \dfrac{\theta}{2}-\sin \dfrac{\theta}{2}} \\
& =\dfrac{\cos \dfrac{\theta}{2}-\sin \dfrac{\theta}{2}}{\cos ^{2} \dfrac{\theta}{2}-\sin ^{2} \dfrac{\theta}{2}} \quad[\because(a-b)^{2}=a^{2}+b^{2}-2 a b \text{ and }(a-b)(a+b)=(a^{2}-b^{2})] \\
& =\dfrac{\cos ^{2} \dfrac{\theta}{2}+\sin ^{2} \dfrac{\theta}{2}-2 \sin \dfrac{\theta}{2} \cdot \cos \dfrac{\theta}{2}}{\cos \theta} \quad \because \cos ^{2} \dfrac{\theta}{2}-\sin ^{2} \dfrac{\theta}{2}=\cos \theta \\
& =\dfrac{1-\sin \theta}{\cos \theta} \quad \because \sin ^{2} \dfrac{\theta}{2}+\cos ^{2} \dfrac{\theta}{2}=1
\end{aligned}
$ $=$ RHS Hence proved.Show Answer
Solution Let distance between the two towers $=A B=x m$ and height of the other tower $=P A=h m$ Given that, height of the tower $=Q B=30 m$ and $\angle Q A B=60^{\circ}, \angle P B A=30^{\circ}$ Now, in $\triangle Q A B, \quad \tan 60^{\circ}=\dfrac{Q B}{A B}=\dfrac{30}{x}$ $
\begin{matrix}
\Rightarrow & \sqrt{3}=\dfrac{30}{x} \\
\therefore & x=\dfrac{30}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{30 \sqrt{3}}{3}=10 \sqrt{3} m
\end{matrix}
$ and in $\triangle P B A$, $
\begin{aligned}
\Rightarrow & & \tan 30^{\circ} = \dfrac{P A}{A B}=\dfrac{h}{x} \\
\Rightarrow & & \dfrac{1}{\sqrt{3}} = \dfrac{h}{10 \sqrt{3}} \\
\Rightarrow & & h = 10 m
\end{aligned}
$ Hence, the required distance and height are $10 \sqrt{3} m$ and $10 m$, respectively.Show Answer
Solution Let the distance between two objects is $x m$. and $C D=y m$. $ \text{ Given that, } \angle BAX =\alpha=\angle ABD \quad \text{[alternate angle]}\\
\hspace{14 mm} \angle CAY = \beta = \angle ACD \quad \text{[alternate angle]}
$ and the height of tower, $A D=h m$ Now, in $\triangle A C D$, $
\begin{aligned}
\tan \beta = \dfrac{A D}{C D}=\dfrac{h}{y} \\
\Rightarrow \quad y = \dfrac{h}{\tan \beta} & \ldots \text{(i)}
\end{aligned}
$ and in $\triangle A B D$, $
\begin{aligned}
& & \tan \alpha=\dfrac{A D}{B D} \Rightarrow=\dfrac{A D}{B C+C D} \\
\Rightarrow & \tan \alpha = \dfrac{h}{x+y} \Rightarrow x+y=\dfrac{h}{\tan \alpha} \\
\Rightarrow & & y=\dfrac{h}{\tan \alpha}-x & \ldots \text{(ii)}
\end{aligned}
$ From Eqs. (i) and (ii), $
\begin{aligned}\dfrac{h}{\tan \beta} = \dfrac{h}{\tan \alpha}-x \\
x = \dfrac{h}{\tan \alpha}-\dfrac{h}{\tan \beta} \\
& =h \dfrac{1}{\tan \alpha}-\dfrac{1}{\tan \beta}=h(\cot \alpha-\cot \beta) \quad \because \cot \theta=\dfrac{1}{\tan \theta}
\end{aligned}
$ which is the required distance between the two objects.Show Answer
Thinking Process (i) First, we draw a figure in which the both positions of ladder are shown. In required figure generate two triangles. (ii) In first position, when ladder makes an angle of elevation is $\alpha$,we use the trigonometric ratios $\sin \theta$ and $\cos \theta$ and get the vertical and horizontal height respectively. (iii) In second position, when ladder makes an angle of elevation is $\beta$, due to its past is pulled away from the wall, we use again the trigonometric ratios $\sin \theta$ and $\cos \theta$ and get the another vertical and horizontal height respectively. In both case length of ladder is same. (iv) Now, we find the value of $p$ and $q$ with the help of steps (ii) and (iii) and get the desired result. Solution Let $O Q=x$ and $O A=y$ Given that, $\quad B Q=q, S A=P$ and $A B=S Q=$ Length of ladder Also, $\quad \angle B A O=\alpha$ and $\angle Q S O=\beta$ Now, in $\triangle B A O$, $
\begin{aligned}
& \cos \alpha=\dfrac{O A}{A B} \\
& \Rightarrow \quad \cos \alpha=\dfrac{y}{A B} \\
& \Rightarrow \quad y=A B \cos \alpha=O A \\
& \text{ and } \quad \sin \alpha=\dfrac{O B}{A B} \\
& \Rightarrow \quad O B=B A \sin \alpha
\end{aligned}
$ Now, in $\triangle Q S O$ $$
\begin{equation*}
\cos \beta=\dfrac{O S}{S Q} \tag{ii}
\end{equation*}
$$ $\Rightarrow \quad O S=S Q \cos \beta=A B \cos \beta$ and Eq. (v) divided by Eq. (vi), we get $
\begin{aligned}
\dfrac{p}{q} = \dfrac{A B(\cos \beta-\cos \alpha)}{A B(\sin \alpha-\sin \beta)}=\dfrac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta} & \ldots \text{(vi)}\\
\Rightarrow \quad \dfrac{p}{q} = \dfrac{\cos \beta-\cos \alpha}{\sin \alpha-\sin \beta}
\end{aligned}
$ $
\begin{aligned}
O Q = S Q \sin \beta=A B \sin \beta & \ldots \text{(iv)}\\
S A = O S-A O \\
P = A B \cos \beta-A B \cos \alpha \\
P = A B(\cos \beta-\cos \alpha) & \ldots \text{(v)}
\end{aligned}
$ $[\because A B=S Q]$ $[\because A B=S Q]$ Hence proved.Show Answer
Solution Let the height the vertical tower, $O T=H$ and $
O P=A B=x m
$ Given that, $A P=10 m$ and $\angle T P O=60^{\circ}, \angle T A B=45^{\circ}$ Now, in $\triangle T P O$, $\tan 60^{\circ}=\dfrac{O T}{O P}=\dfrac{H}{x}$ $\Rightarrow$ $\sqrt{3}=\dfrac{H}{x}$ $x=\dfrac{H}{\sqrt{3}}$ and in $\triangle T A B$, $\tan 45^{\circ}=\dfrac{T B}{A B}=\dfrac{H-10}{x}$ $\Rightarrow$ $1=\dfrac{H-10}{x} \Rightarrow x=H-10$ $\Rightarrow \quad \dfrac{H}{\sqrt{3}}=H-10$ [from Eq. (i)] $\Rightarrow \quad H-\dfrac{H}{\sqrt{3}}=10 \Rightarrow H 1-\dfrac{1}{\sqrt{3}}=10$ $\Rightarrow \quad H \dfrac{\sqrt{3}-1}{\sqrt{3}}=10$ $
\begin{aligned}
& \therefore \quad H=\dfrac{10 \sqrt{3}}{\sqrt{3}-1} \cdot \dfrac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\dfrac{10 \sqrt{3}(\sqrt{3}+1)}{3-1}=\dfrac{10 \sqrt{3}(\sqrt{3}+1)}{2} \\
& =5 \sqrt{3}(\sqrt{3}+1)=5(\sqrt{3}+3) m
\end{aligned}
$ [by rationalisation] Hence, the required height of the tower is $5(\sqrt{3}+3) m$.Show Answer
Solution Let the height of the other house $=O Q=H$ and $
O B=M W=x m
$ Given that, height of the first house $=W B=h=M O$ and $\angle Q W M=\alpha, \angle O W M=\beta=\angle W O B$ [alternate angle] Now, in $\triangle W O B, \quad \tan \beta=\dfrac{W B}{O B}=\dfrac{h}{x}$ $$
\begin{equation*}
\Rightarrow \quad x=\dfrac{h}{\tan \beta} \tag{i}
\end{equation*}
$$ And in $\triangle Q W M, \quad \tan \alpha=\dfrac{Q M}{W M}=\dfrac{O Q-M O}{W M}$ $\Rightarrow \quad \tan \alpha=\dfrac{H-h}{x}$ $\Rightarrow \quad x=\dfrac{H-h}{\tan \alpha}$ From Eqs. (i) and (ii), $
\begin{matrix}
\dfrac{h}{\tan \beta} = \dfrac{H-h}{\tan \alpha} \\
\Rightarrow \quad h \tan \alpha = (H-h) \tan \beta \\
\Rightarrow \quad & h \tan \alpha = H \tan \beta-h \tan \beta \\
\Rightarrow \quad H & H \tan \beta = h(\tan \alpha+\tan \beta) \\
\therefore \quad = h \dfrac{\tan \alpha+\tan \beta}{\tan \beta} \\
& =h 1+\tan \alpha \cdot \dfrac{1}{\tan \beta}=h(1+\tan \alpha \cdot \cot \beta) \quad \because \cot \theta=\dfrac{1}{\tan \theta}
\end{matrix}
$ Hence, the required height of the other house is $h(1+\tan \alpha \cdot \cot \beta)$ Hence proved.Show Answer
Show Answer
Solution
Let the height of the balloon from above the ground is $H$.
$ A \text{ and } O P=w_2 R=w_1 Q=x $
Given that, height of lower window from above the ground $=w_2 P=2 m=O R$
Height of upper window from above the lower window $=w_1 w_2=4 m=Q R$
$\therefore$
$ \begin{aligned} B Q = O B-(Q R+R O) \\ & =H-(4+2) \\ & =H-6 \end{aligned} $
and
$ \angle B w_1 Q=30^{\circ} $
$\Rightarrow$
$ \angle B w_2 R=60^{\circ} $
Now, in $\Delta B w_2 R$
$$ \begin{align*} \tan 60^{\circ} = \dfrac{B R}{w_2 R}=\dfrac{B Q+Q R}{x} \\ \sqrt{3} = \dfrac{(H-6)+4}{x} \\ x = \dfrac{H-2}{\sqrt{3}} \quad \ldots \text{ (i) } \tag{i} \end{align*} $$
and in $\triangle B w_1 Q$,
$$ \begin{align*} \tan 30^{\circ} = \dfrac{B Q}{W_1 Q} \\ \tan 30^{\circ} = \dfrac{H-6}{x}=\dfrac{1}{\sqrt{3}} \\ \Rightarrow \quad x = \sqrt{3}(H-6) \tag{ii} \end{align*} $$
From Eqs. (i) and (ii),
$ \begin{matrix} \sqrt{3}(H-6) = \dfrac{(H-2)}{\sqrt{3}} \\ \Rightarrow & 3(H-6) = H-2=3 H-18=H-2 \\ \Rightarrow & 2 H = 16 \Rightarrow H=8 \end{matrix} $
So, the required height is $8 m$.
Hence, the required height of the ballon from above the ground is $8 m$.