Chapter 06 Triangles
Multiple Choice Questions (MCQs)
1 In figure, if $\angle B A C=90^{\circ}$ and $A D \perp B C$. Then,
(a) $B D \cdot C D=B C^{2} \quad$ (b) $A B \cdot A C=B C^{2} \quad$ (c) $B D \cdot C D=A D^{2} \quad$ (d) $A B \cdot A C=A D^{2} \quad$
Solution (c) In $\triangle A D B$ and $\triangle A D C$, $\begin{aligned} & \angle D=\angle D=90^{\circ} \\
& \angle D B A=\angle D A C & [\text { each equal to } 90^{\circ}-<\mathrm{C} ]\\
& \therefore \quad \triangle A D B \sim \triangle A D C & \text { [by AAA similarity criterion] }
\\ & \therefore \quad \dfrac{B D}{A D}=\dfrac{A D}{C D}
\\ & \Rightarrow \quad B D \cdot C D=A D^2
\\ & \end{aligned}$Show Answer
(a) $9 cm \quad$ (b) $10 cm \quad$ (c) $8 cm \quad$ (d) $20 cm \quad$
Solution (b) We know that, the diagonals of a rhombus are perpendicular bisector of each other. Given,
$A C=16 cm$ and $B D=12 cm$ $\therefore$ $A O=8 cm, B O=6 cm$ and
$\angle A O B=90^{\circ}$ In right angled $\triangle A O B$, $
\begin{aligned}
& A B^2 =A O^2+O B^2 & \text{[by Pythagoras theorem]}\\
\Rightarrow & A B^2 =8^2+6^2=64+36=100 \\
\therefore & A B =10 \mathrm{~cm}
\end{aligned}
$Show Answer
(a) $B C \cdot E F=A C \cdot F D \quad$ (b) $A B \cdot E F=A C \cdot D E \quad$
(c) $B C \cdot D E=A B \cdot E F \quad$ (d) $B C \cdot D E=A B \cdot F D$
Solution (c) Given, $
\triangle A B C \sim \triangle E D F
$ $
\therefore \quad \dfrac{A B}{E D}=\dfrac{B C}{D F}=\dfrac{A C}{E F}
$ Taking first two terms, we get $
\begin{aligned}
& & \dfrac{A B}{E D} & =\dfrac{B C}{D F} \\
\Rightarrow & & A B \cdot D F & =E D \cdot B C \\
\text{ or } & & B C \cdot D E & =A B \cdot D F
\end{aligned}
$ So, option (d) is true. Taking last two terms, we get $
\dfrac{B C}{D F}=\dfrac{A C}{E F}
$ $
\Rightarrow \quad B C \cdot E F=A C \cdot D F
$ So, option (a) is also true. Taking first and last terms, we get $
\dfrac{A B}{E D}=\dfrac{A C}{E F}
$ $\Rightarrow$ $A B \cdot E F=E D \cdot A C$ Hence, option (b) is true.Show Answer
(a) $\triangle P Q R \sim \triangle C A B \quad$ (b) $\triangle P Q R \sim \triangle A B C \quad$
(c) $\triangle C B A \sim \triangle P Q R \quad$ (d) $\triangle B C A \sim \triangle P Q R$
Solution (a) Given, in two $\triangle A B C$ and $\triangle P Q R, \dfrac{A B}{Q R}=\dfrac{B C}{P R}=\dfrac{C A}{P Q}$ which shows that sides of one triangle are proportional to the side of the other triangle, then their corresponding angles are also equal, so by SSS similarity, triangles are similar. i.e., $\triangle C A B \sim \triangle P Q R$
Show Answer
(a) $50^{\circ} \quad$ (b) $30^{\circ} \quad$ (c) $60^{\circ} \quad$ (d) $100^{\circ}$
Solution (d) In $\triangle A P B$ and $\triangle C P D$, $\angle A P B=\angle C P D=50^{\circ}$ [vertically opposite angles] and $
\begin{aligned}
& \dfrac{A P}{P D}=\dfrac{6}{5} & \ldots \text{(i)}\\
& \dfrac{B P}{C P}=\dfrac{3}{2.5}=\dfrac{6}{5} & \ldots \text{(ii)}
\end{aligned}
$ From Eqs. (i) and (ii) $
\begin{aligned}
& \dfrac{A P}{P D}=\dfrac{B P}{C P} \\
& \therefore \quad \triangle A P B \sim \triangle D P C \quad \text{ [by SAS similarity criterion] } \\
& \therefore \quad \angle A=\angle D=30^{\circ} \text{ [corresponding angles of similar triangles] } \\
& \text{ In } \triangle A P B, \quad \angle A+\angle B+\angle A P B=180^{\circ} \quad \text{ [sum of angles of a triangle }=180^{\circ} \text{ ] } \\
& \Rightarrow \quad 30^{\circ}+\angle B+50^{\circ}=180^{\circ} \\
& \therefore \quad \angle B=180^{\circ}-(50^{\circ}+30^{\circ})=100^{\circ} \\
& \text{ i.e., } \quad \angle P B A=100^{\circ}
\end{aligned}
$Show Answer
(a) $\dfrac{E F}{P R}=\dfrac{D F}{P Q} \quad$ (b) $\dfrac{D E}{P Q}=\dfrac{E F}{R P}$
(c) $\dfrac{D E}{Q R}=\dfrac{D F}{P Q} \quad$ (d) $\dfrac{E F}{R P}=\dfrac{D E}{Q R}$
Solution (b) Given, in $\triangle D E F$ and $\triangle P Q R, \angle D=\angle Q, \angle R=\angle E$
$
\begin{matrix}
\therefore & \Delta D E F \sim \triangle Q R P \quad \text{ [by AAA similarity criterion] } \\
\therefore & \angle F=\angle P \quad \text{ [corresponding angles of similar triangles] } \\
\therefore & \dfrac{D F}{Q P}=\dfrac{E D}{R Q}=\dfrac{F E}{P R}
\end{matrix}
$Show Answer
(a) congruent but not similar $\quad$ (b) similar but not congruent
(c) neither congruent nor similar $\quad$ (d) congruent as well as similar
Solution (b) In $\triangle A B C$ and $\triangle D E F, \angle B=\angle E, \angle F=\angle C$ and $A B=3 D E$
We know that, if in two triangles corresponding two angles are same, then they are similar by AAA similarity criterion. Also, $\triangle A B C$ and $\triangle D E F$ do not satisfy any rule of congruency, (SAS, ASA, SSS), so both are not congruent.Show Answer
(a) 9 $\quad$ (b) 3
(c) $\dfrac{1}{3}$ $\quad$ (d) $\dfrac{1}{9}$
Thinking Process Use the property of area of similar triangle. Solution (a) Given, $\triangle A B C \sim \triangle P Q R$ and $\dfrac{B C}{Q R}=\dfrac{1}{3}$ We know that, the ratio of the areas of two similar triangles is equal to square of the ratio of their corresponding sides. $
\therefore \quad \dfrac{ar(\triangle P R Q)}{ar(\triangle B C A)}=\dfrac{(Q R)^{2}}{(B C)^{2}}=\dfrac{Q R}{B C}^{2}=\dfrac{3}1^{2}=\dfrac{9}{1}=9
$Show Answer
(a) $D E=12 cm, \angle F=50^{\circ}$ $\quad$ (b) $D E=12 cm, \angle F=100^{\circ}$
(c) $E F=12 cm, \angle D=100^{\circ}$ $\quad$ (d) $E F=12 cm, \angle D=30^{\circ}$
Solution (b) Given, $\triangle A B C \sim \triangle D F E$, then $\angle A=\angle D=30^{\circ}, \angle C=\angle E=50^{\circ}$
$
\begin{matrix}
\therefore & \angle B=\angle F=180^{\circ}-(30^{\circ}+50^{\circ})=100^{\circ} \\
\text{ Also, } & A B=5 cm, A C=8 cm \text{ and } D F=7.5 cm \\
\therefore & \dfrac{A B}{D F}=\dfrac{A C}{D E} \\
\Rightarrow & \dfrac{5}{7.5}=\dfrac{8}{D E} \\
\therefore & D E=\dfrac{8 \times 7.5}{5}=12 cm \\
\text{ Hence, } & D E=12 cm, \angle F=100^{\circ}
\end{matrix}
$Show Answer
(a) $\angle B=\angle E\quad$ (b) $\angle A=\angle D$
(c) $\angle B=\angle D \quad$ (d) $\angle A=\angle F$
Solution (c) Given, in $\triangle A B C$ and $\triangle E D F$, $
\dfrac{A B}{D E}=\dfrac{B C}{F D}
$ By converse of basic proportionality theorem, $
\begin{aligned}
\triangle A B C & \sim \triangle E D F \\
\angle B & =\angle D, \angle A=\angle E \\
\angle C & =\angle F
\end{aligned}
$ Then, andShow Answer
(a) $10 cm \quad$ (b) $12 cm \quad$ (c) $\dfrac{20}{3} cm \quad$ (d) $8 cm$
Solution (a) Given, $\triangle A B C \sim \triangle Q R P, A B=18 cm$ and $B C=15 cm$
We know that, the ratio of area of two similar triangles is equal to the ratio of square of their corresponding sides. $
\begin{matrix}
\therefore & \dfrac{ar(\triangle A B C)}{ar(\triangle Q R P)} & =\dfrac{(B C)^{2}}{(R P)^{2}} \\
\text{ But given, } & \dfrac{ar(\triangle A B C)}{ar(\triangle P Q R)} & =\dfrac{9}{4} \\
\Rightarrow & \dfrac{(15)^{2}}{(R P)^{2}} & =\dfrac{9}{4} \\
\Rightarrow & (R P)^{2} & =\dfrac{225 \times 4}{9}=100 \\
\therefore & R P & =10 cm
\end{matrix} \quad[\because B C=15 cm, \text{ given] }
$Show Answer
(a) $P R \cdot Q R=R S^{2} \quad$ (b) $Q S^{2}+R S^{2}=Q R^{2}$
(c) $P R^{2}+Q R^{2}=P Q^{2} \quad$ (d) $P S^{2}+R S^{2}=P R^{2}$
Show Answer
Solution
(c) Given, in $\triangle P Q R$,
[using Eqs. (ii) and (iii)]
$ \begin{aligned} & & PS=QS=RS & & \ldots \text{(i)} \\ \text{In } \Delta PSR,& & PS=RS & & \text{[From Eq.(i)]} \\ \Rightarrow & & \angle 1= \angle 2 & & \ldots \text{(ii)} \end{aligned} $
Similarly, in $\triangle R S Q$,
$\Rightarrow \quad \angle 3=\angle 4$
[corresponding angles of equal sides are equal] Now, in $\triangle P Q R$, sum of angles $=180^{\circ}$
$ \begin{matrix} \Rightarrow & \angle P+\angle Q+\angle R=180^{\circ} \\ \Rightarrow & \angle 2+\angle 4+\angle 1+\angle 3=180^{\circ} \\ \Rightarrow & \angle 1+\angle 3+\angle 1+\angle 3=180^{\circ} \\ \Rightarrow & 2(\angle 1+\angle 3)=180^{\circ} \\ \Rightarrow & \angle 1+\angle 3=\dfrac{180^{\circ}}{2}=90^{\circ} \\ \therefore & \angle R=90^{\circ} \end{matrix} $
In $\triangle P Q R$, by Pythagoras theorem,
$ P R^{2}+Q R^{2}=P Q^{2} $
Very Short Answer Type Questions
Write whether True or False and justify your answer.
1 Is the triangle with sides $25 cm, 5 cm$ and $24 cm$ a right triangle? Give reason for your answer.
Solution False Let $a=25 cm, b=5 cm$ and $c=24 cm$ Now, $
\begin{aligned}
b^{2}+c^{2} & =(5)^{2}+(24)^{2} \\
& =25+576=601 \neq(25)^{2}
\end{aligned}
$ Hence, given sides do not make a right triangle because it does not satisfy the property of Pythagoras theorem.Show Answer
Solution False We know that, if two triangles are similar, then their corresponding angles are equal. $\therefore \quad \angle D=\angle R, \angle F=\angle P$ and $\angle F=Q$Show Answer
Solution False Given, $P Q=12.5 cm, P A=5 cm, B R=6 cm$ and $P B=4 cm$ Then, $\quad Q A=Q P-P A=12.5-5=7.5 cm$ Now, $\quad \dfrac{P A}{A Q}=\dfrac{5}{7.5}=\dfrac{50}{75}=\dfrac{2}{3}$ and $\quad \dfrac{P B}{B R}=\dfrac{4}{6}=\dfrac{2}{3}$ From Eqs. (i) and (ii), $\quad \dfrac{P A}{A Q}=\dfrac{P B}{B R}$ By converse of basic proportionality theorem, $A B | Q R$Show Answer
Solution True In $\triangle P B C$ and $\triangle P D E$, Since, one angle of $\triangle P B C$ is equal to one angle of $\triangle P D E$ and the sides including these angles are proportional, so both triangles are similar. Hence, $\triangle P B C \sim \triangle P D E$, by SAS similarity criterion.Show Answer
$\angle B P C$
$=\angle E P D$
[vertically opposite angles]
Now,
$\dfrac{P B}{P D}$
$=\dfrac{5}{10}=\dfrac{1}{2}$
$\ldots$ (i)
and
$\dfrac{P C}{P E}$
$=\dfrac{6}{12}=\dfrac{1}{2}$
$\ldots$ (ii)
From Eqs. (i) and (ii),
$\dfrac{P B}{P D}$
$=\dfrac{P C}{P E}$
Solution False We know that, the sum of three angles of a triangle is $180^{\circ}$. $
\begin{matrix}
\text{ In } \triangle P Q R, & \angle P+\angle Q+\angle R =180^{\circ} \\
\Rightarrow & 55^{\circ}+25^{\circ}+\angle R =180^{\circ} \\
\Rightarrow & \angle R=180^{\circ}-(55^{\circ}+25^{\circ}) =180^{\circ}-80^{\circ}=100^{\circ} \\
\ln \triangle T S M, & L T+\angle S+\angle M =180^{\circ} \\
\Rightarrow & \angle T+\angle 25^{\circ}+100^{\circ} =180^{\circ} \\
\Rightarrow & \angle T =180^{\circ}-(25^{\circ}+100^{\circ}) \\
\Rightarrow & =180^{\circ}-125^{\circ}=55^{\circ}
\end{matrix}
$ In $\triangle P Q R$ and $\triangle T S M$, and $
\begin{aligned}
& \angle P=\angle T, \angle Q=\angle S \\
& \angle R=\angle M
\end{aligned}
$ $\therefore$ $\triangle P Q R \sim \triangle T S M$ [since, all corresponding angles are equal] Hence, $\triangle Q P R$ is not similar to $\triangle T S M$, since correct correspondence is $P \rightarrow T, Q \rightarrow S$ and $R \rightarrow M$.Show Answer
Solution False Two quadrilaterals are similar, if their corresponding angles are equal and corresponding sides must also be proportional.Show Answer
Solution True Here, the corresponding two sides and the perimeters of two triangles are proportional, then third side of both triangles will also in proportion.Show Answer
Solution True Let two right angled triangles be $\triangle A B C$ and $\triangle P Q R$.
In which $\angle A=\angle P=90^{\circ}$ and $\angle B=\angle Q=$ acute angle Then, by AAA similarity criterion, $\triangle A B C \sim \triangle P Q R$Show Answer
Solution False By the property of area of two similar triangles, $
\Rightarrow \quad \begin{aligned}
\dfrac{\text{ Area }_1}{\text{ Area }_2} & =\dfrac{\text{ Altitude }_1^{2}}{\text{ Altitude }_2} \\
\dfrac{\text{ Area }_1}{\text{ Area }_2} & =\dfrac{3}{5} \\
& =\dfrac{9}{25} \neq \dfrac{6}{5}
\end{aligned}
$ So, given statement is not correct.Show Answer
Solution False In $\triangle P Q D$ and $\triangle R P D$, $
\begin{aligned}
P D & =P D \\
\angle P D Q & =\angle P D R
\end{aligned}
$ [common side] [each $90^{\circ}$ ] Here, no other sides or angles are equal, so we can say that $\triangle P Q D$ is not similar to $\triangle R P D$. But, if $\angle P=90^{\circ}$, then $\angle D P Q=\angle P R D$ [each equal to $90^{\circ}-\angle \theta$ and by ASA similarity criterion, $\triangle P Q D \sim \triangle R P D$ ]Show Answer
Solution True In $\triangle A D E$ and $\triangle A C B$, $
\begin{matrix}
\angle A & =\angle A & \text{ [common angle] } \\
\angle D & =\angle C & \text{ [given] } \\
\triangle A D E & \sim \triangle A C B & \text{ [by AAA similarity criterion] }
\end{matrix}
$Show Answer
Show Answer
Solution
False
Because, according to SAS similarity criterion, if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.
Here, one angle and two sides of two triangles are equal but these sides not including equal angle, so given statement is not correct.
Short Answer Type Questions
1 In a $\triangle P Q R, P R^{2}-P Q^{2}=Q R^{2}$ and $M$ is a point on side $P R$ such that $Q M \perp P R$. Prove that $Q M^{2}=P M \times M R$.
Solution Given $\ln \triangle P Q R$, $
\begin{aligned}
& & P R^{2}-P Q^{2} =Q R^{2} \text{ and } Q M \perp P R \\
\text{To prove} & & Q M^{2} =P M \times M R \\
\text{Proof Since, } & & P R^{2}-P Q^{2} =Q R^{2} \\
\Rightarrow & & P R^{2} =P Q^{2}+Q R^{2}
\end{aligned}
$ So, $\triangle P Q R$ is right angled triangle at $Q$. In $\triangle Q M R$ and $\triangle P M Q$, $
\begin{aligned}
& & \angle M =\angle M & & [\text{each }90 ^{\circ}]\\
& & \angle M Q R =\angle Q P M & & [\text{each equal to }90 ^{\circ}- \angle R]\\
& & \triangle Q M R \sim \triangle P M Q & & [\text{by AAA similarilty criterion }]
\end{aligned}
$ Now, using property of area of similar triangles, we get $
\begin{matrix}
\dfrac{ar(\triangle Q M R)}{ar(\triangle P M Q)} & =\dfrac{(Q M)^{2}}{(P M)^{2}} \\
\Rightarrow & \dfrac{\dfrac{1}{2} \times R M \times Q M}{\dfrac{1}{2} \times P M \times Q M} & =\dfrac{(Q M)^{2}}{(P M)^{2}} \quad[\because \text{ area of triangle }=\dfrac{1}{2} \times \text{ base } \times \text{ height }] \\
\Rightarrow \quad Q M^{2} & =P M \times R M \quad \text{ Hence proved. }
\end{matrix}
$Show Answer
Thinking Process
Use the basic proportionality theorem to get required value of $x$.
Solution Given, $
\begin{aligned}
& D E | A B \\
& \dfrac{C D}{A D}=\dfrac{C E}{B E}
\end{aligned}
$ $
\begin{matrix}
\Rightarrow & & \dfrac{x+3}{3 x+19} & =\dfrac{x}{3 x+4} \\
\Rightarrow & (x+3)(3 x+4) & =x(3 x+19) \\
\Rightarrow & 3 x^{2}+4 x+9 x+12 & =3 x^{2}+19 x \\
\Rightarrow & 19 x-13 x & =12 \\
\Rightarrow & 6 x & =12 \\
\therefore & & x & =\dfrac{12}{6}=2
\end{matrix}
$ [by basic proportionality theorem] Hence, the required value of $x$ is 2 .Show Answer
Thinking Process Firstly, show that $S T | Q R$ with the help of given information, then use AAA similarity criterion To prove required result. Solution Given $\triangle NSQ \cong \triangle M T R$ and $\angle 1=\angle 2$ To prove $\triangle P T S \sim \triangle P R Q$ Proof Since, $
\triangle NSQ \cong \triangle MTR
$ So, $$
\begin{equation*}
S Q=T R \tag{i}
\end{equation*}
$$ Also, $$
\begin{equation*}
\angle 1=\angle 2 \Rightarrow P T=P S \tag{ii}
\end{equation*}
$$ From Eqs. (i) and (ii), [since, sides opposite to equal angles are also equal] $\Rightarrow$ $\dfrac{P S}{S Q}=\dfrac{P T}{T R}$ $\therefore$ $S T | Q R \quad$ [by convense of basic proportionality theorem] and $\angle 1=\angle P Q R$ In $\triangle P T S$ and $\triangle P R Q$, $
\angle 2=\angle P R Q
$ $$
\begin{aligned}\angle P & =\angle P \\ \angle 1 & =\angle P Q R \\ \angle \quad \angle 2 & =\angle P R Q \\ \therefore \quad \triangle P T S & \sim \triangle P R Q\end{aligned}
$$ [by AAA similarity criterion] Hence proved.Show Answer
Thinking Process Firstly, show that $\triangle P O Q$ and $\triangle R O S$ are similar by AAA similarity, then use property of area of similar triangle to get required ratio. Solution Given $P Q R S$ is a trapezium in which $P Q | R S$ and $P Q=3 R S$ $\Rightarrow$ $$
\begin{equation*}
\dfrac{P Q}{R S}=\dfrac{3}{1} \tag{i}
\end{equation*}
$$ In $\triangle P O Q$ and $\triangle R O S$, $
\begin{aligned}
\angle S O R & =\angle Q O P & \text{[vertically opposite angles]}\\
\angle S R P & =\angle R P Q & \text{[alternate angles]} \\
\therefore \triangle P O Q & \sim \triangle R O S & \text{[by AAA similarity criterion]}
\end{aligned}
$ By property of area of similar triangle, $
\begin{matrix} & \dfrac{ar(\triangle P O Q)}{ar(\triangle S O R)}=\dfrac{(P Q)^{2}}{(R S)^{2}}=\dfrac{P Q}{R S}{ }^{2}=\dfrac{3}{1} \\
\Rightarrow \quad & \dfrac{ar(\triangle P O Q)}{ar(\triangle S O R)}=\dfrac{9}{1}
\end{matrix}
$ Hence, the required ratio is $9: 1$.Show Answer
Solution Given $A C$ and $P Q$ intersect each other at the point $O$ and $A B | D C$. To prove $O A \cdot C Q=O C \cdot A P$ Proof $\ln \triangle A O P$ and $\triangle C O Q, \quad \angle A O P=\angle C O Q \quad$ [vertically opposite angles] $\angle A P O=\angle C Q O$ [since, $A B | D C$ and $P Q$ is transversal, so alternate angles] $\therefore \quad \triangle A O P \sim \triangle C O Q \quad$ [by AAA similarity criterion] Then, $\Rightarrow \quad O A \cdot C Q=O C \cdot A P$ Hence proved.Show Answer
Solution Let $A B C$ be an equilateral triangle of side $8 cm$ i.e., $A B=B C=C A=8 cm$. Draw altitude $A D$ which is perpendicular to $B C$. Then, $D$ is the mid-point of $B C$. $
\begin{aligned}
& \therefore \quad B D=C D=\dfrac{1}{2} B C=\dfrac{8}{2}=4 cm \\
& \text{ Now, } \quad A B^{2}=A D^{2}+B D^{2} \\
& \text{ [by Pythagoras theorem] } \\
& \Rightarrow \quad(8)^{2}=A D^{2}+(4)^{2} \\
& \Rightarrow \quad 64=A D^{2}+16 \\
& \Rightarrow \quad A D^{2}=64-16=48 \\
& \Rightarrow \quad A D=\sqrt{48}=4 \sqrt{3} cm .
\end{aligned}
$ Hence, altitude of an equilateral triangle is $4 \sqrt{3} cm$.Show Answer
Solution Given $A B=4 cm, D E=6 cm$ and $E F=9 cm$ and $F D=12 cm$ Also, $
\begin{aligned}
\triangle A B C & \sim \triangle D E F \\
\dfrac{A B}{E D} & =\dfrac{B C}{E F}=\dfrac{A C}{D F} \\
\dfrac{4}{6} & =\dfrac{B C}{9}=\dfrac{A C}{12}
\end{aligned}
$ $
\begin{aligned}
& \therefore \\
& \Rightarrow
\end{aligned}
$ On taking first two terms, we get $
\begin{aligned}
\dfrac{4}{6} & =\dfrac{B C}{9} \\
B C & =\dfrac{4 \times 9}{6}=6 cm \\
& =A C=\dfrac{6 \times 12}{9}=8 cm
\end{aligned}
$ Now, $
\text{ perimeter of } \triangle A B C=A B+B C+A C
$ $
=4+6+8=18 cm
$Show Answer
Solution Given, $D E | B C, D E=6 cm$ and $B C=12 cm$ In $\triangle A B C$ and $\triangle A D E$, and $
\begin{aligned}
\angle A B C & =\angle A D E \\
\angle A C B & =\angle A E D \\
\angle A & =\angle A
\end{aligned}
$ $\therefore$ Then, $\quad \dfrac{ar(\triangle A D E)}{ar(\triangle A B C)}=\dfrac{(D E)^{2}}{(B C)^{2}}$ [corresponding angle] [corresponding angle] [common side] [by AAA similarity criterion] $
\begin{aligned}
& =\dfrac{(6)^{2}}{(12)^{2}}=\dfrac{1}2^{2} \\
\Rightarrow \quad \dfrac{ar(\triangle A D E)}{ar(\triangle A B C)} & =\dfrac{1}2^{2}=\dfrac{1}{4}
\end{aligned}
$ Let $ar(\triangle A D E)=k$, then $ar(\triangle A B C)=4 k$ Now, ar $(D E C B)=ar(A B C)-ar(A D E)=4 k-k=3 k$ $\therefore$ Required ratio $=ar(A D E): ar(D E C B)=k: 3 k=1: 3$Show Answer
Solution Given, a trapezium $A B C D$ in which $A B | D C . P$ and $Q$ are points on $A D$ and $B C$, respectively such that $P Q | D C$. Thus, $A B|P Q| D C$. Join $B D$. $\begin{array}{lrr}\text { In } \triangle A B D, & P O | A B & {[\because P Q | A B]} \\ \text { By basic proportionality theorem, } & \dfrac{D P}{A P}=\dfrac{D O}{O B} & \ldots \text { (i) }\end{array}$ In $\triangle B D C$, $O Q | D C$ By basic proportionality theorem, $
\begin{matrix} & \dfrac{B Q}{Q C}=\dfrac{O B}{O D} \\
\Rightarrow & \dfrac{Q C}{B Q}=\dfrac{O D}{O B} & \ldots \text{(ii)}\\
\text{ From Eqs. (i) and (ii), } & \dfrac{D P}{A P}=\dfrac{Q C}{B Q} \\
\Rightarrow & \dfrac{18}{A P}=\dfrac{15}{35} \\
\Rightarrow & A P=\dfrac{18 \times 35}{15}=42 \\
\therefore & A D=A P+D P=42+18=60 cm
\end{matrix}
$Show Answer
Thinking Process Use the property area of similar triangle to get required area. Solution Given, ratio of corresponding sides of two similar triangles $=2: 3$ or $\dfrac{2}{3}$ Area of smaller triangle $=48 cm^{2}$ By the property of area of two similar triangle, Ratio of area of both riangles $=(\text{ Ratio of their corresponding sides })^{2}$ $
\begin{matrix} \text{ i.e., } & \dfrac{ar \text{ (smaller triangle })}{ar(\text{ larger triangle })}=\dfrac{2}{3} \\
\Rightarrow & \dfrac{48}{ar(\text{ larger triangle })}=\dfrac{4}{9} \\
\Rightarrow & \text{ ar (larger triangle })=\dfrac{48 \times 9}{4}=12 \times 9=108 cm^{2}
\end{matrix}
$Show Answer
Thinking Process Firstly, show that $\triangle Q N P \sim \triangle R N Q$, by SAS similarity criterion and then use the property that sum of all angles of a triangle is $180^{\circ}$. Solution Given $\triangle P Q R, N$ is a point on $P R$, such that $Q N \perp P R$ and To prove
Proof We have,
$\Rightarrow$
$$
\begin{aligned}
\angle P Q R & =90^{\circ} \\
P N \cdot N R & =Q N^2 \\
P N \cdot N R & =Q N \cdot Q N \\
\dfrac{P N}{Q N} & =\dfrac{Q N}{N R}
\end{aligned}
$$ In $\triangle Q N P$ and $\triangle R N Q$, and $\therefore$ Then, $\triangle Q N P$ and $\triangle R N Q$ are equiangulars. i.e., $
\begin{aligned}
& \angle P Q N=\angle Q R N \\
& \angle R Q N=\angle Q P N
\end{aligned}
$ On adding both sides, we get $
\begin{aligned}
& \angle P Q N+\angle R Q N=\angle Q R N+\angle Q P N \\
& \Rightarrow \quad \angle P Q R=\angle Q R N+\angle Q P N
\end{aligned}
$ We know that, sum of angles of a triangle $=180^{\circ}$ In $\triangle P Q R, \quad \angle P Q R+\angle Q P R+\angle Q R P=180^{\circ}$ $
\begin{matrix}
\Rightarrow & \angle P Q R+\angle Q P N+\angle Q R N=180^{\circ} & {[\because \angle Q P R=\angle Q P N \text{ and } \angle Q R P=\angle Q R N]} \\
\Rightarrow & \angle P Q R+\angle P Q R=180^{\circ} & \\
\Rightarrow & 2 \angle P Q R=180^{\circ} \\
\Rightarrow & \angle P Q R=\dfrac{180^{\circ}}{2}=90^{\circ} &
\end{matrix}
$ $
\therefore \quad \angle P Q R=90^{\circ} \quad \text{ Hence proved. }
$Show Answer
Solution Given, area of smaller triangle $=36 cm^{2}$ and area of larger triangle $=100 cm^{2}$ Also, length of a side of the larger triangle $=20 cm$ Let length of the corresponding side of the smaller triangle $=x cm$ By property of area of similar triangle, $
\begin{matrix} & \dfrac{\text{ ar (larger triangle })}{\text{ ar (smaller triangle })} & =\dfrac{(\text{ Side of larger triangle })^{2}}{\text{ Side of smaller triangle }{ }^{2}} \\
\Rightarrow & \dfrac{100}{36} & =\dfrac{(20)^{2}}{x^{2}} \Rightarrow x^{2}=\dfrac{(20)^{2} \times 36}{100} \\
& \therefore & x^{2} & =\dfrac{400 \times 36}{100}=144 \\
& x & =\sqrt{144}=12 cm
\end{matrix}
$ Hence, the length of corresponding side of the smaller triangle is $12 cm$.Show Answer
Solution Given, $A C=8 cm, A D=3 cm$ and $\angle A C B=\angle C D A$ From figure, $\angle C D A=90^{\circ}$ $\therefore$
$\angle A C B=\angle C D A=90^{\circ}$ In right angled $\triangle A D C$, $A C^{2}=A D^{2}+C D^{2}$ $\Rightarrow$ $(8)^{2}=(3)^{2}+(C D)^{2}$ $\Rightarrow$ $64-9=C D^{2}$ $\Rightarrow$ $C D=\sqrt{55} cm$ In $\triangle C D B$ and $\triangle A D C$, $\angle B D C=\angle A D C$ [each $90^{\circ}$ ] $\begin{matrix} \therefore & \angle D B C=\angle D C A \\ \triangle C D B \sim \triangle A D C\end{matrix} $ [each equal to $90^{\circ}-\angle A$ ] Then, $\dfrac{C D}{B D}=\dfrac{A D}{C D}$ $\Rightarrow$ $C D^{2}=A D \times B D$ $\therefore \quad B D=\dfrac{C D^{2}}{A D}=\dfrac{(\sqrt{55})^{2}}{3}=\dfrac{55}{3} cm$Show Answer
Thinking Process Firstly, draw the figure according to given conditions, then show that both triangles are similar by AAA similarity criterion and then use ratio of sides of both triangles to get required length. Solution Let $B C=15 m$ be the tower and its shadow $A B$ is $24 m$. At that time $\angle C A B=\theta$. Again, let $E F=h$ be a telephone pole and its shadow $D E=16 m$. At the same time $\angle E D F=\theta$. Here, $\triangle A B C$ and $\triangle D E F$ both are right angled triangles.
In $\triangle A B C$ and $\triangle D E F$, $\therefore$ $
\angle C A B=\angle E D F=\theta
$ $
\angle B=\angle E
$ $\triangle A B C \sim \triangle D E F$ [each $90^{\circ}$ ] [by AAA similarity criterion] Then, $
\begin{aligned}
\dfrac{A B}{D E} & =\dfrac{B C}{E F} \\
\dfrac{24}{16} & =\dfrac{15}{h} \\
h & =\dfrac{15 \times 16}{24}=10
\end{aligned}
$ Hence, the height of the telephone pole is $10 m$.Show Answer
Thinking Process
Firstly, draw the figure according to given conditions and then apply Pythagoras theorem to get required height.
Show Answer
Solution
Let $A B$ be a vertical wall and $A C=10 m$ is a ladder. The top of the ladder reaches to $A$ and distance of ladder from the base of the wall $B C$ is $6 m$.
In right angled $\triangle A B C$,
$ \begin{aligned} A C^{2} & =A B^{2}+B C^{2} \\ & (10)^{2}=A B^{2}+(6)^{2} \end{aligned} $
$ \begin{matrix} \Rightarrow & (10)^{2}=A B^{2}+(6)^{2} \\ \Rightarrow & 100=A B^{2}+36 \\ \Rightarrow & A B^{2}=100-36=64 \\ \therefore & A B=\sqrt{64}=8 cm \end{matrix} $
Hence, the height of the point on the wall where the top of the ladder reaches is $8 cm$.
Long Answer Type Questions
1 In given figure, if $\angle A=\angle C, A B=6 cm, B P=15 cm, A P=12 cm$ and $C P=4 cm$, then find the lengths of $P D$ and $C D$.
Solution Given, $\angle A=\angle C, A B=6 cm, B P=15 cm, A P=12 cm$ and $C P=4 cm$ In $\triangle A P B$ and $\triangle C P D$, $
\begin{aligned}
\angle A & =\angle C \\
\angle A P B & =\angle C P D
\end{aligned}
$ [by Pythagoras theorem] Triangles $$
\begin{array}{ll}
\therefore & \Delta A P D \sim \triangle C P D \\
\Rightarrow & \dfrac{A P}{C P}=\dfrac{P B}{P D}=\dfrac{A B}{C D} \\
\Rightarrow & \dfrac{12}{4}=\dfrac{15}{P D}=\dfrac{6}{C D}
\end{array}
$$
[by AAA similarity criterion] On taking first two terms, we get $
\begin{aligned}
& \dfrac{12}{4}=\dfrac{15}{P D} \\
\Rightarrow \quad & P D=\dfrac{15 \times 4}{12}=5 cm
\end{aligned}
$ On taking first and last term, we get $
\begin{aligned}
& \dfrac{12}{4}=\dfrac{6}{C D} \\
\Rightarrow \quad C D & =\dfrac{6 \times 4}{12}=2 cm
\end{aligned}
$ Hence, length of $P D=5 cm$ and length of $C D=2 cm$Show Answer
Thinking Process Use the property of similar triangles i.e., the corresponding sides are in the same ratio and then simplify. Solution Given, $\triangle A B C \sim \triangle E D F$, so the corresponding sides of $\triangle A B C$ and $\triangle E D F$ are in the same ratio. i.e., $$
\begin{equation*}
\dfrac{A B}{E D}=\dfrac{A C}{E F}=\dfrac{B C}{D F} \tag{i}
\end{equation*}
$$ Also, $
\begin{aligned}
& A B=5 cm, A C=7 cm \\
& D F=15 cm \text{ and } D E=12 cm
\end{aligned}
$ On putting these values in Eq. (i), we get On taking first and second terms, we get $
\dfrac{5}{12}=\dfrac{7}{E F}=\dfrac{B C}{15}
$ $
\begin{aligned}
& \dfrac{5}{12}=\dfrac{7}{E F} \\
& \Rightarrow \quad E F=\dfrac{7 \times 12}{5}=16.8 cm
\end{aligned}
$ On taking first and third terms, we get $
\Rightarrow \quad \begin{aligned}
\dfrac{5}{12} & =\dfrac{B C}{15} \\
\Rightarrow \quad B C & =\dfrac{5 \times 15}{12}=6.25 cm
\end{aligned}
$ Hence, lengths of the remaining sides of the triangles are $E F=16.8 cm$ and $B C=6.25 cm$.Show Answer
Solution Let a $\triangle A B C$ in which a line $D E$ parallel to $B C$ intersects $A B$ at $D$ and $A C$ at $E$. To prove $D E$ divides the two sides in the same ratio. i.e., Construction Join $B E, C D$ and draw $E F \perp A B$ and $D G \perp A C$. Proof Here, $\quad \dfrac{ar(\triangle A D E)}{ar(\triangle B D E)}=\dfrac{\dfrac{1}{2} \times A D \times E F}{\dfrac{1}{2} \times D B \times E F} \quad[\because.$ area of triangle $=\dfrac{1}{2} \times$ base $\times$ height $]$ $$
\begin{equation*}
=\dfrac{A D}{D B} \tag{i}
\end{equation*}
$$ similarly, $$
\begin{equation*}
\dfrac{ar(\triangle A D E)}{ar(\triangle D E C)}=\dfrac{\dfrac{1}{2} \times A E \times G D}{\dfrac{1}{2} \times E C \times G D}=\dfrac{A E}{E C} \tag{ii}
\end{equation*}
$$ Now, since, $\triangle B D E$ and $\triangle D E C$ lie between the same parallel $D E$ and $B C$ and on the same base $D E$. So, $$
\begin{equation*}
ar(\triangle B D E)=ar(\triangle D E C) \tag{iii}
\end{equation*}
$$ From Eqs. (i), (ii) and (iii), $
\dfrac{A D}{D B}=\dfrac{A E}{E C}
$ Hence proved.Show Answer
Solution Given $P Q R S$ is a parallelogram, so $P Q | S R$ and $P S | Q R$. Also, $A B | P S$. To prove $O C | S R$ Proof in $\triangle O P S$ and $\triangle O A B$, $
P S | A B
$ $\angle P O S=\angle A O B$ $\angle O S P=\angle O B A$ $\therefore \quad \triangle O P S \sim \triangle O A B$ Then, $$
\begin{equation*}
\dfrac{P S}{A B}=\dfrac{O S}{O B} \tag{i}
\end{equation*}
$$ [common angle] [corresponding angles] [by AAA similarity criterion] In $\triangle C Q R$ and $\triangle C A B$, $
\begin{aligned} & & \angle Q C R & =\angle A C B \\ \therefore & & \angle C R Q & =\angle C B A \\ Then, & & \Delta C Q R & \sim \triangle C A B \\ \Rightarrow & & \dfrac{Q R}{A B} & =\dfrac{C R}{C B} \\ & & \dfrac{P S}{A B} & =\dfrac{C R}{C B}\end{aligned}
$ [since, $P Q R S$ is a parallelogram, so $P S \equiv Q R$ ] From Eqs. (i) and (ii), $
\dfrac{O S}{O B}=\dfrac{C R}{C B} \text{ or } \dfrac{O B}{O S}=\dfrac{C B}{C R}
$ On subtracting from both sides, we get $
\begin{aligned}
\Rightarrow & \dfrac{O B}{O S}-1 & =\dfrac{C B}{C R}-1 \\
\Rightarrow & \dfrac{O B-O S}{O S} & =\dfrac{C B-C R}{C R} \\
\Rightarrow & \dfrac{B S}{O S} & =\dfrac{B R}{C R}
\end{aligned}
$ By converse of basic proportionality theorem, $S R | O C$ Hence proved.Show Answer
Solution Let $A C$ be the ladder of length $5 m$ and $B C=4 m$ be the height of the wall, which ladder is placed. If the foot of the ladder is moved $1.6 m$ towards the wall i.e, $A D=1.6 m$, then the ladder is slide upward i.e., $C E=x m$. In right angled $\triangle A B C$, $
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \quad \text{ [by Pythagoras theorem] } \\
& \Rightarrow \quad(5)^{2}=(A B)^{2}+(4)^{2} \\
& \Rightarrow \quad A B^{2}=25-16=9 \Rightarrow A B=3 m \\
& \therefore \quad D B=A B-A D=3-1.6=1.4 m \\
& E D^{2}=E B^{2}+B D^{2} \\
& (5)^{2}=(E B)^{2}+(1.4)^{2} \\
& 25=(E B)^{2}+1.96 \\
& \Rightarrow \\
& (E B)^{2}=25-1.96=23.04 \\
& E B=\sqrt{23.04}=4.8 \\
& \begin{matrix}
\Rightarrow \\
\text{ Now }
\end{matrix} \\
& E C=E B-B C=4.8-4=0.8
\end{aligned}
$ Hence, the top of the ladder would slide upwards on the wall at distance $0.8 m$.Show Answer
Thinking Process Firstly draw the figure according to the given conditions and use Pythagoras theorem to find the value of $x$. Then, required saved distance will be equal to the difference of $(A C+B C)$ and 26 . Solution Given, $A C \perp C B, km, C B=2(x+7) km$ and $A B=26 km$ On drawing the figure, we get the right angled $\triangle A C B$ right angled at $C$. Now, In $\triangle A C B$, by Pythagoras theorem, $
\begin{matrix} & A B^{2}=A C^{2}+B C^{2} \\
\Rightarrow & (26)^{2}=(2 x)^{2}+{2(x+7)}^{2} \\
\Rightarrow & 676=4 x^{2}+4(x^{2}+49+14 x) \\
\Rightarrow & 676=4 x^{2}+4 x^{2}+196+56 x \\
\Rightarrow & 676=8 x^{2}+56 x+196 \\
\Rightarrow & 8 x^{2}+56 x-480=0 \\
\text{ On dividing by 8, we get } & x^{2}+7 x-60=0 \\
\Rightarrow & x^{2}+12 x-5 x-60=0 \\
\Rightarrow & x(x+12)-5(x+12)=0 \\
\Rightarrow & (x+12)(x-5)=0 \\
\therefore & x=-12, x=5
\end{matrix}
$ Since, distance cannot be negative. $
\begin{aligned}
& \therefore \quad x=5 \quad[\because x \neq-12] \\
& \text{ Now, } \quad A C=2 x=10 km \\
& \text{ and } \quad B C=2(x+7)=2(5+7)=24 km
\end{aligned}
$ The distance covered to reach city $B$ from city $A$ via city $C$ $
\begin{aligned}
& =A C+B C \\
& =10+24 \\
& =34 km
\end{aligned}
$ Distance covered to reach city $B$ from city $A$ after the construction of the highway $=B A=26 km$ Hence, the required saved distance is $34-26$ i.e., $8 km$.Show Answer
Solution Let $B C=18 m$ be the flag pole and its shadow be $A B=9.6 m$. The distance of the top of the pole, $C$ from the far end i.e., $A$ of the shadow is $A C$. $
\begin{matrix}
\text{ In right angled } \triangle A B C, & A C^{2}=A B^{2}+B C^{2} \\
\Rightarrow & A C^{2}=(9.6)^{2}+(18)^{2} \\
\Rightarrow & A C^{2}=92.16+324 \\
\therefore & A C^{2}=416.16 \\
& A C=\sqrt{416.16}=20.4 m \\
\text{ Hence, the required distance is } 20.4 m .
\end{matrix}
$Show Answer
Thinking Process Firstly, draw the figure according to the question and get two triangles. Then, show both triangles are similar by AAA similarity criterion and then calculate the required distance. Solution Let $A$ be the position of the street bulb fixed on a pole $A B=6 m$ and $C D=1.5 m$ be the height of a woman and her shadow be $E D=3 m$. Let distance between pole and woman be $x m$. Here, woman and pole both are standing vertically. So, In $\triangle C D E$ and $\triangle A B E$, $
\therefore
$ Then, $
C D | A B
$ $
\begin{aligned}
\angle E & =\angle E \\
\angle A B E & =\angle C D E \\
\triangle C D E & \sim \triangle A B E
\end{aligned}
$ $
\dfrac{E D}{E B}=\dfrac{C D}{A B}
$ $
\Rightarrow \dfrac{3}{3+x}=\dfrac{1.5}{6}
$ $
\begin{aligned}
\Rightarrow & 3 \times 6 =1.5(3+x) \\
\Rightarrow & 18 =1.5 \times 3+1.5 x \\
\Rightarrow & 1.5 x =18-4.5 \\
\therefore & x =\dfrac{13.5}{1.5}=9 m
\end{aligned}
$ [common angle] [each equal to $90^{\circ}$ ] [by AAA similarity criterion] Hence, she is at the distance of $9 m$ from the base of the pole.Show Answer
Solution Given, $\triangle A B C$ in which $\angle B=90^{\circ}$ and $B D \perp A C$ Also, In $\triangle A D B$ and $\triangle C D B$, and Then, In right angled $\triangle B D C$, Again, $\Rightarrow \quad \dfrac{2 \sqrt{5}}{5}=\dfrac{B A}{3 \sqrt{5}}$ $\therefore \quad B A=\dfrac{2 \sqrt{5} \times 3 \sqrt{5}}{5}=6 cm$ Hence, $B D=2 \sqrt{5} cm$ and $A B=6 cm$ $A D=4 cm$ and $C D=5 cm$ $\angle A D B=\angle C D B$ $\angle B A D=\angle D B C$ $\triangle D B A \sim \triangle D C B$ $\dfrac{D B}{D A}=\dfrac{D C}{D B}$ $D B^{2}=D A \times D C$ $D B^{2}=4 \times 5$ $D B=2 \sqrt{5} cm$ $B C^{2}=B D^{2}+C D^{2}$ $B C^{2}=(2 \sqrt{5})^{2}+(5)^{2}$ $
=20+25=45
$ $
B C=\sqrt{45}=3 \sqrt{5}
$ $\triangle D B A \sim \triangle D C B$, $\dfrac{D B}{D C}=\dfrac{B A}{B C}$Show Answer
Solution Given, $\triangle P Q R$ in which $\angle Q=90^{\circ}, Q S \perp P R$ and $P Q=6 cm, P S=4 cm$ $\angle P S Q=\angle R S Q$ [each equal to $90^{\circ}$ ] $\therefore$ $\triangle S Q P \sim \triangle S R Q$ Then, $\dfrac{S Q}{P S}=\dfrac{S R}{S Q}$ In $\triangle S Q P$ and $\triangle S R Q$,
$\Rightarrow$ In right angled $\triangle P S Q$, $$
\begin{align*}
\Rightarrow & S Q^{2} =P S \times S R & \ldots \text{(i)}\\
P Q^{2} =P S^{2}+Q S^{2} & \text{[by Pythagoras theorem]}\\
\Rightarrow & (6)^{2} =(4)^{2}+Q S^{2} \\
\Rightarrow & 36 =16+Q S^{2} \\
\Rightarrow & Q S^{2} =36-16=20 \\
\therefore & Q S =\sqrt{20}=2 \sqrt{5} cm
\end{align*}
$$ On putting the value of $Q S$ in $E q$. (i), we get $
\begin{matrix} & (2 \sqrt{5})^{2} =4 \times S R \\
\Rightarrow & S R =\dfrac{4 \times 5}{4}=5 cm \\
\text{ In right angled } \triangle Q S R, & Q R^{2} =Q S^{2}+S R^{2} \\
\Rightarrow & Q R^{2} =(2 \sqrt{5})^{2}+(5)^{2} \\
\Rightarrow & Q R^{2} =20+25 \\
& Q R =\sqrt{45}=3 \sqrt{5} cm \\
& \text{ Hence, } Q S=2 \sqrt{5} cm, R S=5 cm \text{ and } Q R=3 \sqrt{5} cm
\end{matrix}
$Show Answer
Thinking Process Apply the Pythagoras theorem in both $\triangle P D Q$ and $\triangle P D R$ to get two equations and then equate them To prove required result. Solution Given In $\triangle P Q R, P D \perp Q R, P Q=a, P R=b, Q D=c$ and $D R=d$ To prove $(a+b)(a-b)=(c+d)(c-d)$ Proof In right angled $\triangle P D Q$, $
\begin{aligned}
& .P Q^{2}=P D^{2}+Q D^{2} \quad \text{ [by Pythagoras theorem ]} \\
& \Rightarrow \quad a^{2}=P D^{2}+c^{2} \\
& \Rightarrow \quad P D^{2}=a^{2}-c^{2}
\end{aligned}
$ $
\begin{aligned}
\text{In right angled }\triangle P D R, & P R^{2} =P D^{2}+D R^{2} & \text{ [by Pythagoras theorem ]}\\
\Rightarrow & b^{2} =P D^{2}+d^{2} \\
\Rightarrow & P D^{2} =b^{2}-d^{2}
\end{aligned}
$ From Eqs. (i) and (ii), $
\begin{aligned}
& a^{2}-c^{2} & =b^{2}-d^{2} \\
\Rightarrow & a^{2}-b^{2} & =c^{2}-d^{2} \\
\Rightarrow & (a-b)(a+b) & =(c-d)(c+d)
\end{aligned}
$Show Answer
$ A C^{2}+B D^{2}=A D^{2}+B C^{2} . $
Thinking Process Firstly, produce $A B$ and $D C$ and show that $\angle E=90^{\circ}$. Then, apply Pythagoras theorem in different right triangles made with $E$ and show the required result. Solution Given Quadrilateral $A B C D$, in which $\angle A+\angle D=90^{\circ}$
To prove
$A C^{2}+B D^{2}=A D^{2}+B C^{2}$ Construct Produce $A B$ and $C D$ to meet at $E$. Also, join $A C$ and $B D$. Proof $
\begin{aligned}\text{In} \triangle A E D & \angle A+\angle D =90^{\circ} & \text{[given]}\\
\therefore & \angle E =180^{\circ}-(\angle A+\angle D)=90^{\circ}
\end{aligned}
$ $
[\because \text{ sum of angles of a triangle }=180^{\circ}]
$ Then, by Pythagoras theorem, In $\triangle B E C$, by Pythagoras theorem, $B C^{2}=B E^{2}+E F^{2}$ On adding both equations, we get $$
\begin{equation*}
A D^{2}+B C^{2}=A E^{2}+D E^{2}+B E^{2}+C E^{2} \tag{i}
\end{equation*}
$$ In $\triangle A E C$, by Pythagoras theorem, $
A C^{2}=A E^{2}+C E^{2}
$ and in $\triangle B E D$, by Pythagoras theorem, $
B D^{2}=B E^{2}+D E^{2}
$ On adding both equations, we get $$
\begin{equation*}
A C^{2}+B D^{2}=A E^{2}+C E^{2}+B E^{2}+D E^{2} \tag{ii}
\end{equation*}
$$ From Eqs. (i) and (ii), $
A C^{2}+B D^{2}=A D^{2}+B C^{2}
$ Hence proved.Show Answer
Solution Given $l | m$ and line segments $A B, C D$ and $E F$ are concurrent at point $P$. To prove Proof $\ln \triangle A P C$ and $\triangle B P D$, $\therefore \quad \triangle A P C \sim \triangle B P D$ Then, $
\begin{aligned}
& \dfrac{A E}{B F}=\dfrac{A C}{B D}=\dfrac{C E}{F D} \\
& \angle A P C=\angle B P D & \text{[vertically opposite angles] }\\
& \angle P A C=\angle P B D & \text{[alternate angles]}\\\
& \triangle A P C \sim \triangle B P D & \text{[by AAA similarity criterion]}\\\
& \dfrac{A P}{P B}=\dfrac{A C}{B D}=\dfrac{P C}{P D} & \ldots \text{(i)}
\end{aligned}
$ In $\triangle A P E$ and $\triangle B P F$ $ \text{[vertically opposite angles] } $ $\angle A P E=\angle B P F$ $\therefore$ $\triangle A P E \sim \triangle B P F \text{[by AAA similarity criterion]} $ Then, $\dfrac{A P}{P B}=\dfrac{A E}{B F}=\dfrac{P E}{P F} \ldots \text{(ii)}$ In $\triangle P E C$ and $\triangle P F D$, $\angle E P C=\angle F P D \quad\quad \text{[vertically opposite angles] } $ $
\begin{aligned} \therefore & \triangle P E C \sim \triangle P F D & \text{[by AAA similarity criterion]}\\
\dfrac{P E}{P F} =\dfrac{P C}{P D}=\dfrac{E C}{F D} & \ldots \text{(iii)}
\end{aligned}
$ from Eqs. (i), (ii) and (iii), $
\begin{aligned}
& \dfrac{A P}{P B}= & \dfrac{A C}{B D}=\dfrac{A E}{B F}=\dfrac{P E}{P F}=\dfrac{E C}{F D} \\
\therefore & & \dfrac{A E}{B F}=\dfrac{A C}{B D}=\dfrac{C E}{F D}
\end{aligned}
$ Hence proved.Show Answer
$\angle P A E=\angle P B F \text{[alternate angles]} $
$\angle P C E=\angle P D F \quad \quad \text{[alternate angles]} $
Show Answer
Solution
Given, $A B=6 cm, B C=9 cm, C D=12 cm$ and $S P=36 cm$ Also, $P A, Q B, R C$ and $S D$ are all perpendiculars to line $l$.
$\therefore \quad P A||Q B|| R C || S D$
By basic proportionality theorem,
$ \begin{aligned} P Q: Q R: R S & =A B: B C: C D \\ & =6: 9: 12 \end{aligned} $
Let $ \quad \quad \quad P Q=6 x, Q R=9 x \text{ and } R S=12 x $
Since, length of $ \quad \quad \quad $ PS =36 km
$ \therefore \hspace{20 mm} P Q+Q R+R S=36 $
$ \Rightarrow \hspace{20 mm} 6 x+9 x+12 x=36 $
$\Rightarrow \hspace{20 mm}27 x=36$
$ \therefore \hspace{20 mm} x=\dfrac{36}{27}=\dfrac{4}{3} $
Now, $ \hspace{20 mm} P Q=6 x=6 \times \dfrac{4}{3}=8 cm $
$ \begin{aligned} & \hspace{20 mm} Q R=9 x=9 \times \dfrac{4}{3}=12 cm \\ & \text{and }\hspace{20 mm}R S=12 x=12 \times \dfrac{4}{3}=16 cm \end{aligned} $
15 $\boldsymbol{{}O}$ is the point of intersection of the diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B | D C$. Through $\boldsymbol{{}O}$, a line segment $P Q$ is drawn parallel to $\boldsymbol{{}A B}$ meeting $A D$ in $P$ and $B C$ in $Q$, prove that $P O=Q O $.
Solution Given $A B C D$ is a trapezium. Diagonals $A C$ and $B D$ are intersect at $O$. $ P Q||A B|| D C $ To prove $ P O =Q O$ Proof In $ \triangle A B D$ and $\triangle P O D$, $
\begin{array}{lcr}
& P O \| A B & [\because PQ \| AB] \\ \\
& \angle D=\angle D & \text{[common angle ] } \\ \\
& \angle A B D=\angle P O D & \text{[corresponding angles]}\\ \\
\therefore & \quad \triangle A B D \sim \triangle P O D & \text{[by AAA similarity criterion]}\\ \\
\text{Then, } & \dfrac{O P}{A B}=\dfrac{P D}{A D} & \ldots \text{(i)} \\ \\
\text{In} \triangle ABC \text{ and } \triangle OQC, & OQ|| AB & [\because OQ\|AB] \\ \\
& \angle C=\angle C & \text{[common angle ] } \\ \\
& \angle B A C=\angle Q O C & \text{[corresponding angles]} \\ \\
\therefore & \quad \triangle A B D \sim \triangle OQC & \text{[by AAA similarity criterion]} \\ \\
\text{ Then, }& \dfrac{O Q}{A B}=\dfrac{Q C}{B C} & \ldots \text{(ii)}
\end{array}
$ Then, Now, in $\triangle A D C \hspace{20 mm} OP||DC $, $\therefore \hspace{20 mm} \dfrac{AP}{PP}=\dfrac{OA}{OC} \hspace{13 mm} \text{[by basic proportionality theorem]} \ldots \text{(iii)}$ In $\triangle A B C $, $\therefore \hspace{20 mm} \dfrac{BQ}{QC}=\dfrac{OA}{OC} \hspace{13 mm} \text{[by basic proportionality theorem]} \ldots \text{(iv)}$ From Eqs. (iii) and (iv), $
\dfrac{A P}{P D}=\dfrac{B Q}{Q C}
$ Adding 1 on both sides, we get $
\begin{matrix}
\Rightarrow & \dfrac{A P}{P D}+1=\dfrac{B Q}{Q C}+1 \\ \\
\Rightarrow & \dfrac{A P+P D}{P D}=\dfrac{B Q+Q C}{Q C} \\ \\
\Rightarrow & \dfrac{A D}{P D}=\dfrac{B C}{Q C} \\ \\
\Rightarrow & \dfrac{P D}{A D}=\dfrac{Q C}{B C} \\ \\
\Rightarrow & \dfrac{O P}{A B}=\dfrac{O Q}{B C} & \text{from Eq. (i) and (ii)}\\ \\
\Rightarrow & \dfrac{O P}{A B}=\dfrac{O Q}{A B} & \text{from Eq. (ii)} \\ \\
\Rightarrow & O P=O Q & \text{Hence prove}
\end{matrix}
$ [from Eqs. (i) and (ii)] [from Eq. (ii)] Hence proved.Show Answer
Solution Given $\triangle A B C, E$ is the mid-point of $C A$ and $\angle A E F=\angle A F E$ To prove $\dfrac{B D}{C D}=\dfrac{B F}{C E}$ Construction Take a point $G$ on $A B$ such that $C G \| E F$. Proof Since, $E$ is the mid-point of $C A$. $\therefore \quad C E=A E$ In $\triangle A C G, C G \| E F$ and $E$ is mid-point of $C A$. So, $C E=G F$ Now, in $\triangle B C G$ and $\triangle B D F$, [by mid-point theorem] $
\begin{matrix} & \dfrac{B C}{C D}=\dfrac{B G}{G F} & \text{ [by basic proportionality theorem] } \\ \\
\Rightarrow & \dfrac{B C}{C D}=\dfrac{B F-G F}{G F} \Rightarrow & \dfrac{B C}{C D}=\dfrac{B F}{G F}-1 & \\ \\
\Rightarrow & \dfrac{B C}{C D}+1 =\dfrac{B F}{C E} & \text{ [from Eq. (ii)] }\\ \\
\Rightarrow & \dfrac{B C+C D}{C D} =\dfrac{B F}{C E} \Rightarrow \dfrac{B D}{C D}=\dfrac{B F}{C E} & \text{ Hence Proved.}
\end{matrix}
$Show Answer
Show Answer
Thinking Process
Firstly, draw these semi-circles on three sides of right triangle taking each side as diameter. Then, find area of each semi-circle by using formula area of semi-circle $=\dfrac{\pi r^{2}}{2}$ and then proceed required result.
Solution
Let $A B C$ be a right triangle, right angled at $B$ and $A B=y, B C=x$.
Three semi-circles are drawn on the sides $A B, B C$ and $A C$, respectively with diameters $A B$, $B C$ and $A C$, respectively.
Again, let area of circles with diameters $A B, B C$ and $A C$ are respectively $A_1, A_2$ and $A_3$.
To prove $A_3=A_1+A_2$
Proof $\ln \triangle A B C$, by Pythagoras theorem,
$ \begin{aligned} \Rightarrow & A C^{2} & =A B^{2}+B C^{2} \\ \Rightarrow & A C^{2} & =y^{2}+x^{2} \\ \Rightarrow & A C & =\sqrt{y^{2}+x^{2}} \end{aligned} $
We know that, area of a semi-circle with radius, $r=\dfrac{\pi^{2}}{2}$
$\therefore$ Area of semi-circle drawn on $A_3 = \dfrac{\pi}{2}. (\dfrac{AC}{2})^2 = \dfrac{\pi}{2}. (\dfrac{\sqrt{y^2+x^2}}{2})^2$
$\Rightarrow \quad A_3=\dfrac{\pi(y^{2}+x^{2})}{8}$
Now, area of semi-circle drawn on $A_1 = \dfrac{\pi}{2}. (\dfrac{AB}{2})^2 = \dfrac{\pi}{2}. (\dfrac{y}{2})^2$
$\Rightarrow A_1=\dfrac{\pi y^{2}}{8}$
and area of semi-circle drawn on $B C, A_2 = \dfrac{\pi}{2}. (\dfrac{BC}{2})^2 = \dfrac{\pi}{2}. (\dfrac{x}{2})^2$
$\Rightarrow \quad A_2=\dfrac{\pi x^{2}}{8}$
On adding Eqs. (ii) and (iii), we get $A_1+A_2=\dfrac{\pi y^{2}}{8}+\dfrac{\pi x^{2}}{8}$
$ =\dfrac{\pi (y^2 + x^2 )}{8} =A _3 \text{ from Eq. (i) } $
$ \Rightarrow \quad A _1+A _2 =A _3 \text{ Hence proved. } $
18 Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangle drawn on the other two sides of the triangle.
Show Answer
Thinking Process
Firstly draw equilateral triangles on each side of right angled $\triangle A B C$ and then find the area of each equilateral triangle by using the formula, area of equilateral triangle
$=\dfrac{\sqrt{3}}{4}(\text{ Side })^{2}$ and prove the required result.
Solution
Let a right triangle $B A C$ in which $\angle A$ is right angle and $A C=y, A B=x$.
Three equilateral triangles $\triangle A E C, \triangle A F B$ and $\triangle C B D$ are drawn on the three sides of $\triangle A B C$.
Again let area of triangles made on $A C, A B$ and $B C$ are $A_1, A_2$ and $A_3$, respectively.
To prove $A_3=A_1+A_2$
Proof In $\triangle C A B$, by Pythagoras theorem,
$ \begin{aligned} \Rightarrow & B C^{2} & =A C^{2}+A B^{2} \\ \Rightarrow & B C^{2} & =y^{2}+x^{2} \\ \Rightarrow & B C & =\sqrt{y^{2}+x^{2}} \end{aligned} $
We know that, area of an equilateral triangle $=\dfrac{\sqrt{3}}{4}(\text{ Side })^{2}$
$\therefore$ Area of equilateral $\triangle A E C, A_1=\dfrac{\sqrt{3}}{4}(A C)^{2}$
$ \begin{aligned} \Rightarrow & A _1=\dfrac{\sqrt{3}}{4} y^{2} & \ldots \text{(i)} \end{aligned} $
and area of equilateral $\triangle A_2 = \dfrac{\sqrt{3}}{4}. (AB)^2 = \dfrac{\sqrt{3}}{4}. (\sqrt{y^2+x^2})^2$
$ \begin{aligned} & =\dfrac{\sqrt{3}}{4}(y^{2}+x^{2})=\dfrac{\sqrt{3}}{4} y^{2}+\dfrac{\sqrt{3}}{4} x^{2} \\ & =A_1+A_2 \end{aligned} $