Chapter 03 Pair of Linear Equations in Two Variables
Multiple Choice Questions (MCQs)
1 Graphically, the pair of equations
$ \begin{matrix} 6 x-3 y+10=0 \\ 2 x-y+9=0 \end{matrix} $
represents two lines which are
(a) intersecting at exactly one point
(b) intersecting exactly two points
(c) coincident
(d) parallel
Solution (d) The given equations are and table for $2 x-y+9=0$, Hence, the pair of equations represents two parallel lines.Show Answer
$\boldsymbol{{}x}$
0
$-\dfrac{9}{2}$
$\boldsymbol{{}y}=\mathbf{2} \boldsymbol{{}x}+\mathbf{9}$
9
0
Points
$\underline{C}$
$\underline{D}$
(b) exactly two Solutions
(c) infinitely many Solutions
(d) no Solution
Solution (d) Given, equations are $x+2 y+5=0$ and $-3 x-6 y+1=0$ Here, $\quad a_1=1, b_1=2, c_1=5$ and $\quad a_2=-3, b_2=-6, c_2=1$ $
\begin{aligned}
& \dfrac{c_1}{c_2}=\dfrac{5}{1} \\
\therefore \quad & \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}
\end{aligned}
$ $
\therefore \quad \dfrac{a_1}{a_2}=-\dfrac{1}{3}, \dfrac{b_1}{b_2}=-\dfrac{2}{6}=-\dfrac{1}{3}
$ Hence, the pair of equations has no Solution.Show Answer
(a) parallel
(b) always coincident
(c) intersecting or coincident
(d) always intersecting
Solution (c) Condition for a consistent pair of linear equations and $
\begin{aligned}
& \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \quad \text{ [intersecting lines having unique Solution] } \\
& \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} \quad \text{ [coincident or dependent] }
\end{aligned}
$Show Answer
Solution (d) The given pair of equations are $y=0$ and $y=-7$. By graphically, both lines are parallel and having no Solution.Show Answer
(a) parallel
(b) intersecting at $(b, a)$
(c) coincident
(d) intersecting at $(a, b)$
Solution (d) By graphically in every condition, if $a, b>0 ; a, b<0, a>0, b<0 ; a<0, b>0$ but $a=b \neq 0$. The pair of equations $x=a$ and $y=b$ graphically represents lines which are intersecting at $(a, b)$. If $a, b>0$ Similarly, in all cases two lines intersect at $(a, b)$.Show Answer
(a) $\dfrac{1}{2}$
(b) $-\dfrac{1}{2}$
(c) 2
(d) -2
Solution (c) Condition for coincident lines is Given lines, and $$
\begin{align*}
\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} & =\dfrac{c_1}{c_2} \tag{i}\\
3 x-y+8 & =0 \\
6 x-k y+16 & =0
\end{align*}
$$ Here, and From Eq. (i), $
\begin{matrix}
\Rightarrow & 6 \\
\dfrac{1}{k} & =\dfrac{1}{2}
\end{matrix}
$ $
\begin{aligned}
a_1=3, b_1 & =-1, c_1=8 \\
a_2=6, b_2 & =-k, c_2=16 \\
\dfrac{3}{6} & =\dfrac{-1}{-k}=\dfrac{8}{16} \\
\dfrac{1}{k} & =\dfrac{1}{2} \\
k & =2
\end{aligned}
$Show Answer
(a) $-\dfrac{5}{4}$
(b) $\dfrac{2}{5}$
(c) $\dfrac{15}{4}$
(d) $\dfrac{3}{2}$
$\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}$ | |
---|---|
Given lines, and |
$3 x+2 k y-2=0$ $2 x+5 y-1=0$ |
Here, and |
$a_1=3, b_1=2 k, c_1=-2$ $a_2=2, b_2=5, c_2=-1$ |
From Eq. (i), | $\dfrac{3}{2}=\dfrac{2 k}{5}$ |
$\therefore$ | $k=\dfrac{15}{4}$ |
Solution (c) Condition for parallel lines isShow Answer
(a) 3
(b) -3
(c) -12
(d) no value
Solution (d) Condition for infinitely many Solutions $$
\begin{equation*}
\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} \tag{i}
\end{equation*}
$$ The given lines are $c x-y=2$ and $6 x-2 y=3$ Here, $a_1=c, b_1=-1, c_1=-2$ and $a_2=6, b_2=-2, c_2=-3$ From Eq. (i), $
\dfrac{c}{6}=\dfrac{-1}{-2}=\dfrac{-2}{-3}
$ Here, $
\dfrac{c}{6}=\dfrac{1}{2} \quad \text{ and } \quad \dfrac{c}{6}=\dfrac{2}{3}
$ $
\Rightarrow \quad c=3 \text{ and } \quad c=4
$ Since, $c$ has different values. Hence, for no value of $c$ the pair of equations will have infinitely many Solutions.Show Answer
(a) $10 x+14 y+4=0$
(b) $-10 x-14 y+4=0$
(c) $-10 x+14 y+4=0$
(d) $10 x-14 y+4=0$
Solution (d) Condition for dependent linear equations $$
\begin{equation*}
\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=\dfrac{1}{k} \tag{i}
\end{equation*}
$$ Given equation of line is, $-5 x+7 y-2=0$ Here, $$
\begin{align*}
a_1 & =-5, b_1=7, c_1=-2 \\
-\dfrac{5}{a_2} & =\dfrac{7}{b_2}=-\dfrac{2}{c_2}=\dfrac{1}{k} \tag{say}\\
a_2 & =-5 k, b_2=7 k, c_2=-2 k
\end{align*}
$$ From Eq. (i), $\Rightarrow$ where, $k$ is any arbitrary constant.
Putting $k=2$, then
and
$a_2=-10, b_2=14$
$c_2=-4$ $\therefore$ The required equation of line becomes $
\begin{array}{lrl}
& \quad \quad\quad\quad\quad& a_2x+b_2y+c_2=0 \\
\Rightarrow & & -10x+14y-4=0 \\
\Rightarrow & & 10x-14y+4=0
\end{array}
$Show Answer
(a) $x+y=1$ and $2 x-3 y=-5$
(b) $2 x+5 y=-11$ and $4 x+10 y=-22$
(c) $2 x-y=1$ and $3 x+2 y=0$
(d) $x-4 y-14=0$ and $5 x-y-13=0$
Solution (b) If $x=2, y=-3$ is a unique Solution of any pair of equation, then these values must satisfy that pair of equations. From option (b), $
\begin{aligned}
& LHS=2 x+5 y=2(2)+5(-3)=4-15=-11=RHS \\
& LHS=4 x+10 y=4(2)+10(-3)=8-30=-22=RHS
\end{aligned}
$ $
\text{ and }
$Show Answer
Solution (c) Since, $x=a$ and $y=b$ is the Solution of the equations $x-y=2$ and $x+y=4$, then these values will satisfy that equations and $$
\begin{align*}
& a-b=2 \tag{i}\\
& a+b=4 \tag{ii}
\end{align*}
$$ On adding Eqs. (i) and (ii), we get $
2 a=6
$ $
\therefore \quad a=3 \text{ and } b=1
$Show Answer
Solution (d) Let number of $\text {₹} 1$ coins $=x$ and number of $\text {₹} 2$ coins $=y$ Now, by given conditions $\quad x+y=50$ Also, $\quad x \times 1+y \times 2=75$ $\Rightarrow \quad x+2 y=75$ On subtracting Eq. (i) from Eq. (ii), we get $
\Rightarrow \quad y=25
$ When $y=25$, then $x=25$ $
(x+2 y)-(x+y)=75-50
$Show Answer
Show Answer
Solution
(c) Let $x$ yr be the present age of father and $y$ yr be the present age of son.
Four years hence, it has relation by given condition,
$(x+4)$ | $=4(y+4)$ | ||
---|---|---|---|
and | $x-4 y$ | $=12$ | |
$x$ | $=6 y$ |
On putting the value of $x$ from Eq. (ii) in Eq. (i), we get
$ \begin{matrix} \Rightarrow & 2 y=12 \\ \Rightarrow & y=6 \end{matrix} $
When $y=6$, then $x=36$
Hence, present age of father is $36 yr$ and age of son is $6 yr$.
Very Short Answer Type Questions
1 Do the following pair of linear equations have no Solution? Justify your answer.
(i) $2 x+4 y=3$ and $12 y+6 x=6$
(ii) $x=2 y$ and $y=2 x$
(iii) $3 x+y-3=0$ and $2 x+\dfrac{2}{3} y=2$
Solution Condition for no Solution $\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}$ (i) Yes, given pair of equations, $
\begin{aligned}
& 2 x+4 y=3 \text{ and } 12 y+6 x=6 \\
& \text{ Here, } \quad a_1=2, b_1=4, c_1=-3 \text{, } \\
& a_2=6, b_2=12, c_2=-6 \\
& \therefore \quad \dfrac{a_1}{a_2}=\dfrac{2}{6}=\dfrac{1}{3}, \dfrac{b_1}{b_2}=\dfrac{4}{12}=\dfrac{1}{3} \\
& \dfrac{c_1}{c_2}=\dfrac{-3}{-6}=\dfrac{1}{2} \\
& \therefore \quad \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}
\end{aligned}
$ Hence, the given pair of linear equations has no Solution. (ii) No, given pair of equations, or $
x=2 y \text{ and } y=2 x
$ $
x-2 y=0 \text{ and } 2 x-y=0
$ Here, $
\begin{aligned}
& a_1=1, b_1=-2, c_1=0 \\
& a_2=2, b_2=-1, c_2=0
\end{aligned}
$ $
\begin{matrix}
\therefore & \dfrac{a_1}{a_2}=\dfrac{1}{2} \text{ and } \dfrac{b_1}{b_2}=\dfrac{2}{1} \\
\because & \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}
\end{matrix}
$ Hence, the given pair of linear equations has unique Solution. (iii) No, given pair of equations, $
3 x+y-3=0 \text{ and } 2 x+\dfrac{2}{3} y-2=0
$ Here, $
\begin{aligned}
& a_1=3, b_1=1, c_1=-3, \\
& a_2=2, b_2=\dfrac{2}{3}, c_2=-2 \\
& \dfrac{a_1}{a_2}=\dfrac{3}{2}, \dfrac{b_1}{b_2}=\dfrac{1}{2 / 3}=\dfrac{3}{2} \\
& \dfrac{c_1}{c_2}=\dfrac{-3}{-2}=\dfrac{3}{2}
\end{aligned}
$ $
\begin{matrix}
\therefore & \dfrac{a_1}{a_2}=\dfrac{3}{2}, \dfrac{b_1}{b_2}=\dfrac{1}{2 / 3}=\dfrac{3}{2} \\
\because \quad & \dfrac{c_1}{c_2}=\dfrac{-3}{-2}=\dfrac{3}{2} \\
& \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=\dfrac{3}{2}
\end{matrix}
$ Hence, the given pair of linear equations is coincident and having infinitely many Solutions.Show Answer
(i) $3 x+\dfrac{1}{7} y=3$ and $7 x+3 y=7$
(ii) $-2 x-3 y=1$ and $6 y+4 x=-2$
(iii) $\dfrac{x}{2}+y+\dfrac{2}{5}=0$ and $4 x+8 y+\dfrac{5}{16}=0$
Solution Condition for coincident lines, $
\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}
$ (i) No, given pair of linear equations and $
3 x+\dfrac{y}{7}-3=0
$ where, $
\begin{gathered}
7 x+3 y-7=0, \\
a_1=3, b_1=\dfrac{1}{7}, c_1=-3 ; \\
a_2=7, b_2=3, c_2=-7
\end{gathered}
$ $
\text{ Now, } \quad \dfrac{a_1}{a_2}=\dfrac{3}{7}, \dfrac{b_1}{b_2}=\dfrac{1}{21}, \dfrac{c_1}{c_2}=\dfrac{3}{7}
$ Hence, the given pair of linear equations has unique Solution.
(ii) Yes, given pair of linear equations $
\begin{aligned}
& -2 x-3 y-1=0 \text{ and } 6 y+4 x+2=0 \\
& \text{ where, } \quad a_1=-2, b_1=-3, c_1=-1 \text{; } \\
& a_2=4, b_2=6, c_2=2 \\
& \dfrac{a_1}{a_2}=-\dfrac{2}{4}=-\dfrac{1}{2} \\
& \dfrac{b_1}{b_2}=-\dfrac{3}{6}=-\dfrac{1}{2}, \dfrac{c_1}{c_2}=-\dfrac{1}{2} \\
& \because \quad \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=-\dfrac{1}{2}
\end{aligned}
$ Hence, the given pair of linear equations is coincident. (iii) No, the given pair of linear equations are Here, $
\dfrac{x}{2}+y+\dfrac{2}{5}=0 \text{ and } 4 x+8 y+\dfrac{5}{16}=0
$ . $a_1=\dfrac{1}{2}, b_1=1, c_1=\dfrac{2}{5}$ $a_2=4, b_2=8, \quad c_2=\dfrac{5}{16}$ Now, $
\begin{aligned}
& \dfrac{a_1}{a_2}=\dfrac{1}{8}, \dfrac{b_1}{b_2}=\dfrac{1}{8}, \dfrac{c_1}{c_2}=\dfrac{32}{25} \\
& \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}
\end{aligned}
$ Hence, the given pair of linear equations has no Solution.Show Answer
(i) $-3 x-4 y=12$ and $4 y+3 x=12$
(ii) $\dfrac{3}{5} x-y=\dfrac{1}{2}$ and $\dfrac{1}{5} x-3 y=\dfrac{1}{6}$
(iii) $2 a x+by=a$ and $4 a x+2 by-2 a=0 ; a, b \neq 0$
(iv) $x+3 y=11$ and $2(2 x+6 y)=22$
Solution Conditions for pair of linear equations are consistent and $
\begin{aligned}
& \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} & \text{[unique Solution]}\\
& \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} & \text{[infinitely many Solutions]}
\end{aligned}
$ (i) No, the given pair of linear equations $$
\begin{align*}
& -3 x-4 y=12 \text{ and } 3 x+4 y=12 \\
\text{ Here, } & a_1=-3, b_1=-4, c_1=-12 \\
& a_2=3, b_2=4, c_2=-12 \\
\text{ Now, } & \dfrac{a_1}{a_2}=-\dfrac{3}{3}=-1, \dfrac{b_1}{b_2}=-\dfrac{4}{4}=-1, \dfrac{c_1}{c_2}=\dfrac{-12}{-12}=1 \\
\because & \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}
\end{align*}
$$ Hence, the pair of linear equations has no Solution, i.e., inconsistent.
(ii) Yes, the given pair of linear equations $
\begin{aligned}
& \quad\quad\quad\quad\quad\quad\quad \dfrac{3}{5} x-y=\dfrac{1}{2} \text{ and } \dfrac{1}{5} x-3 y=\dfrac{1}{6} \\
& \text{ Here, } \quad \begin{aligned}
a_1 & =\dfrac{3}{5}, b_1=-1, c_1=-\dfrac{1}{2} \\
a_2 & =\dfrac{1}{5}, b_2=-3, c_2=-\dfrac{1}{6} \\
\text{ and } \quad \dfrac{a_1}{a_2} & =\dfrac{3}{1}, \dfrac{b_1}{b_2}=\dfrac{-1}{-3}=\dfrac{1}{3}, \dfrac{c_1}{c_2}=\dfrac{3}{1} & \quad \because \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}
\end{aligned}
\end{aligned}
$ Hence, the given pair of linear equations has unique Solution, i.e., consistent. (iii) Yes, the given pair of linear equations $
\begin{aligned}
& \quad\quad\quad 2 a x+b y-a=0 \\
& \text{ and } \quad 4 a x+2 b y-2 a=0 ; a, b \neq 0 \\
& \quad \begin{aligned}
\text{ Here, } \quad\quad a_1 & =2 a, b_1=b, c_1=-a ; \\
a_2 & =4 a, b_2=2 b, c_2=-2 a \\
\text{ Now, } \quad \dfrac{a_1}{a_2} & =\dfrac{2 a}{4 a}=\dfrac{1}{2}, \dfrac{b_1}{b_2}=\dfrac{b}{2 b}=\dfrac{1}{2}, \dfrac{c_1}{c_2}=\dfrac{-a}{-2 a}=\dfrac{1}{2} \\
\because \quad \dfrac{a_1}{a_2} & =\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=\dfrac{1}{2}
\end{aligned}
\end{aligned}
$ Hence, the given pair of linear equations has infinitely many Solutions, i.e., consistent or dependent. (iv) No, the given pair of linear equations $
\begin{aligned}
& x+3 y=11 \text{ and } 2 x+6 y=11 \\
& a_1 =1, b_1=3, c_1=-11 \\
& a_2 =2, b_2=6, c_2=-11 \\
\text{ Now, } \dfrac{a_1}{a_2} & =\dfrac{1}{2}, \dfrac{b_1}{b_2}=\dfrac{3}{6}=\dfrac{1}{2}, \dfrac{c_1}{c_2}=\dfrac{-11}{-11}=1 \\
\therefore & \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}
\end{aligned} $ Hence, the pair of linear equation have no Solution i.e., inconsistent.Show Answer
Solution No, the given pair of linear equations $
\lambda x+3 y+7=0 \text{ and } 2 x+6 y-14=0
$ $
\text{ Here, } \quad a_1=\lambda, b_1=3, c_1=7 ; a_2=2, b_2=6, c_2=-14
$ If $\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}$, then system has infinitely many Solutions. $
\begin{matrix}
\Rightarrow & \dfrac{\lambda}{2}=\dfrac{3}{6}=-\dfrac{7}{14} \\
\because & \dfrac{\lambda}{2}=\dfrac{3}{6} \Rightarrow \lambda=1 \\
\text{ and } & \dfrac{\lambda}{2}=-\dfrac{7}{14} \Rightarrow \lambda=-1
\end{matrix}
$ Hence, $\lambda=-1$ does not have a unique value. So, for no value of $\lambda$ the given pair of linear equations has infinitely many Solutions.Show Answer
Solution False, the given pair of linear equations and $
\begin{aligned}
x-2 y-8 & =0 \\
5 x-10 y-c & =0 \\
a_1 & =1, b_1=-2, c_1=-8 \\
a_2 & =5, b_2=-10, c_2=-c \\
\dfrac{a_1}{a_2} & =\dfrac{1}{5}, \dfrac{b_1}{b_2}=\dfrac{-2}{-10}=\dfrac{1}{5} \\
\dfrac{c_1}{c_2} & =\dfrac{-8}{-c}=\dfrac{8}{c}
\end{aligned}
$ Here, Now, But if $c=40$ (real value), then the ratio $\dfrac{c_1}{c_2}$ becomes $\dfrac{1}{5}$ and then the system of linear equations has an infinitely many Solutions. Hence, at $c=40$, the system of linear equations does not have a unique Solution.Show Answer
Show Answer
Solution
Not true, by graphically, we observe that $x=7$ line is parallel to $Y$-axis and perpendicular to $X$-axis.
Short Answer Type Questions
1 For which value(s) of $\lambda$, do the pair of linear equations $\lambda x+y=\lambda^{2}$ and $x+\lambda y=1$ have
(i) no Solution? (ii) infinitely many Solutions?
(iii) a unique Solution?
Solution The given pair of linear equations is $
\lambda x+y=\lambda^{2} \text{ and } x+\lambda y=1
$ Here, $
\begin{aligned}
& a_1=\lambda, b_1=1, c_1=-\lambda^{2} \\
& a_2=1, b_2=\lambda, c_2=-1
\end{aligned}
$ (i) For no Solution, $
\begin{aligned}
& \quad\quad\quad \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \\
\Rightarrow & \quad\quad\quad \dfrac{\lambda}{1}=\dfrac{1}{\lambda} \neq \dfrac{-\lambda ^2}{-1}
\end{aligned}
$ $
\begin{aligned}
\Rightarrow &\quad\quad\quad \dfrac{\lambda}{1}=\dfrac{\lambda ^2}{1} \\
\Rightarrow & \quad\quad\quad \lambda(\lambda - 1)=0
\end{aligned}
$ When $\lambda \neq 0$, then $\lambda =1 $ Here, we take only $\lambda=-1$ because at $\lambda=1$ the system of linear equations has infinitely many Solutions. (ii) For infinitely many Solutions, $
\begin{aligned}& \dfrac{a_1}{a_2} & =\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} \\
\Rightarrow & \dfrac{\lambda}{1} & =\dfrac{1}{\lambda}=\dfrac{\lambda^{2}}{1} \\
\Rightarrow & \dfrac{\lambda}{1} & =\dfrac{\lambda^{2}}{1} \\
\Rightarrow & \lambda(\lambda-1) & =0
\end{aligned}
$ When $\lambda \neq 0$, then $\lambda=1$ (iii) For a unique Solution, $
\begin{aligned}& \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \\
\Rightarrow \dfrac{\lambda}{1} \neq \dfrac{1}{\lambda} \\
\Rightarrow & \quad \lambda ^{2} \neq 1 \\
\Rightarrow & \lambda \neq \pm 1
\end{aligned}
$ $
\begin{array}{lll}
& & &\dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \Rightarrow \dfrac{\lambda}{1} \neq \dfrac{1}{\lambda} \\
\Rightarrow & & &\lambda ^2 \neq 1 \\
\Rightarrow & & &\lambda \neq \pm 1
\end{array}
$ So, all real values of $\lambda$ except $\pm 1$Show Answer
$ \begin{aligned} k x+3 y & =k-3 \\ 12 x+k y & =k \end{aligned} $
has no Solution?
Solution Given pair of linear equations is and $$
\begin{equation*}
k x+3 y=k-3 \tag{i}
\end{equation*}
$$ $$
\begin{equation*}
12 x+k y=k \tag{ii}
\end{equation*}
$$ On comparing with $a x+b y+c=0$, we get $
\begin{aligned}
& a_1=k, b_1=3 \text{ and } c_1=-(k-3) \\
& a_2=12, b_2=k \text{ and } c_2=-k
\end{aligned}
$ For no Solution of the pair of linear equations, [from Eq. (i)] [from Eq. (ii)] $
\begin{matrix}
\text{ Taking first two parts, we get } & \\
\Rightarrow & \dfrac{k}{12}=\dfrac{3}{k} \\
\Rightarrow & k^{2}=36 \\
\Rightarrow & k= \pm 6
\end{matrix}
$ $
\begin{aligned}
& \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \\
& \dfrac{k}{12}=\dfrac{3}{k} \neq \dfrac{-(k-3)}{-k}
\end{aligned}
$ Taking last two parts, we get $\begin{array}{lr} & \dfrac{3}{k} \neq \dfrac{k-3}{k} \\ \Rightarrow & 3 k \neq k(k-3) \\ \Rightarrow & 3 k-k(k-3) \neq 0 \\ \Rightarrow & k(3-k+3) \neq 0 \\ \Rightarrow & k(6-k) \neq 0 \\ \Rightarrow & k \neq 0 \text { and } k \neq 6\end{array}$ Hence, required value of $k$ for which the given pair of linear equations has no Solution is -6 .Show Answer
$ \begin{gathered} x+2 y=1 \\ (a-b) x+(a+b) y=a+b-2 \end{gathered} $
Solution Given pair of linear equations are For infinitely many Solutions of the the pairs of linear equations, $
\begin{aligned}
\dfrac{a_1}{a_2} & =\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} \\
\Rightarrow \quad \dfrac{1}{a-b} & =\dfrac{2}{a+b}=\dfrac{-1}{-(a+b-2)}
\end{aligned}
$ Taking first two parts, $$
\begin{array}{lr}& \dfrac{1}{a-b} & =\dfrac{2}{a+b} \\
\Rightarrow & a+b =2 a-2 b \\
\Rightarrow & 2 a-a =2 b+b \\
\Rightarrow & a =3 b \tag{iii}
\end{array}
$$ $
\begin{array}{lll}
& \quad \quad \quad\dfrac{1}{a-b} & =\dfrac{2}{a+b} \\
\Rightarrow & \quad\quad\quad a+b & =2a-2b \\
\Rightarrow & \quad\quad\quad 2a-a & =2b+b \\
\Rightarrow & \quad\quad\quad a & =3b
\end{array}
$ Taking last two parts, $$
\begin{align*}
& \dfrac{2}{a+b} & =\dfrac{1}{(a+b-2)} \\
\Rightarrow & 2 a+2 b-4 & =a+b \\
\Rightarrow & a+b & =4 \tag{iv}
\end{align*}
$$ Now, put the value of a from Eq. (iii) in Eq. (iv), we get $
3 b+b=4
$ $
\begin{matrix}
\Rightarrow & 4 b & =4 \\
\Rightarrow & b & =1
\end{matrix}
$ Put the value of $b$ in Eq. (iii), we get $
\Rightarrow \quad a=3
$ So, the values $(a, b)=(3,1)$ satisfies all the parts. Hence, required values of $a$ and $b$ are 3 and 1 respectively for which the given pair of linear equations has infinitely many Solutions.Show Answer
$x+2 y$
$=1$
(i)
and $\quad(a-b) x+(a+b) y$
$=a+b-2$
$\ldots$ (ii)
On comparing with $a x+b y+c$
$=0$, we get
[from Eq. (i)]
$a_1$
$=1, b_1=2$ and $c_1=-1$
[from Eq. (ii)]
$a_2$
$=(a-b), b_2=(a+b)$
(i) $3 x-y-5=0$ and $6 x-2 y-p=0$, if the lines represented by these equations are parallel.
(ii) $-x+p y=1$ and $p x-y=1$, if the pair of equations has no Solution.
(iii) $-3 x+5 y=7$ and $2 p x-3 y=1$,
if the lines represented by these equations are intersecting at a unique point.
(iv) $2 x+3 y-5=0$ and $p x-6 y-8=0$,
if the pair of equations has a unique Solution.
(v) $2 x+3 y=7$ and $2 p x+p y=28-q y$,
if the pair of equations has infinitely many Solutions.
Solution (i) Given pair of linear equations is
$3 x-y-5=0$
$6 x-2 y-p=0$
and
On comparing with $a x+b y+c=0$, we get
and $
\begin{aligned}
& a_1=3, b_1=-1 \\
& c_1=-5 \\
& a_2=6, b_2=-2
\end{aligned}
$ $
c_2=-p
$ and
[from Eq. (ii)] Since, the lines represented by these equations are parallel, then $
\begin{matrix}
\dfrac{a_1}{a_2} & =\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \\
\dfrac{3}{6} & =\dfrac{-1}{-2} \neq \dfrac{-5}{-p} \\
\text{ Taking last two parts, we get } & \dfrac{-1}{-2} \neq \dfrac{-5}{-p} \\
\Rightarrow \quad & \dfrac{1}{2} \neq \dfrac{5}{p} \\
\Rightarrow \quad & p \neq 10
\end{matrix}
$ Hence, the given pair of linear equations are parallel for all real values of $p$ except 10 i.e., $p \in R-{10}$. (ii) Given pair of linear equations is $
\begin{aligned}
& -x+p y-1=0 \\
& \text{ and } \quad p x-y-1=0 \\
& \text{ On comparing with } a x+b y+c=0 \text{, we get } \\
& \begin{matrix}
a_1=-1, b_1=p \text{ and } c_1=-1 \\
a_2=p, b_2=-1 \text{ and } c_2=-1
\end{matrix}
\end{aligned}
$ Since, the pair of linear equations has no Solution i.e., both lines are parallel to each other. $
\therefore \quad \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \Rightarrow \dfrac{-1}{p}=\dfrac{p}{-1} \neq \dfrac{-1}{-1}
$ Taking last two parts, we get $
\begin{aligned}
& \dfrac{p}{-1} \neq \dfrac{-1}{-1} \\
& \Rightarrow \quad p \neq-1
\end{aligned}
$ Taking first two parts, we get $\begin{array}{ll} & \dfrac{-1}{p}=\dfrac{p}{-1} \\ \Rightarrow & p^2=1 \\ \Rightarrow & p= \pm 1 \\ \text { but } & p \neq-1 \\ \therefore & p=1\end{array}$ Hence, the given pair of linear equations has no Solution for $p=1$. (iii) Given, pair of linear equations is $\quad\quad\quad -3 x+5 y-7=0$ $\ldots$ (i) On comparing with $a x+b y+c=0$, we get $\quad\quad\quad\quad a_1=-3, b_1=5$ and $\quad\quad\quad c_1=-7 \quad\quad\quad\quad$ [from Eq. (i)] $ \quad\quad\quad\quad a_2=2p,b_2=-3 $ and $\quad\quad\quad c_1=-1 \quad\quad\quad\quad$ [from Eq. (ii)] Since, the lines are intersecting at a unique point i.e., it has a unique Solution. $
\begin{matrix}
\therefore & \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \\
\Rightarrow & \dfrac{-3}{2 p} \neq \dfrac{5}{-3} \\
\Rightarrow & 9 \neq 10 p \\
\Rightarrow & p \neq \dfrac{9}{10} .
\end{matrix}
$ Hence, the lines represented by these equations are intersecting at a unique point for all real values of $p$ except $\dfrac{9}{10}$ (iv) Given pair of linear equations is $
\begin{aligned}
& 2 x+3 y-5=0 \\
& p x-6 y-8=0 \\
& a_1=2, b_1=3 \\
& c_1=-5 \\
& a_2=p, b_2=-6 \\
& c_2=-8
\end{aligned}
$ Since, the pair of linear equations has a unique Solution. $
\begin{matrix}
\therefore & \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \\
\Rightarrow & \dfrac{2}{p} \neq \dfrac{3}{-6} \\
\Rightarrow & p \neq-4
\end{matrix}
$ Hence, the pair of linear equations has a unique Solution for all values of $p$ except -4 i.e., $
p \in R-{-4,} .
$ (v) Given pair of linear equations is $$
\begin{align*}
& 2 x+3 y & =7 \tag{i}\\
\text{ and } & 2 p x+p y & =28-q y \\
\Rightarrow & 2 p x+(p+q) y & =28 \tag{ii}
\end{align*}
$$ On comparing with $a x+b y+c=0$, we get $
\begin{aligned}
& a_1=2, b_1=3 \\
& c_1=-7 \\
& a_2=2 p, b_2=(p+q)
\end{aligned}
$ $
\begin{matrix}
\text{ and } & c_1=-7 \\
a_2=2 p, b \\
\text{ and } & c_2=-28
\end{matrix}
$ Since, the pair of equations has infinitely many Solutions i.e., both lines are coincident. $
\begin{matrix}
\therefore & \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2} \\
\Rightarrow & \dfrac{2}{2 p}=\dfrac{3}{(p+q)}=\dfrac{-7}{-28}
\end{matrix}
$ Taking first and third parts, we get $
\begin{aligned}
& \dfrac{2}{2 p} & =\dfrac{-7}{-28} \\
\Rightarrow & \dfrac{1}{p} & =\dfrac{1}{4} \\
\Rightarrow & p & =4
\end{aligned}
$ Again, taking last two parts, we get $
\begin{aligned}
& \dfrac{3}{p+q}=\dfrac{-7}{-28} \Rightarrow \dfrac{3}{p+q}=\dfrac{1}{4} \\
& \Rightarrow \quad p+q=12 \\
& \Rightarrow \quad 4+q=12 \quad[\because p=4] \\
& \therefore \quad q=8
\end{aligned}
$ Here, we see that the values of $p=4$ and $q=8$ satisfies all three parts. Hence, the pair of equations has infinitely many Solutions for the values of $p=4$ and $q=8$Show Answer
and $\quad 2 p x-3 y-1=0$ $\ldots$ (ii)
Solution Given linear equations are $x-3 y-2=0$ $$
\begin{equation*}
-2 x+6 y-5=0 \tag{i}
\end{equation*}
$$ On comparing both the equations with $a x+b y+c=0$, we get and
$$
a_1=1, b_1=-3
$$ $$
c_1=-2 \quad\quad\quad [\text{from Eq.} (i)]
$$ and
$a_2=-2, b_2=6$ $c_2=-5 \quad\quad$
[from Eq. (ii)] Here,
$\dfrac{a_1}{a_2}=\dfrac{1}{-2}$ $\dfrac{b_1}{b_2}=\dfrac{-3}{6}=-\dfrac{1}{2}$ and $\dfrac{c_1}{c_2}=\dfrac{-2}{-5}=\dfrac{2}{5}$ i.e.,
$\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}$
[parallel lines] i.e., Hence, two straight paths represented by the given equations never cross each other, because they are parallel to each other.Show Answer
Solution Condition for the pair of system to have unique Solution $
\dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}
$ Let the equations are, and $
\begin{matrix}
a_1 x+b_1 y+c_1=0 \\
a_2 x+b_2 y+c_2=0
\end{matrix}
$ Since, $x=-1$ and $y=3$ is the unique Solution of these two equations, then $$
\begin{matrix}
\Rightarrow & a_1(-1)+b_1(3)+c_1=0 \\
\text{ and } & -a_1+3 b_1+c_1=0 \\
\Rightarrow & a_2(-1)+b_2(3)+c_2=0 \\
& -a_2+3 b_2+c_2=0 \tag{ii}
\end{matrix}
$$ So, the different values of $a_1, a_2, b_1, b_2, c_1$ and $c_2$ satisfy the Eqs. (i) and (ii). Hence, infinitely many pairs of linear equations are possible.Show Answer
Solution Given equations are and $\quad$| $2 x+y=23$ |
| —: |
| $4 x-y=19$ | On adding both equations, we get $$
\begin{equation*}
6 x=42 \Rightarrow x=7 \tag{ii}
\end{equation*}
$$ Put the value of $x$ in Eq. (i), we get $$
\begin{array}{lrlrl}
\Rightarrow & 14+y & =23 \\
\Rightarrow & y & =23-14 \\
\Rightarrow & y & =9 \\
\text { We have, } & 5 y-2 x & =5 \times 9-2 \times 7 \\
& & =45-14=31 \\
\text { and } & \dfrac{y}{x}-2=\dfrac{4}{x}-2 & =\dfrac{9}{7}-2=\dfrac{9-14}{7}=-\dfrac{5}{7}
\end{array}
$$ We have, Hence, the values of $(5 y-2 x)$ and $\left(\dfrac{y}{x}-2\right)$ are 31 and $\dfrac{-5}{7}$, respectively.Show Answer
Solution By property of rectangle, Lengths are equal, i.e., $\Rightarrow$ $$
\begin{align*}
C D & =A B \\
x+3 y & =13 \tag{i}\\
A D & =B C \\
3 x+y & =7 \tag{ii}
\end{align*}
$$ On multiplying Eq. (ii) by 3 and then subtracting Eq. (i), we get $
\begin{matrix}
9 x+3 y=21 \\
x+3 y=13 \\
\hline 8 x \quad=8 \\
\hline x=1
\end{matrix}
$ On putting $x=1$ in Eq. (i), we get $
3 y=12 \Rightarrow y=4
$ Hence, the required values of $x$ and $y$ are 1 and 4, respectively.Show Answer
(i) $x+y=3.3$, $\dfrac{0.6}{3 x-2 y}=-1,3 x-2 y \neq 0$
(ii) $\dfrac{x}{3}+\dfrac{y}{4}=4$, $\dfrac{5 x}{6}-\dfrac{y}{8}=4$
(iii) $4 x+\dfrac{6}{y}=15$, $6 x-\dfrac{8}{y}=14, y \neq 0$
(iv) $\dfrac{1}{2 x}-\dfrac{1}{y}=-1$ $\dfrac{1}{x}+\dfrac{1}{2 y}=8, x, y \neq 0$
(v) $43 x+67 y=-24$, $67 x+43 y=24$
(vi) $\dfrac{x}{a}+\dfrac{y}{b}=a+b$, $\dfrac{x}{a^{2}}+\dfrac{y}{b^{2}}=2, a, b \neq 0$
(vii) $\dfrac{2 x y}{x+y}=\dfrac{3}{2^{\prime}}$ $\dfrac{x y}{2 x-y}=\dfrac{-3}{10}, x+y \neq 0,2 x-y \neq 0$
Solution (i) Given pair of linear equations are is $$
\begin{array}
x+y & =3.3 \tag {i} \\
\dfrac{0.6}{3 x-2 y} & =-1
\end{array}
$$ $$
\begin{array}{rrr}
\Rightarrow & 0.6=-3 x+2 y \\
\Rightarrow & 3 x-2 y=-0.6 \tag{ii}
\end{array}
$$ Now, multiplying Eq. (i) by 2 and then adding with Eq. (ii), we get $
\begin{aligned}
\Rightarrow & 2 x+2 y & =6.6 \\
\Rightarrow & 3 x-2 y & =-0.6 \\
5 x & =6 \quad \Rightarrow \quad x=\dfrac{6}{5}=1.2
\end{aligned}
$ Now, put the value of $x$ in Eq. (i), we get $
\begin{aligned}
& 1.2+y =3.3 \\
\Rightarrow & \quad\quad y =3.3-1.2 \\
\Rightarrow & \quad\quad y =2.1
\end{aligned}
$ Hence, the required values of $x$ and $y$ are 1.2 and 2.1, respectively. (ii) Given, pair of linear equations is
$$
\dfrac{x}{3}+\dfrac{y}{4}=4
$$ On multiplying both sides by $\operatorname{LCM}(3,4)=12$, we get
$$
4 x+3 y=48
$$ $$
\dfrac{5 x}{6}-\dfrac{y}{8}=4
$$ On multiplying both sides by $LCM(6,8)=24$, we get $$
\begin{equation*}
20 x-3 y=96 \tag{ii}
\end{equation*}
$$ Now, adding Eqs. (i) and (ii), we get $
24 x=144
$ $
\Rightarrow \quad x=6
$ Now, put the value of $x$ in Eq. (i), we get $
\begin{aligned}
& & 4 \times 6+3 y & =48 \\
\Rightarrow & & 3 y & =48-24 \\
\Rightarrow & & 3 y & =24 \Rightarrow \quad y=8
\end{aligned}
$ Hence, the required values of $x$ and $y$ are 6 and 8 , respectively. (iii) Given pair of linear equations are $$
\begin{align*}
& 4 x+\dfrac{6}{y}=15 \tag{i}\\
& 6 x-\dfrac{8}{y}=14, y \neq 0 \tag{ii}
\end{align*}
$$ and Let $u=\dfrac{1}{y}$, then above equation becomes $$
\begin{align*}
& 4 x+6 u=15 \tag{iii}\\
& 6 x-8 u=14 \tag{iv}
\end{align*}
$$ On multiplying Eq. (iii) by 8 and Eq. (iv) by 6 and then adding both of them, we get $$
\begin{aligned}
32 x+48 u & =120 \\
36 x-48 u & =84 \quad \Rightarrow \quad 68 x=204 \\
x & =3
\end{aligned}
$$ $\Rightarrow$ Now, put the value of $x$ in Eq. (iii), we get $
\begin{aligned}
\Rightarrow & & 4 \times 3+6 u & =15 \\
\Rightarrow & & 6 u & =15-12 \Rightarrow 6 u=3 \\
\Rightarrow & & u & =\dfrac{1}{2} \Rightarrow \dfrac{1}{y}=\dfrac{1}{2} \\
\Rightarrow & & y & =2
\end{aligned}
$ $
\Rightarrow \quad u=\dfrac{1}{2} \Rightarrow \dfrac{1}{y}=\dfrac{1}{2} \quad \because u=\dfrac{1}{y}
$ Hence, the required values of $x$ and $y$ are 3 and 2, respectively. (iv) Given pair of linear equations is and $$
\begin{align*}
& \dfrac{1}{2 x}-\dfrac{1}{y}=-1 \tag{i}\\
& \dfrac{1}{x}+\dfrac{1}{2 y}=8, x, y \neq 0 \tag{ii}
\end{align*}
$$ Let $u=\dfrac{1}{x}$ and $v=\dfrac{1}{y}$, then the above equations becomes $\begin{array}{lc} & \dfrac{u}{2}-v=-1 \\ \Rightarrow & u-2 v=-2 \\ \text { and } & u+\dfrac{v}{2}=8 \\ \Rightarrow & 2 u+v=16\end{array}$ On, multiplying Eq. (iv) by 2 and then adding with Eq. (iii), we get $
\begin{aligned}
4 u+2 v & =32 \\
u-2 v & =-2 \\
\hline 5 u & =30 \\
\Rightarrow \quad u & =6
\end{aligned}
$ Now, put the value of $u$ in Eq. (iv), we get $
2 \times 6+v=16
$ $
\begin{matrix}
\Rightarrow & v=16-12=4 \\
\Rightarrow & v=4 \\
\therefore & x=\dfrac{1}{u}=\dfrac{1}{6} \text{ and } y=\dfrac{1}{v}=\dfrac{1}{4}
\end{matrix}
$ Hence, the required values of $x$ and $y$ are $\dfrac{1}{6}$ and $\dfrac{1}{4}$, respectively. (v) Given pair of linear equations is $$
\begin{align*}
& 43 x+67 y=-24 \tag{i}\\
& 67 x+43 y=24 \tag{ii}
\end{align*}
$$ and On multiplying Eq. (i) by 43 and Eq. (ii) by 67 and then subtracting both of them, we get $
\begin{aligned}
& (67)^{2} x+43 \times 67 y=24 \times 67 \\
& (43)^{2} x+43 \times 67 y=-24 \times 43 \\
& {(67)^{2}-(43)^{2}} x=24(67+43)
\end{aligned}
$ $
\begin{aligned}
& \Rightarrow \quad(67+43)(67-43) x=24 \times 110 \quad[\because(a^{2}-b^{2})=(a-b)(a+b)] \\
& \Rightarrow \quad 110 \times 24 x=24 \times 110 \\
& \Rightarrow \quad x=1
\end{aligned}
$ Now, put the value of $x$ in Eq. (i), we get $
\begin{aligned}
43 \times 1+67 y & =-24 \\
67 y & =-24-43
\end{aligned}
$ $
\begin{matrix}
\Rightarrow & 67 y=-24 \\
\Rightarrow & 67 y=-67 \\
\Rightarrow & y=-1
\end{matrix}
$ Hence, the required values of $x$ and $y$ are 1 and -1 , respectively.
(vi) Given pair of linear equations is and $$
\begin{align*}
\dfrac{x}{a}+\dfrac{y}{b} & =a+b \tag{i}\\
\dfrac{x}{a^{2}}+\dfrac{y}{b^{2}} & =2, a, b \neq 0 \tag{ii}
\end{align*}
$$ On multiplying Eq. (i) by $\dfrac{1}{a}$ and then subtracting from Eq. (ii), we get $
\begin{aligned}
\dfrac{x}{a^{2}}+\dfrac{y}{b^{2}} & =2 \\
\dfrac{x}{a^{2}}+\dfrac{y}{a b} & =1+\dfrac{b}{a} \\
\dfrac{-1}{y \dfrac{1}{b^{2}}-\dfrac{1}{a b}} & =2-1-\dfrac{b}{a} \\
\Rightarrow \quad y \dfrac{a-b}{a b^{2}} & =1-\dfrac{b}{a}=\dfrac{a-b}{a} \\
\Rightarrow \quad y & =\dfrac{a b^{2}}{a} \Rightarrow y=b^{2}
\end{aligned}
$ Now, put the value of $y$ in Eq. (ii), we get $
\begin{matrix}
\Rightarrow & \dfrac{x}{a^{2}}+\dfrac{b^{2}}{b^{2}} & =2 \\
\Rightarrow & & \dfrac{x}{a^{2}} & =2-1=1 \\
& x & =a^{2}
\end{matrix}
$ Hence, the required values of $x$ and $y$ are $a^{2}$ and $b^{2}$, respectively. (vii) Given pair of equations is $
\begin{matrix}
\Rightarrow & \dfrac{2 x y}{x+y}=\dfrac{3}{2}, \text{ where } x+y \neq 0 \\
\Rightarrow & \dfrac{x+y}{2 x y}=\dfrac{2}{3} \\
\Rightarrow & \dfrac{x}{x y}+\dfrac{y}{x y}=\dfrac{4}{3} \\
\text{ and } & \dfrac{1}{y}+\dfrac{1}{x}=\dfrac{4}{3} \\
\Rightarrow & \dfrac{x y}{2 x-y}=\dfrac{-3}{10}, \text{ where } 2 x-y \neq 0 \\
\Rightarrow & \dfrac{2 x-y}{x y}=\dfrac{-10}{3} \\
\Rightarrow & \dfrac{2 x}{x y}-\dfrac{y}{x y}=\dfrac{-10}{3} \\
\Rightarrow & \dfrac{2}{y}-\dfrac{1}{x}=\dfrac{-10}{3}
\end{matrix}
$ Now, put $\dfrac{1}{x}=u$ and $\dfrac{1}{y}=v$, then the pair of equations becomes and $$
\begin{align*}
v+u & =\dfrac{4}{3} \tag{iii}\\
2 v-u & =\dfrac{-10}{3} \tag{iv}
\end{align*}
$$ On adding both equations, we get $
\begin{aligned}
\Rightarrow & & 3 v & =\dfrac{4}{3}-\dfrac{10}{3}=\dfrac{-6}{3} \\
\Rightarrow & & 3 v & =-2 \\
& & v & =\dfrac{-2}{3}
\end{aligned}
$ Now, put the value of $v$ in Eq. (iii), we get $
\begin{aligned}
& & \dfrac{-2}{3}+u & =\dfrac{4}{3} \\
& & u & =\dfrac{4}{3}+\dfrac{2}{3}=\dfrac{6}{3}=2 \\
& & x & =\dfrac{1}{u}=\dfrac{1}{2} \\
& \text{ and } & y & =\dfrac{1}{v}=\dfrac{1}{(-2 / 3)}=\dfrac{-3}{2}
\end{aligned}
$ Hence, the required values of $x$ and $y$ are $\dfrac{1}{2}$ and $\dfrac{-3}{2}$, respectively.Show Answer
Solution Given pair of equations is and $$
\begin{align*}
\dfrac{x}{10}+\dfrac{y}{5}-1 & =0 \tag{i}\\
\dfrac{x}{8}+\dfrac{y}{6} & =15 \tag{ii}
\end{align*}
$$ Now, multiplying both sides of Eq. (i) by $LCM(10,5)=10$, we get $
x+2 y-10=0
$ $$
\begin{equation*}
\Rightarrow \quad x+2 y=10 \tag{iii}
\end{equation*}
$$ Again, multiplying both sides of Eq. (iv) by $LCM(8,6)=24$, we get $$
\begin{equation*}
3 x+4 y=360 \tag{iv}
\end{equation*}
$$ On, multiplying Eq. (iii) by 2 and then subtracting from Eq. (iv), we get $
\begin{gathered}
3 x+4 y=360 \\
2 x+4 y=20 \\
-\quad-\quad \\
\hline x=340
\end{gathered}
$ Put the value of $x$ in Eq. (iii), we get $
\begin{aligned}
& & 340+2 y & =10 \\
\Rightarrow & & 2 y & =10-340=-330 \\
\Rightarrow & & y & =-165
\end{aligned}
$ Given that, the linear relation between $x, y$ and $\lambda$ is $
y=\lambda x+5
$ Now, put the values of $x$ and $y$ in above relation, we get $
\begin{aligned}
\Rightarrow & 340 \lambda & =-170 \\
\Rightarrow & \lambda & =-\dfrac{1}{2}
\end{aligned}
$ Hence, the Solution of the pair of equations is $x=340, y=-165$ and the required value of $\lambda$ is $-\dfrac{1}{2}$.Show Answer
(i) $3 x+y+4=0,6 x-2 y+4=0$
(ii) $x-2 y=6,3 x-6 y=0$
(iii) $x+y=3,3 x+3 y=9$
Solution (i) Given pair of equations is $
\begin{aligned}
& 3 x+y+4=0 \\
& \begin{matrix}
\text{ and } \quad 6 x-2 y+4=0 \\
\text{ On comparing with } a x+b y+c=0 \text{, we get }
\end{matrix} \\
& a_1=3, b_1=1 \\
& c_1=4 \\
& a_2=6, b_2=-2 \\
& \text{ and } \\
& c_2=4 \\
& \dfrac{a_1}{a_2}=\dfrac{3}{6}=\dfrac{1}{2} ; \dfrac{b_1}{b_2}=\dfrac{1}{-2} \\
& \dfrac{c_1}{c_2}=\dfrac{4}{4}=\dfrac{1}{1} \\
& \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}
\end{aligned}
$ So, the given pair of linear equations are intersecting at one point, therefore these lines have unique Solution. Hence, given pair of linear equations is consistent. We have, $
\begin{gathered}
3 x+y+4=0 \\
y=-4-3 x
\end{gathered}
$ $\Rightarrow$ When $x=0$, then $y=-4$ When $x=-1$, then $y=-1$ When $x=-2$, then $y=2$ and $6 x-2 y+4=0$ $\Rightarrow$ $2 y=6 x+4$ $\Rightarrow$ $
y=3 x+2
$ When $x=0$, then $y=2$ When $x=-1$, then $y=-1$ When $x=1$, then $y=5$ Plotting the points $B(0,-4)$ and $A(-2,2)$, we get the straight tine $A B$. Plotting the points $Q(0,2)$ and $P(1,5)$, we get the straight line $P Q$. The lines $A B$ and $P Q$ intersect at $C$ $(-1,-1)$. (ii) Given pair of equations is $$
\begin{matrix}
x-2 y=6 \\
3 x-6 y=0 \tag{ii}
\end{matrix}
$$ and On comparing with $a x+b y+c=0$, we get $$
\begin{align*}
& a_1=1, b_1=-2 \text{ and } c_1=-6 \tag{i}\\
& a_2=3, b_2=-6 \text{ and } c_2=0
\end{align*}
$$ Here, $
\dfrac{a_1}{a_2}=\dfrac{1}{3}, \dfrac{b_1}{b_2} \dfrac{-2}{-6}=\dfrac{1}{3} \text{ and } \dfrac{c_1}{c_2}=\dfrac{-6}{0}
$ $
\therefore \quad \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}
$ Hence, the lines represented by the given equations are parallel. Therefore, it has no Solution. So, the given pair of lines is inconsistent. (iii) Given pair of equations is $x+y=3$ and $$
\begin{equation*}
3 x+3 y=9 \tag{i}
\end{equation*}
$$ On comparing with $a x+b y+c=0$, we get $$
\begin{align*}
& a_1=1, b_1=1 \text{ and } c_1=-3 \\
& a_2=3, b_2=3 \text{ and } c_2=-9 \tag{ii}\\
& \dfrac{a_1}{a_2}=\dfrac{1}{3}, \dfrac{b_1}{b_2}=\dfrac{1}{3} \text{ and } \dfrac{c_1}{c_2}=\dfrac{-3}{-9}=\dfrac{1}{3} \\
& \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}
\end{align*}
$$ Here, $\Rightarrow$ coincident. Therefore, these lines have infinitely many Now, $\quad x+y=3 \Rightarrow y=3-x$ If $x=0$, then $y=3$, If $x=3$, then $y=0$ and $
\begin{aligned}
3 x+3 y & =9 \Rightarrow \quad 3 y=9-3 x \\
y & =\dfrac{9-3 x}{3}
\end{aligned}
$ Plotting the points $A(0,3)$ and $B(3,0)$, we get the line $A B$. Again, plotting the points $C(0,3) D(1,2)$ and $E(3,0)$, we get the line $C D E$. We observe that the lines represented by Eqs. (i) and (ii) are coincident.Show Answer
$\boldsymbol{{}x}$
0
-1
-2
$\boldsymbol{{}y}$
-4
-1
2
Points
$B$
$C$
$A$
$\boldsymbol{{}x}$
-1
0
1
$\mathbf{y}$
-1
2
5
Points
$C$
$Q$
$P$
$\boldsymbol{{}x}$
0
3
$y$
3
0
Points
A
B
Solution The given pair of linear equations Table for line $2 x+y=4$, and table for line $2 x-y=4$, Graphical representation of both lines. Here, both lines and $Y$-axis form a $\triangle A B C$. Hence, the vertices of a $\triangle A B C$ are $A(0,4) B(2,0)$ and $C(0,-4)$. $
\begin{aligned}
\therefore \quad \text{ Required area of } \triangle A B C & =2 \times \text{ Area of } \triangle A O B \\
& =2 \times \dfrac{1}{2} \times 4 \times 2=8 \text{ sq units }
\end{aligned}
$ Hence, the required area of the triangle is 8 sq units.Show Answer
$\boldsymbol{{}x}$
0
2
$y=4-2 \boldsymbol{{}x}$
4
0
Points
$A$
$B$
$\boldsymbol{{}x}$
0
2
$y=\mathbf{2} \boldsymbol{{}x}-\mathbf{4}$
-4
0
Points
$C$
$B$
Solution Given pair of linear equations is and $$
\begin{align*}
& x+y-2=0 \tag{i}\\
& 2 x-y-1=0 \tag{ii}
\end{align*}
$$ On comparing with $a x+b y+c=0$, we get $$
\begin{matrix}
a_1=1, b_1=1 \text{ and } c_1=-2 & \text{ [from Eq. (i)] } \tag{i}\\
a_2=2, b_2=-1 \text{ and } c_2=-1 & \text{ [from Eq. (ii)] } \\
\dfrac{a_1}{a_2}=\dfrac{1}{2}, \dfrac{b_1}{b_2}=\dfrac{1}{-1} & \\
\dfrac{c_1}{c_2}=\dfrac{-2}{-1}=\dfrac{2}{1} \Rightarrow \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} &
\end{matrix}
$$ Here, and So, both lines intersect at a point. Therefore, the pair of equations has a unique Solution. Hence, these equations are consistent. Now, $x+y=2 \Rightarrow y=2-x$ If $x=0$, then $y=2$ and if $x=2$, then $y=0$ and If $x=0$, then $y=-1$; if $x=\dfrac{1}{2}$, then $y=0$ and if $x=1$, then $y=1$ Plotting the points $A(2,0)$ and $B(0,2)$, we get the straight line $A B$. Plotting the points $C$ $(0,-1)$ and $D(1 / 2,0)$, we get the straight line $C D$. The lines $A B$ and $C D$ intersect at $E(1,1)$. Hence, infinite lines can pass through the intersection point of linear equations $x+y=2$ and $2 x-y=1$ i.e., $E(1,1)$ like as $y=x, 2 x+y=3, x+2 y=3$. so on.Show Answer
$\boldsymbol{{}x}$
0
2
$y$
2
0
Points
$A$
$B$
$2 x-y-1=0 \Rightarrow y=2 x-1$
Solution Given that, $(x+1)$ is a factor of $f(x)=2 x^{s}+a x^{2}+2 b x+1$, then $f(-1)=0$. $
\text{ [if }(x+\alpha) \text{ is a factor of } f(x)=a x^{2}+b x+c, \text{ then } f(-)=0 \text{ ] }
$ $$
\begin{matrix}
\Rightarrow & 2(-1)^{3}+a(-1)^{2}+2 b(-1)+1 & =0 \\
\Rightarrow & -2+a-2 b+1 & =0 \\
\Rightarrow & a-2 b-1 & =0 \tag{i}\\
\text{ Also, } & 2 a-3 b & =4 \\
\Rightarrow & 3 b & =2 a-4 \\
\Rightarrow & b & =\dfrac{2 a-4}{3}
\end{matrix}
$$ Now, put the value of $b$ in Eq. (i), we get $
\begin{matrix}
\Rightarrow & 3 a-2(2 a-4)-3=0 \\
\Rightarrow & 3 a-4 a+8-3=0 \\
\Rightarrow & -a+5=0 \\
\Rightarrow & a=5
\end{matrix}
$ Now, put the value of a in Eq. (i), we get $
\begin{aligned}
\Rightarrow & 5-2 b-1 & =0 \\
\Rightarrow & 2 b & =4 \\
\Rightarrow & b & =2
\end{aligned}
$ Hence, the required values of $a$ and $b$ are 5 and 2 , respectively.Show Answer
the two angles $x$ and $y$ is $30^{\circ}$. Then, find the value of $x$ and $y$.
Solution Given that, $x, y$ and $40^{\circ}$ are the angles of a triangle. $\therefore$ $\Rightarrow$ Also, On adding Eqs. (i) and (ii), we get $
x+y+40^{\circ}=180^{\circ}
$ [since, the sum of all the angles of a triangle is $180^{\circ}$ ] $$
\begin{equation*}
x+y=140^{\circ} \tag{i}
\end{equation*}
$$ $$
\begin{equation*}
x-y=30^{\circ} \tag{ii}
\end{equation*}
$$ $
\begin{matrix}& & 2 x & =170^{\circ} \\
\Rightarrow & x & =85^{\circ}
\end{matrix}
$ On putting $x=85^{\circ}$ in Eq. (i), we get $
\begin{aligned}
85^{\circ}+y & =140^{\circ} \\
\hline & =55^{\circ}
\end{aligned}
$ $\Rightarrow \quad y=55^{\circ}$ Hence, the required values of $x$ and $y$ are $85^{\circ}$ and $55^{\circ}$, respectively.Show Answer
Solution Let Salim and his daughter’s age be $x$ and yyr respectively. Now, by first condition Two years ago, Salim was thrice as old as his daughter. $$
\begin{align*}
& \text{ i.e., } \quad x-2=3(y-2) \Rightarrow x-2=3 y-6 \\
& \Rightarrow \quad x-3 y=-4 \tag{i}
\end{align*}
$$ and by second condition, six years later. Salim will be four years older than twice her age. $$
\begin{matrix}
\Rightarrow & x+6=2(y+6)+4 \\
\Rightarrow & x+6=2 y+12+4 \\
\Rightarrow & x-2 y=16-6 \\
\Rightarrow & -2 y=10 \tag{ii}
\end{matrix}
$$ On subtracting Eq. (i) from Eq. (ii), we get $$
\begin{array}{lr}
& x-2y=10 \\
& \underset{-}{x}-\underset{+}{3y}=\underset{+}{-4} \\
\hline \\
& y=14
\end{array}
$$ Put the value of $y$ in Eq. (ii), we get
$$
\begin{aligned} & x-2 \times 14=10 \\
\Rightarrow & x=10+28 \Rightarrow x=38 \\
&
\end{aligned}
$$ Hence, Salim and his daughter’s age are $38 yr$ and $14 yr$, respectively.Show Answer
Solution Let the present age (in year) of father and his two children be $x$, $y$ and $z y r$, respectively. Now by given condition, and after $20 yr$, $
\begin{aligned}
x & =2(y+z) \\
(x+20) & =(y+20)+(z+20) \\
y+z+40 & =x+20
\end{aligned}
$ $
\begin{aligned}
& \Rightarrow \quad y+z+40=x+20 \\
& \Rightarrow \quad y+z=x-20 \\
& \text{ On putting the value of }(y+z) \text{ in Eq. (i) and get the present age of father } \\
& \therefore \quad x=2(x-20) \\
& \therefore \quad x=2 x-40=40
\end{aligned}
$ Hence, the father’s age is $40 yr$.Show Answer
Solution Let the two numbers be $x$ and $y$. Then, by first condition, ratio of these two numbers $=5: 6$ $$
\Rightarrow \quad \begin{align*}
x: y & =5: 6 \\
\dfrac{x}{y} & =\dfrac{5}{6} \Rightarrow y=\dfrac{6 x}{5} \tag{i}
\end{align*}
$$ and by second condition, then, 8 is subtracted from each of the numbers, then ratio becomes $4: 5$. $\begin{array}{rlrl} & & \dfrac{x-8}{y-8} & =\dfrac{4}{5} \\
\Rightarrow & & 5 x-40 & =4 y-32 \\
\Rightarrow & & 5 x-4 y & =8\end{array}$ Now, put the value of $y$ in Eq. (ii), we get $
\begin{aligned}
& 5 x-4 (\dfrac{6 x}{5})=8 \\
& \Rightarrow \quad 25 x-24 x=40 \\
& \Rightarrow \quad x=40 \\
& y=\dfrac{6}{5} \times 40 \\
& =6 \times 8=48
\end{aligned}
$ Hence, the required numbers are 40 and 48.Show Answer
Solution Let the number of students in halls $A$ and $B$ are $x$ and $y$, respectively. Now, by given condition, $$
\begin{align*}
x-10 & =y+10 \\
x-y & =20 \tag{i}\\
(x+20) & =2(y-20) \\
x-2 y & =-60 \tag{ii}
\end{align*}
$$ $
\begin{aligned}
& \Rightarrow \\
& \text{ and } \\
& \Rightarrow
\end{aligned}
$ On subtracting Eq. (ii) from Eq. (i), we get $
\begin{aligned}
(x-y)-(x-2 y) & =20+60 \\
x-y-x+2 y & =80 \Rightarrow y=80
\end{aligned}
$ On putting $y=80$ in Eq. (i), we get $
x-80=20 \Rightarrow x=100
$ $
\text{ and } \quad y=80
$ Hence, 100 students are in hall $A$ and 80 students are in hall $B$.Show Answer
Solution Let Latika takes a fixed charge for the first two day is $\text {₹} x$ and additional charge for each day thereafter is ₹ $y$. Now by first condition. Latika paid ₹ 22 for a book kept for six days i.e., $$
\begin{equation*}
x+4 y=22 \tag{i}
\end{equation*}
$$ and by second condition, Anand paid ₹ 16 for a book kept for four days i.e., $$
\begin{equation*}
x+2 y=16 \tag{ii}
\end{equation*}
$$ Now, subtracting Eq. (ii) from Eq. (i), we get $
2 y=6 \Rightarrow y=3
$ On putting the value of $y$ in Eq. (ii), we get $
x+2 \times 3=16
$ $\therefore \quad x=16-6=10$ Hence, $\quad$ the fixed charge $= \text {₹} 10$ and $\quad$ the charge for each extra day $=\text {₹} 3$Show Answer
Solution Let $x$ be the number of correct answers of the questions in a competitive examination, then $(120-x)$ be the number of wrong answers of the questions. Then, by given condition, $
\begin{aligned}
& & x \times 1-(120-x) \times \dfrac{1}{2} & =90 \\
\Rightarrow & & x-60+\dfrac{x}{2} & =90 \\
\Rightarrow & & \dfrac{3 x}{2} & =150 \\
\therefore & & x & =\dfrac{150 \times 2}{3}=50 \times 2=100
\end{aligned}
$ Hence, Jayanti answered correctly 100 questions.Show Answer
Show Answer
Solution
We know that, by property of cyclic quadrilateral,
Sum of opposite angles $=180^{\circ}$
$ \angle A+\angle C=(6 x+10)^{\circ}+(x+y)^{\circ}=180^{\circ} $
$\Rightarrow$
$7 x+y=170$
and
$$ \begin{equation*} \angle B+\angle D=(5 x)^{\circ}+(3 y-10)^{\circ}=180^{\circ} \tag{i} \end{equation*} $$
$[\because \angle B=(5 x)^{\circ}, \angle D=(3 y-10)^{\circ}.$, given $]$
$\Rightarrow \quad 5 x+3 y=190^{\circ}$
On multiplying Eq. (i) by 3 and then subtracting, we get
$$ \begin{align*} & & 3 \times(7 x+y)-(5 x+3 y) & =510^{\circ}-190^{\circ} \tag{ii}\\ \Rightarrow & & 21 x+3 y-5 x-3 y & =320^{\circ} \\ \Rightarrow & & 16 x & =320^{\circ} \\ \therefore & & x & =20^{\circ} \end{align*} $$
On putting $x=20^{\circ}$ in Eq. (i), we get
$ \begin{aligned} \Rightarrow \quad 7 \times 20+y & =170^{\circ} \\ \therefore \quad y & =170^{\circ}-140^{\circ} \Rightarrow y=30^{\circ} \\ \therefore \quad \angle A & =(6 x+10)^{\circ}=6 \times 20^{\circ}+10^{\circ} \\ & =120^{\circ}+10^{\circ}=130^{\circ} \\ \angle B & =(5 x)^{\circ}=5 \times 20^{\circ}=100^{\circ} \\ \angle C & =(x+y)^{\circ}=20^{\circ}+30^{\circ}=50^{\circ} \\ \angle D & =(3 y-10)^{\circ}=3 \times 30^{\circ}-10^{\circ} \\ & =90^{\circ}-10^{\circ}=80^{\circ} \end{aligned} $
Hence, the required values of $x$ and $y$ are $20^{\circ}$ and $30^{\circ}$ respectively and the values of the four angles i.e., $\angle A, \angle B, \angle C$ and $\angle D$ are $130^{\circ}, 100^{\circ}, 50^{\circ}$ and $80^{\circ}$, respectively.
Long Answer Type Questions
1 Graphically, solve the following pair of equations
$ 2 x+y=6 \text{ and } 2 x-y+2=0 $
Find the ratio of the areas of the two triangles formed by the lines representing these equations with the $X$-axis and the lines with the $Y$-axis.
Solution Given equations are $2 x+y=6$ and $2 x-y+2=0$ Table for equation $2 x+y=6$, Table for equation $2 x-y+2=0$, Let $A_1$ and $A_2$ represent the areas of $\triangle A C E$ and $\triangle B D E$, respectively. Now, and $
\begin{aligned}
A_1=\text{ Area of } \triangle A C E & =\dfrac{1}{2} \times A C \times P E \\
& =\dfrac{1}{2} \times 4 \times 4=8
\end{aligned}
$ $A_2=$ Area of $\triangle B D E=\dfrac{1}{2} \times B D \times Q E$ $
=\dfrac{1}{2} \times 4 \times 1=2
$ $
\therefore A_1: A_2=8: 2=4: 1
$ Hence, the pair of equations intersect graphically at point $E(1,4)$, i.e., $x=1$ and $y=4$.Show Answer
$\boldsymbol{{}x}$
0
3
$\boldsymbol{{}y}$
6
0
Points
B
A
$\boldsymbol{{}x}$
0
-1
$\boldsymbol{{}y}$
2
0
Points
$D$
$C$
$ y=x, 3 y=x \text{ and } x+y=8 $
Solution Given linear equations are For equation $
x+y=8 \Rightarrow y=8-x
$ If $x=0$, then $y=8$; if $x=8$, then $y=0$ and if $x=4$, then $y=4$ Table for line $x+y=8$. Plotting the points $A(1,1)$ and $B(2,2)$, we get the straight line $A B$. Plotting the points $C(3,1)$ and $D(6,2)$, we get the straight line $C D$. Plotting the points $P(0,8), Q(4,4)$ and $R(8,0)$, we get the straight line $P Q R$. We see that lines $A B$ and $C D$ intersecting the line $P R$ on $Q$ and $D$, respectively. So, $\triangle O Q D$ is formed by these lines. Hence, the vertices of the $\triangle O Q D$ formed by the given lines are $O(0,0), Q(4,4)$ and $D(6,2)$.Show Answer
$x$
0
4
8
$y$
8
4
0
Points
$P$
$Q$
$R$
Solution Given equation of lines $2 x-y-4=0, x=3$ and $x=5$ Table for line $2 x-y-4=0$, Draw the points $P(0,-4)$ and $Q(2,0)$ and join these points and form a line $P Q$ also draw the lines $x=3$ and $x=5$. $\therefore$ Area of quadrilateral $A B C D=\dfrac{1}{2} \times$ distance between parallel lines $(A B) \times(A D+B C)$ $
=\dfrac{1}{2} \times 2 \times(6+2)
$ [since, quadrilateral $A B C D$ is a trapezium] $B C=6]$ $
\because \quad A B=O B-O A=5-3=2, A D=2
$ $
=8 sq \text{ units }
$ Hence, the required area of the quadrilateral formed by the lines and the $X$-axis is 8 sq units.Show Answer
$\boldsymbol{{}x}$
0
2
$\boldsymbol{{}y}=\mathbf{2} \boldsymbol{{}x}-\mathbf{4}$
-4
0
Points
$P$
$Q$
Solution Let the cost of a pen be ₹ $x$ and the cost of a pencil box be ₹ $y$. Then, by given condition, and $$
\begin{align*}
4 x+4 y & =100 \Rightarrow x+y=25 \tag{i}\\
3 x & =y+15
\end{align*}
$$ $\Rightarrow \quad 3 x-y=15$ On adding Eqs. (i) and (ii), we get $
\begin{matrix}& & 4 x & =40 \\
\Rightarrow & x & =10
\end{matrix}
$ By substituting $x=10$, in Eq. (i) we get $
y=25-10=15
$ Hence, the cost of a pen and a pencil box are ₹ 10 and ₹ 15 , respectively.Show Answer
and
$$ \begin{matrix} 3 x-y=3 \\ 2 x-3 y=2 \\ x+2 y=8 \\ 3 x-y=3 \\ 2 x-3 y=2 \\ x+2 y=8 \tag{iii} \end{matrix} $$
and
$\triangle A B C$ i.e., $A B, B C$ and $C A$, respectively.
On solving lines (i) and (ii), we will get the intersecting point $B$.
On multiplying Eq. (i) by 3 in Eq. (i) and then subtracting, we get
$ \begin{gathered} 9 x-3 y=9 \\ 2 x-3 y=2 \\ -\quad+ \\ 7 x=7 \Rightarrow x=1 \end{gathered} $
On putting the value of $x$ in Eq. (i), we get
$ \begin{gathered} 3 \times 1-y=3 \\ y=0 \end{gathered} $
So, the coordinate of point or vertex $B$ is $(1,0)$.
On solving lines (ii) and (iii), we will get the intersecting point $C$.
On multiplying Eq. (iii) by 2 and then subtracting, we get
$ \begin{gathered} 2 x+4 y=16 \\ 2 x-3 y=2 \\ \hline+\quad= \\ \hline 7 y=14 \\ y=2 \end{gathered} $
$\Rightarrow$
On putting the value of $y$ in Eq. (iii), we gat
$ \begin{aligned} & & x+2 \times 2 & =8 \\ \Rightarrow & & x & =8-4 \\ \Rightarrow & & x & =4 \end{aligned} $
Hence, the coordinate of point or vertex $C$ is $(4,2)$.
On
Solution ing lines (iii) and (i), we will get the intersecting point $A$. On multiplying in Eq. (i) by 2 and then adding Eq. (iii), we get $
\begin{gathered}
6 x-2 y=6 \\
x+2 y=8 \\
7 x=14
\end{gathered}
$ $
\Rightarrow \quad x=2
$ On putting the value of $x$ in Eq. (i), we get $
\begin{aligned}
& & 3 \times 2-y & =3 \\
\Rightarrow & & y & =6-3 \\
\Rightarrow & & y & =3
\end{aligned}
$ So, the coordinate of point or vertex $A$ is $(2,3)$. Hence, the vertices of the $\triangle A B C$ formed by the given lines are $A(2,3), B(1,0)$ and $C(4,2)$.Show Answer
Solution Let the speed of the rickshaw and the bus are $x$ and $y km / h$, respectively. Now, she has taken time to travel $2 km$ by rickshaw , $t_1=\dfrac{2}{x} h . \quad \because$ speed $=\dfrac{\text{ distance }}{\text{ time }}$ and she has taken time to travel remaining distance i.e., $(14-2)=12 km$ by bus $=t_2=\dfrac{12}{y} h$. By first condition, $\quad t_1+t_2=\dfrac{1}{2} \Rightarrow \dfrac{2}{x}+\dfrac{12}{y}=\dfrac{1}{2}$ Now, she has taken time to travel $4 km$ by rickshaw, $t_3=\dfrac{4}{x} h$ and she has taken time to travel remaining distance i.e., $(14-4)=10 km$ by bus $=t_4=\dfrac{10}{y} h$. By second condition, $\quad t_3+t_4=\dfrac{1}{2}+\dfrac{9}{60}=\dfrac{1}{2}+\dfrac{3}{20}$ $\Rightarrow \quad \dfrac{4}{x}+\dfrac{10}{y}=\dfrac{13}{20}$ Let $\dfrac{1}{x}=u$ and $\dfrac{1}{y}=v$, then Eqs. (i) and (ii) becomes and $$
\begin{align*}
& 2 u+12 v=\dfrac{1}{2} \tag{iii}\\
& 4 u+10 v=\dfrac{13}{20} \tag{iv}
\end{align*}
$$ On multiplying in Eq. (iii) by 2 and then subtracting, we get $
\begin{aligned}
& 4 u+24 v=1 \\
& 4 u+10 v=\dfrac{13}{20} \\
&-\quad-\quad \underline{-13} \\
& 14 v=1-\dfrac{7}{20}=\dfrac{7}{20} \\
& 2 v=\dfrac{1}{20} \Rightarrow v=\dfrac{1}{40}
\end{aligned}
$ Now, put the value of $v$ in Eq. (iii), we get $
\begin{matrix}
\Rightarrow & 2 u+12 \dfrac{1}{40}=\dfrac{1}{2} \\
\Rightarrow & 2 u=\dfrac{1}{2}-\dfrac{3}{10}=\dfrac{5-3}{10} \\
\therefore & 2 u=\dfrac{2}{10} \Rightarrow u=\dfrac{1}{10} \\
\Rightarrow & \dfrac{1}{x}=u \\
\text{ and } & \dfrac{1}{x}=\dfrac{1}{10} \Rightarrow x=10 km / h \\
\Rightarrow & \dfrac{1}{y}=v \Rightarrow \dfrac{1}{y}=\dfrac{1}{40} \\
& y=40 km / h
\end{matrix}
$ Hence, the speed of rickshaw and the bus are $10 km / h$ and $40 km / h$, respectively.Show Answer
Solution Let the speed of the stream be $v km / h$. Given that, a person rowing in still water $=5 km / h$ The speed of a person rowing in downstream $=(5+v) km / h$ and the speed of a person has rowing in upstream $=(5-v) km / h$ Now, the person taken time to cover $40 km$ downstream, $
t_1=\dfrac{40}{5+v} h \quad \because \text{ speed }=\dfrac{\text{ distance }}{\text{ time }}
$ and the person has taken time to cover $40 km$ upstream, $$
t_2=\dfrac{4 U}{5-v} \mathrm{~h} .
$$ By condition, $
\Rightarrow \hspace{29 mm} t_2 =t_1 \times 3 \\
\hspace{29 mm} \dfrac{40}{5-v} =\dfrac{40}{5+v} \times 3
$ $
\Rightarrow \hspace{29 mm } \dfrac{1}{5-v}=\dfrac{3}{5+v}
$ $$
5+v=15-3 v \Rightarrow 4 v=10
$$ $
\therefore \hspace{29 mm} v=\dfrac{10}{4}=2.5 \mathrm{~km} / \mathrm{h}
$ Hence, the speed of the stream is $2.5 km / h$.Show Answer
Solution Let the speed of the motorboat in still water and the speed of the stream are $ukm / h$ and $v km / h$, respectively. Then, a motorboat speed in downstream $=(u+v) km / h$ and a motorboat speed in upstream $=(u-v) km / h$. Motorboat has taken time to travel $30 km$ upstream, $
t_1=\dfrac{30}{u-v} h
$ and motorboat has taken time to travel $28 km$ downstream, $
t_2=\dfrac{28}{u+v} h
$ By first condition, a motorboat can travel $30 km$ upstream and $28 km$ downstream in $7 h$ $
\begin{aligned}
& \text{ i.e., } \quad t_1+t_2=7 h \\
& \Rightarrow \\
& \dfrac{30}{u-v}+\dfrac{28}{u+v}=7
\end{aligned}
$ Now, motorboat has taken time to travel $21 km$ upstream and return i.e., $t_3=\dfrac{21}{u-v}$. and $
t_4=\dfrac{21}{u+v}
$ [for upstream] By second condition, $
t_4+t_3=5 h
$ $$
\begin{equation*}
\Rightarrow \quad \dfrac{21}{u+v}+\dfrac{21}{u-v}=5 \tag{ii}
\end{equation*}
$$ [for downstream] Let Eqs. (i) and (ii) becomes and $\Rightarrow$ $$
\begin{gather*}
x=\dfrac{1}{u+v} \text{ and } y=\dfrac{1}{u-v} \\
30 x+28 y=7 \tag{iii}\\
21 x+21 y=5 \\
x+y=\dfrac{5}{21} \tag{iv}
\end{gather*}
$$ Now, multiplying in Eq. (iv) by 28 and then subtracting from Eq. (iii), we get $
\begin{aligned}
& 30 x+28 y=7 \\
& 28 x+28 y=\dfrac{140}{21} \\
&-\quad-\quad \quad-
\end{aligned}
$ $
\Rightarrow \quad 2 x=\dfrac{1}{3} \Rightarrow x=\dfrac{1}{6}
$ On putting the value of $x$ in Eq. (iv), we get $$
\begin{matrix}
\Rightarrow & \dfrac{1}{6}+y & =\dfrac{5}{21} \\
& & y=\dfrac{5}{21}-\dfrac{1}{6}=\dfrac{10-7}{42}=\dfrac{3}{42} \Rightarrow y=\dfrac{1}{14} \\
& \text{ and } & x & =\dfrac{1}{u+v}=\dfrac{1}{6} \Rightarrow u+v=6 \tag{v}
\end{matrix}
$$ $\Rightarrow \quad u-v=14$ Now, adding Eqs. (v) and (vi), we get $
2 u=20 \Rightarrow u=10
$ On putting the value of $u$ in Eq. (v), we get $
\begin{aligned}& 10+v=6 \\
\Rightarrow & v=-4
\end{aligned}
$ Hence, the speed of the motorboat in still water is $10 km / h$ and the speed of the stream $4 km / h$.Show Answer
Solution Let the two-digit number $=10 x+y$ Case I Multiplying the sum of the digits by 8 and then subtracting $5=$ two-digit number $$
\begin{matrix}
\Rightarrow & 8 \times(x+y)-5=10 x+y \\
\Rightarrow & 8 x+8 y-5=10 x+y \\
\Rightarrow & 2 x-7 y=-5 \tag{i}
\end{matrix}
$$ Case II Multiplying the difference of the digits by 16 and then adding $3=$ two-digit number $$
\begin{matrix}
\Rightarrow & 16 \times(x-y)+3=10 x+y \\
\Rightarrow & 16 x-16 y+3=10 x+y \\
\Rightarrow & 6 x-17 y=-3 \tag{ii}
\end{matrix}
$$ Now, multiplying in Eq. (i) by 3 and then subtracting from Eq. (ii), we get $
\begin{array}{lr}
& 6x-17y=-3 \\
& 6x-21y=-15 \\
\hline \\
& 4y=12 \Rightarrow y=3
\end{array}
$ Now, put the value of $y$ in Eq. (i), we get $
\hspace{34 mm} 2x-7x \times 3 = -5 \\
\Rightarrow \hspace{29 mm} 2x=21-5=16 \Rightarrow x=8
$ Hence, the required two-digit number $
\begin{aligned}
& =10 x+y \\
& =10 \times 8+3=80+3=83
\end{aligned}
$Show Answer
Solution Let the cost of full and half first class fare be $\text {₹} x$ and $\text {₹} \dfrac{x}{2}$, respectively and reservation charges be ₹ y per ticket. Case I The cost of one reserved first class ticket from the stations $A$ to $B$ $$
\begin{align*}
& =\text {₹} 2530 \\
x+y & =2530 \tag{i}
\end{align*}
$$ $\Rightarrow$ Case II The cost of one reserved first class ticket and one reserved first class half ticket from stations $A$ to $B=\text {₹} 3810$ $$
\begin{matrix}
\Rightarrow & x+y+\dfrac{x}{2}+y & =3810 \\
\Rightarrow & \dfrac{3 x}{2}+2 y & =3810 \\
\Rightarrow & 3 x+4 y & =7620 \tag{ii}
\end{matrix}
$$ Now, multiplying Eq. (i) by 4 and then subtracting from Eq. (ii), we get $
\begin{aligned}
& 3 x+4 y=7620 \\
& 4 x+4 y=10120 \\
&- \\
&-x=-2500
\end{aligned}
$ $
\Rightarrow \quad x=2500
$ On putting the value of $x$ in Eq. (i), we get $
\begin{aligned}
& & 2500+y & =2530 \\
\Rightarrow & & y & =2530-2500 \\
\Rightarrow & & y & =30
\end{aligned}
$ Hence, full first class fare from stations $A$ to $B$ is ₹ 2500 and the reservation for a ticket is ₹ 30 .Show Answer
Solution Let the cost price of the saree and the list price of the sweater be $\text {₹} x$ and $\text {₹} y$, respectively. Case I Sells a saree at $8 %$ profit + Sells a sweater at $10 %$ discount $=\text {₹} 1008$ $$
\begin{matrix}\Rightarrow & (100+8) \% \text{ of } x+(100-10) \% \text{ of } y & =1008 \\
\Rightarrow & 108 \% \text{ of } x+90 \% \text{ of } y & =1008 \\
\Rightarrow & 1.08 x+0.9 y & =1008 \tag{i}
\end{matrix}
$$ Case II Sold the saree at $10 \%$ profit + Sold the sweater at $8 \%$ discount $=\text {₹} 1028$ $$
\begin{matrix}\Rightarrow & (100+10) \% \text{ of } x+(100-8) \% \text{ of } y=1028 \\
\Rightarrow & 110 \% \text{ of } x+92 \% \text{ of } y=1028 \\
\Rightarrow & 1.1 x+0.92 y=1028 \tag{ii}
\end{matrix}
$$ On putting the value of $y$ from Eq. (i) into Eq. (ii), we get $
\begin{matrix}& & 1.1 x+0.92 \dfrac{1008-1.08 x}{0.9} & =1028 \\
\Rightarrow & 1.1 \times 0.9 x+927.36-0.9936 x & =1028 \times 0.9 \\
\Rightarrow & 0.99 x-0.9936 x & =925.2-927.36 \\
\Rightarrow & -0.0036 x & =-2.16 \\
\therefore & x & =\dfrac{2.16}{0.0036}=600
\end{matrix}
$ On putting the value of $x$ in Eq. (i), we get $
1.08 \times 600+0.9 y=1008
$ $
\begin{aligned}
\Rightarrow & 108 \times 6+0.9 y & =1008 \\
\Rightarrow & 0.9 y & =1008-648 \\
\Rightarrow & 0.9 y & =360 \\
\Rightarrow & y & =\dfrac{360}{0.9}=400
\end{aligned}
$ Hence, the cost price of the saree and the list price (price before discount) of the sweater are ₹ 600 and ₹ 400 , respectively.Show Answer
Solution Let the amount of investments in schemes $A$ and $B$ be $\text {₹} x$ and $\text {₹} y$, respectively. Case I Interest at the rate of $8 %$ per annum on scheme $A+$ Interest at the rate of $9 %$ per annum on scheme $B=$ Total amount received $$
\begin{matrix}
\Rightarrow \quad & \dfrac{x \times 8 \times 1}{100}+\dfrac{y \times 9 \times 1}{100} & =\text {₹} 1860 \quad \because \text{ simple interest }=\dfrac{\text{ principal } \times \text{ rate } \times \text{ time }}{100} \\
\Rightarrow \quad 8 x+9 y & =186000 \tag{i}
\end{matrix}
$$ Case II Interest at the rate of $9 %$ per annum on scheme $A+$ Interest at the rate of $8 %$ per annum on scheme $B=\text {₹} 20$ more as annual interest $
\begin{aligned}
& \Rightarrow \quad \dfrac{x \times 9 \times 1}{100}+\dfrac{y \times 8 \times 1}{100}=\text {₹} 20+\text {₹} 1860 \\
& \Rightarrow \quad \dfrac{9 x}{100}+\dfrac{8 y}{100}=1880 \\
& \Rightarrow \quad 9 x+8 y=188000
\end{aligned}
$ On multiplying Eq. (i) by 9 and Eq. (ii) by 8 and then subtracting them, we get $
\begin{aligned}
72 x+81 y & =9 \times 186000 \\
72 x+64 y & =8 \times 188000 \\
-\quad & \\
\hline 17 y & =1000[(9 \times 186)-(8 \times 188)] \\
& =1000(1674-1504)=1000 \times 170 \\
17 y & =170000 \Rightarrow y=10000
\end{aligned}
$ $
\Rightarrow
$ On putting the value of $y$ in Eq. (i), we get $
\begin{aligned}
& & 8 x+9 \times 10000 & =186000 \\
\Rightarrow & & 8 x & =186000-90000 \\
\Rightarrow & & 8 x & =96000 \\
\Rightarrow & & x & =12000
\end{aligned}
$ Hence, she invested ₹ 12000 and ₹ 10000 in two schemes A and B, respectively.Show Answer
Show Answer
Solution
Let the number of bananas in lots $A$ and $B$ be $x$ and $y$, respectively
Case I Cost of the first lot at the rate of ₹ 2 for 3 bananas + Cost of the second lot at the rate of $\text {₹} 1$ per banana $=$ Amount received
$$ \begin{matrix} \Rightarrow & \dfrac{2}{3} x+y=400 \\ \Rightarrow & 2 x+3 y=1200 \tag{i} \end{matrix} $$
Case II Cost of the first lot at the rate of $\text {₹} 1$ per banana + Cost of the second lot at the rate of $\text {₹} 4$ for 5 bananas $=$ Amount received
$$ \begin{matrix} \Rightarrow & x+\dfrac{4}{5} y=460 \\ \Rightarrow & 5 x+4 y=2300 \tag{ii} \end{matrix} $$
On multiplying in Eq. (i) by 4 and Eq. (ii) by 3 and then subtracting them, we get
$ \begin{aligned} 8 x+12 y & =4800 \\ 15 x+12 y & =6900 \\ \hline-7 x & =-2100 \\ x & =300 \end{aligned} $
$\Rightarrow$
Now, put the value of $x$ in Eq. (i), we get
$ \begin{matrix} & 2 \times 300+3 y & =1200 \\ \Rightarrow & 600+3 y & =1200 \\ \Rightarrow & 3 y & =1200-600 \\ \Rightarrow & 3 y & =600 \\ \Rightarrow & y & =200 \end{matrix} $
$\therefore$ Total number of bananas $=$ Number of bana nas in lot $A+$ Number of bananas in lot $B$ $=x+y$
$ =300+200=500 $
Hence, he had 500 bananas.