Chapter 9 Differential Equations EXERCISE 9.5
EXERCISE 9.5
For each of the differential equations given in Exercises 1 to 12, find the general solution:
1. $\frac{d y}{d x}+2 y=\sin x$
Show Answer
Solution
The given differential equation is $\frac{d y}{d x}+2 y=\sin x$.
This is in the form of $\frac{d y}{d x}+p y=Q($ where $p=2$ and $Q=\sin x)$.
Now, I.F $=e^{\int p d x}=e^{\int 2 d x}=e^{2 x}$.
The solution of the given differential equation is given by the relation,
$$ \begin{align*} & y(\text{ I.F. })=\int(Q \times \text{ I.F. }) d x+C \\ & \Rightarrow y e^{2 x}=\int \sin x \cdot e^{2 x} d x+C \tag{1} \end{align*} $$
Let $I=\int \sin x \cdot e^{2 x}$.
$\Rightarrow I=\sin x \cdot \int e^{2 x} d x-\int(\frac{d}{d x}(\sin x) \cdot \int e^{2 x} d x) d x$
$\Rightarrow I=\sin x \cdot \frac{e^{2 x}}{2}-\int(\cos x \cdot \frac{e^{2 x}}{2}) d x$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}[\cos x \cdot \int e^{2 x}-\int(\frac{d}{d x}(\cos x) \cdot \int e^{2 x} d x) d x]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}[\cos x \cdot \frac{e^{2 x}}{2}-\int[(-\sin x) \cdot \frac{e^{2 x}}{2}] d x]$
$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} \int(\sin x \cdot e^{2 x}) d x$
$\Rightarrow I=\frac{e^{2 x}}{4}(2 \sin x-\cos x)-\frac{1}{4} I$
$\Rightarrow \frac{5}{4} I=\frac{e^{2 x}}{4}(2 \sin x-\cos x)$
$\Rightarrow I=\frac{e^{2 x}}{5}(2 \sin x-\cos x)$
Therefore, equation (1) becomes:
$y e^{2 x}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+C$
$\Rightarrow y=\frac{1}{5}(2 \sin x-\cos x)+C e^{-2 x}$
This is the required general solution of the given differential equation.
2. $\frac{d y}{d x}+3 y=e^{-2 x}$
Show Answer
Solution
$ \frac{d y}{d x}+p y=Q(\text{ where } p=3 \text{ and } Q=e^{-2 x}) \text{. } $
The given differential equation is
Now, I.F $=e^{\int p d x}=e^{\int 3 d x}=e^{3 x}$.
The solution of the given differential equation is given by the relation,
$ \begin{aligned} & y(I . F .)=\int(Q \times \text{ I.F. }) d x+C \\ & \Rightarrow y e^{3 x}=\int(e^{-2 x} \times e^{3 x})+C \\ & \Rightarrow y e^{3 x}=\int e^{x} d x+C \\ & \Rightarrow y e^{3 x}=e^{x}+C \\ & \Rightarrow y=e^{-2 x}+C e^{-3 x} \end{aligned} $
This is the required general solution of the given differential equation.
3. $\frac{d y}{d x}+\frac{y}{x}=x^{2}$
Show Answer
Solution
The given differential equation is:
$\frac{d y}{d x}+p y=Q(.$ where $p=\frac{1}{x}$ and $.Q=x^{2})$
Now, I.F $=e^{\int p d x}=e^{\int \frac{1}{x} d x}=e^{\log x}=x$.
The solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(Q \times$ I.F. $) d x+C$
$\Rightarrow y(x)=\int(x^{2} \cdot x) d x+C$
$\Rightarrow x y=\int x^{3} d x+C$
$\Rightarrow x y=\frac{x^{4}}{4}+C$
This is the required general solution of the given differential equation.
4. $\frac{d y}{d x}+(\sec x) y=\tan x(0 \leq x<\frac{\pi}{2})$
Show Answer
Solution
The given differential equation is:
$\frac{d y}{d x}+p y=Q($ where $p=\sec x$ and $Q=\tan x)$
Now, I.F $=e^{\int p d x}=e^{\int \sec x d x}=e^{\log (\sec x+\tan x)}=\sec x+\tan x$.
The general solution of the given differential equation is given by the relation,
$ y(\text{ I.F. })=\int(Q \times \text{ I.F. }) d x+C $
$\Rightarrow y(\sec x+\tan x)=\int \tan x(\sec x+\tan x) d x+C$
$\Rightarrow y(\sec x+\tan x)=\int \sec x \tan x d x+\int \tan ^{2} x d x+C$
$\Rightarrow y(\sec x+\tan x)=\sec x+\int(\sec ^{2} x-1) d x+C$
$\Rightarrow y(\sec x+\tan x)=\sec x+\tan x-x+C$
5. $\cos ^{2} x \frac{d y}{d x}+y=\tan x(0 \leq x<\frac{\pi}{2})$
Show Answer
Solution
We have,
$\begin{aligned} & \cos ^2 x \frac{d y}{d x}+y=\tan x \ & \frac{d y}{d x}+\sec ^2 x(y)=\sec ^2 x \tan x \end{aligned}$
We know that the general equation
$\frac{d y}{d x}+P y=Q$
Here,
$P=\sec ^2 x, Q=\sec ^2 x \tan x$
Since, integrating factor I. $F=e^{\int P d x}$ I. $F=e^{\int \sec ^2 x d x}$ I. $F=e^{\tan x}$
We know that the general solution,
$\mathrm{y} \times \mathrm{I} . \mathrm{F}=\int(\mathrm{Q} \times \mathrm{I} . \mathrm{F}) \mathrm{dx}+\mathrm{C}$
Therefore,
$y \times e^{\tan x}=\int\left(\sec ^2 x \tan x\right) e^{\tan x} d x+C$
Let $\mathrm{t}=\tan \mathrm{x}$
$\mathrm{dt}=\sec ^2 \mathrm{x} d \mathrm{x}$
Therefore,
$\begin{aligned} & y \times e^t=\int t e^t d t+C \\ & y \times e^t=t e^t-\int 1 e^t d t+C \\ & y \times e^t=t e^t-e^t+C \end{aligned}$
On putting the value of $t$, we get
$y \times e^{\tan x}=\tan x e^{\tan x}-e^{\tan x}+C$
Hence, this is the answer.
6. $x \frac{d y}{d x}+2 y=x^{2} \log x$
Show Answer
Solution
The given differential equation is:
$x \frac{d y}{d x}+2 y=x^{2} \log x$
$\Rightarrow \frac{d y}{d x}+\frac{2}{x} y=x \log x$
This equation is in the form of a linear differential equation as:
$\frac{d y}{d x}+p y=Q(.$ where $p=\frac{2}{x}$ and $.Q=x \log x)$
Now, I.F $=e^{\int p d x}=e^{\int_x^{2} d x}=e^{2 \log x}=e^{\log x^{2}}=x^{2}$.
The general solution of the given differential equation is given by the relation, $y($ I.F. $)=\int(Q \times$ I.F. $) d x+$ C
$\Rightarrow y \cdot x^{2}=\int(x \log x \cdot x^{2}) d x+C$
$\Rightarrow x^{2} y=\int(x^{3} \log x) d x+C$
$\Rightarrow x^{2} y=\log x \cdot \int x^{3} d x-\int[\frac{d}{d x}(\log x) \cdot \int x^{3} d x] d x+C$
$\Rightarrow x^{2} y=\log x \cdot \frac{x^{4}}{4}-\int(\frac{1}{x} \cdot \frac{x^{4}}{4}) d x+C$
$\Rightarrow x^{2} y=\frac{x^{4} \log x}{4}-\frac{1}{4} \int x^{3} d x+C$
$\Rightarrow x^{2} y=\frac{x^{4} \log x}{4}-\frac{1}{4} \cdot \frac{x^{4}}{4}+C$
$\Rightarrow x^{2} y=\frac{1}{16} x^{4}(4 \log x-1)+C$
$\Rightarrow y=\frac{1}{16} x^{2}(4 \log x-1)+C x^{-2}$
7. $x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
Show Answer
Solution
The given differential equation is:
$x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$
$\Rightarrow \frac{d y}{d x}+\frac{y}{x \log x}=\frac{2}{x^{2}}$
This equation is the form of a linear differential equation as:
$\frac{d y}{d x}+p y=Q(.$ where $p=\frac{1}{x \log x}$ and $Q=\frac{2}{x^{2}}$ )
Now, I.F $=e^{\int \rho d x}=e^{\int \frac{1}{x \log } d x}=e^{\log (\log x)}=\log x$.
The general solution of the given differential equation is given by the relation,
$$ \begin{align*} & y(I . F .)=\int(Q \times I \text{.F. }) d x+C \\ & \Rightarrow y \log x=\int(\frac{2}{x^{2}} \log x) d x+C \tag{1} \end{align*} $$
Now, $\int(\frac{2}{x^{2}} \log x) d x=2 \int(\log x \cdot \frac{1}{x^{2}}) d x$.
$ \begin{aligned} & =2[\log x \cdot \int \frac{1}{x^{2}} d x-\int{\frac{d}{d x}(\log x) \cdot \int \frac{1}{x^{2}} d x} d x] \\ & =2[\log x(-\frac{1}{x})-\int(\frac{1}{x} \cdot(-\frac{1}{x})) d x] \\ & =2[-\frac{\log x}{x}+\int \frac{1}{x^{2}} d x] \\ & =2[-\frac{\log x}{x}-\frac{1}{x}] \\ & =-\frac{2}{x}(1+\log x) \end{aligned} $
Substituting the value of $\int(\frac{2}{x^{2}} \log x) d x$ in equation (1), we get:
$y \log x=-\frac{2}{x}(1+\log x)+C$
This is the required general solution of the given differential equation.
8. $(1+x^{2}) d y+2 x y d x=\cot x d x(x \neq 0)$
Show Answer
Solution
$(1+x^{2}) d y+2 x y d x=\cot x d x$
$\Rightarrow \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{\cot x}{1+x^{2}}$
This equation is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q(.$ where $p=\frac{2 x}{1+x^{2}}$ and $.Q=\frac{\cot x}{1+x^{2}})$
Now, I.F $=e^{\int p d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log (1+x^{2})}=1+x^{2}$.
The general solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(Q \times$ I.F. $) d x+C$
$\Rightarrow y(1+x^{2})=\int[\frac{\cot x}{1+x^{2}} \times(1+x^{2})] d x+C$
$\Rightarrow y(1+x^{2})=\int \cot x d x+C$
$\Rightarrow y(1+x^{2})=\log |\sin x|+C$
9. $x \frac{d y}{d x}+y-x+x y \cot x=0(x \neq 0)$
Show Answer
Solution
$x \frac{d y}{d x}+y-x+x y \cot x=0$
$\Rightarrow x \frac{d y}{d x}+y(1+x \cot x)=x$
$\Rightarrow \frac{d y}{d x}+(\frac{1}{x}+\cot x) y=1$
This equation is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q(.$ where $p=\frac{1}{x}+\cot x$ and $.Q=1)$
Now, I.F $=e^{\int \rho d x}=e^{\int(\frac{1}{x}+\cot x) d x}=e^{\log x+\log (\sin x)}=e^{\log (x \sin x)}=x \sin x$.
The general solution of the given differential equation is given by the relation,
$ \begin{aligned} & y(\text{ I.F. })=\int(Q \times \text{ I.F. }) d x+C \\ & \Rightarrow y(x \sin x)=\int(1 \times x \sin x) d x+C \\ & \Rightarrow y(x \sin x)=\int(x \sin x) d x+C \\ & \Rightarrow y(x \sin x)=x \int \sin x d x-\int[\frac{d}{d x}(x) \cdot \int \sin x d x]+C \\ & \Rightarrow y(x \sin x)=x(-\cos x)-\int 1 \cdot(-\cos x) d x+C \\ & \Rightarrow y(x \sin x)=-x \cos x+\sin x+C \\ & \Rightarrow y=\frac{-x \cos x}{x \sin x}+\frac{\sin x}{x \sin x}+\frac{C}{x \sin x} \\ & \Rightarrow y=-\cot \cdot x+\frac{1}{x}+\frac{C}{x \sin x} \end{aligned} $
10. $(x+y) \frac{d y}{d x}=1$
Show Answer
Solution
$(x+y) \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{x+y}$
$\Rightarrow \frac{d x}{d y}=x+y$
$\Rightarrow \frac{d x}{d y}-x=y$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p x=Q($ where $p=-1$ and $Q=y$ )
Now, I.F $=e^{\int p d y}=e^{\int-d y}=e^{-y}$.
The general solution of the given differential equation is given by the relation, $x($ I.F. $)=\int(Q \times I . F) d y+.C$
$\Rightarrow x e^{-y}=\int(y \cdot e^{-y}) d y+C$
$\Rightarrow x e^{-y}=y \cdot \int e^{-y} d y-\int[\frac{d}{d y}(y) \int e^{-y} d y] d y+C$
$\Rightarrow x e^{-y}=y(-e^{-y})-\int(-e^{-y}) d y+C$
$\Rightarrow x e^{-y}=-y e^{-y}+\int e^{-y} d y+C$
$\Rightarrow x e^{-y}=-y e^{-y}-e^{-y}+C$
$\Rightarrow x=-y-1+Ce^{y}$
$\Rightarrow x+y+1=Ce^{y}$
11. $y d x+(x-y^{2}) d y=0$
Show Answer
Solution
$y d x+(x-y^{2}) d y=0$
$\Rightarrow y d x=(y^{2}-x) d y$
$\Rightarrow \frac{d x}{d y}=\frac{y^{2}-x}{y}=y-\frac{x}{y}$
$\Rightarrow \frac{d x}{d y}+\frac{x}{y}=y$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p x=Q(.$ where $p=\frac{1}{y}$ and $.Q=y)$
Now, I.F $=e^{\int \rho d y}=e^{\int \frac{1}{y} d y}=e^{\log y}=y$.
The general solution of the given differential equation is given by the relation, $x(I . F)=.\int(Q \times I . F) d y+.C$
$\Rightarrow x y=\int(y \cdot y) d y+C$
$\Rightarrow x y=\int y^{2} d y+C$
$\Rightarrow x y=\frac{y^{3}}{3}+C$
$\Rightarrow x=\frac{y^{2}}{3}+\frac{C}{y}$
12. $(x+3 y^{2}) \frac{d y}{d x}=y(y>0)$.
Show Answer
Solution
$(x+3 y^{2}) \frac{d y}{d x}=y$
$\Rightarrow \frac{d y}{d x}=\frac{y}{x+3 y^{2}}$
$\Rightarrow \frac{d x}{d y}=\frac{x+3 y^{2}}{y}=\frac{x}{y}+3 y$
$\Rightarrow \frac{d x}{d y}-\frac{x}{y}=3 y$
This is a linear differential equation of the form:
$\frac{d x}{d y}+p x=Q(.$ where $p=-\frac{1}{y}$ and $.Q=3 y)$
Now, I.F $=e^{\int p d y}=e^{-\int \frac{d y}{y}}=e^{-\log y}=e^{\log (\frac{1}{y})}=\frac{1}{y}$.
The general solution of the given differential equation is given by the relation, $x(I . F)=.\int(Q \times I . F) d y+.C$
$\Rightarrow x \times \frac{1}{y}=\int(3 y \times \frac{1}{y}) d y+C$
$\Rightarrow \frac{x}{y}=3 y+C$
$\Rightarrow x=3 y^{2}+C y$
For each of the differential equations given in Exercises 13 to 15, find a particular solution satisfying the given condition:
13. $\frac{d y}{d x}+2 y \tan x=\sin x ; y=0$ when $x=\frac{\pi}{3}$
Show Answer
Solution
The given differential equation is $\frac{d y}{d x}+2 y \tan x=\sin x$.
This is a linear equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=2 \tan x$ and $Q=\sin x)$
Now, I.F $=e^{\int p d x}=e^{\int 2 tan x d x}=e^{2 \log |\sec x|}=e^{\log (\sec ^{2} x)}=\sec ^{2} x$.
The general solution of the given differential equation is given by the relation,
$y(I . F)=.\int(Q \times I . F) d x+.C$
$\Rightarrow y(\sec ^{2} x)=\int(\sin x \cdot \sec ^{2} x) d x+C$
$\Rightarrow y \sec ^{2} x=\int(\sec x \cdot \tan x) d x+C$
$\Rightarrow y \sec ^{2} x=\sec x+C$
Now, $y=0$ at $x=\frac{\pi}{3}$.
Therefore,
$0 \times \sec ^{2} \frac{\pi}{3}=\sec \frac{\pi}{3}+C$
$\Rightarrow 0=2+C$
$\Rightarrow C=-2$
Substituting $C=-2$ in equation (1), we get: $y \sec ^{2} x=\sec x-2$
$\Rightarrow y=\cos x-2 \cos ^{2} x$
Hence, the required solution of the given differential equation is $y=\cos x-2 \cos ^{2} x$.
14. $(1+x^{2}) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} ; y=0$ when $x=1$
Show Answer
Solution
$(1+x^{2}) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$
$\Rightarrow \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{1}{(1+x^{2})^{2}}$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q(.$ where $p=\frac{2 x}{1+x^{2}}$ and $.Q=\frac{1}{(1+x^{2})^{2}})$
Now, I.F $=e^{\int p d x}=e^{\int \frac{2 x d x}{1+x^{2}}}=e^{\log (1+x^{2})}=1+x^{2}$.
The general solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(Q \times$ I.F. $) d x+C$
$\Rightarrow y(1+x^{2})=\int[\frac{1}{(1+x^{2})^{2}} \cdot(1+x^{2})] d x+C$
$\Rightarrow y(1+x^{2})=\int \frac{1}{1+x^{2}} d x+C$
$\Rightarrow y(1+x^{2})=\tan ^{-1} x+C$
Now, $y=0$ at $x=1$.
Therefore,
$0=\tan ^{-1} 1+C$
$\Rightarrow C=-\frac{\pi}{4}$
Substituting $C=-\frac{\pi}{4}$ in equation (1), we get:
$y(1+x^{2})=\tan ^{-1} x-\frac{\pi}{4}$
This is the required general solution of the given differential equation.
15. $\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2$ when $x=\frac{\pi}{2}$
Show Answer
Solution
The given differential equation is $\frac{d y}{d x}-3 y \cot x=\sin 2 x$.
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=-3 \cot x$ and $Q=\sin 2 x)$
Now, I.F $=e^{\int p d x}=e^{-3 \int \cot x d x}=e^{-3 \log |\sin x|}=e^{\log |\frac{1}{\sin ^{3} x}|}=\frac{1}{\sin ^{3} x}$.
The general solution of the given differential equation is given by the relation,
$y($ I.F. $)=\int(Q \times$ I.F. $) d x+$ C
$\Rightarrow y \cdot \frac{1}{\sin ^{3} x}=\int[\sin 2 x \cdot \frac{1}{\sin ^{3} x}] d x+C$
$\Rightarrow y cosec^{3} x=2 \int(\cot x cosec x) d x+C$
$\Rightarrow y cosec^{3} x=2 cosec x+C$
$\Rightarrow y=-\frac{2}{cosec^{2} x}+\frac{3}{cosec^{3} x}$
$\Rightarrow y=-2 \sin ^{2} x+C \sin ^{3} x$
Now, $y=2$ at $x=\frac{\pi}{2}$.
Therefore, we get:
$2=-2+C$
$\Rightarrow C=4$
Substituting $C=4$ in equation (1), we get:
$y=-2 \sin ^{2} x+4 \sin ^{3} x$
$\Rightarrow y=4 \sin ^{3} x-2 \sin ^{2} x$
This is the required particular solution of the given differential equation.
16. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point $(x, y)$ is equal to the sum of the coordinates of the point.
Show Answer
Solution
Let $F(x, y)$ be the curve passing through the origin.
At point $(x, y)$, the slope of the curve will be $\frac{d y}{d x}$.
According to the given information:
$\frac{d y}{d x}=x+y$
$\Rightarrow \frac{d y}{d x}-y=x$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q($ where $p=-1$ and $Q=x)$
Now, I.F $=e^{\int p d x}=e^{\int(-1) d x}=e^{-x}$.
The general solution of the given differential equation is given by the relation,
$$ \begin{align*} & y(\text{ I.F. })=\int(Q \times \text{ I.F. }) d x+C \\ & \Rightarrow y e^{-x}=\int x e^{-x} d x+C \tag{1} \end{align*} $$
Now, $\int x e^{-x} d x=x \int e^{-x} d x-\int[\frac{d}{d x}(x) \cdot \int e^{-x} d x] d x$.
$ =-x e^{-x}-\int-e^{-x} d x $
$ \begin{aligned} & =-x e^{-x}+(-e^{-x}) \\ & =-e^{-x}(x+1) \end{aligned} $
Substituting in equation (1), we get:
$$ \begin{align*} & y e^{-x}=-e^{-x}(x+1)+C \\ & \Rightarrow y=-(x+1)+C e^{x} \\ & \Rightarrow x+y+1=C e^{x} \tag{2} \end{align*} $$
The curve passes through the origin.
Therefore, equation (2) becomes:
$1=C$
Substituting $C=1$ in equation (2), we get:
$\Rightarrow \quad x+y+1=e^{x}$
Hence, the required equation of curve passing through the origin is $x+y+1=e^{x}$.
17. Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .
Show Answer
Solution
Let $F(x, y)$ be the curve and let $(x, y)$ be a point on the curve. The slope of the tangent
to the curve at $(x, y)$ is $\frac{d y}{d x}$.
According to the given information:
$\frac{d y}{d x}+5=x+y$
$\Rightarrow \frac{d y}{d x}-y=x-5$
This is a linear differential equation of the form: $\frac{d y}{d x}+p y=Q($ where $p=-1$ and $Q=x-5)$
Now, I.F $=e^{\int p d x}=e^{\int(-1) d x}=e^{-x}$.
The general equation of the curve is given by the relation,
$y($ I.F. $)=\int(Q \times$ I.F. $) d x+$ C
$\Rightarrow y \cdot e^{-x}=\int(x-5) e^{-x} d x+C$
Now, $\int(x-5) e^{-x} d x=(x-5) \int e^{-x} d x-\int[\frac{d}{d x}(x-5) \cdot \int e^{-x} d x] d x$.
$ \begin{aligned} & =(x-5)(-e^{-x})-\int(-e^{-x}) d x \\ & =(5-x) e^{-x}+(-e^{-x}) \\ & =(4-x) e^{-x} \end{aligned} $
Therefore, equation (1) becomes:
$$ \begin{align*} & y e^{-x}=(4-x) e^{-x}+C \\ & \Rightarrow y=4-x+C e^{x} \\ & \Rightarrow x+y-4=C e^{x} \tag{2} \end{align*} $$
The curve passes through point $(0,2)$.
Therefore, equation ( 2 ) becomes:
$0+2-4=Ce^{0}$
$\Rightarrow-2=C$
$\Rightarrow C=-2$
Substituting $C=-2$ in equation (2), we get:
$ \begin{aligned} & x+y-4=-2 e^{x} \\ & \Rightarrow y=4-x-2 e^{x} \end{aligned} $
This is the required equation of the curve.
18. The Integrating Factor of the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is
$\quad\quad$(A) $e^{-x}$
$\quad\quad$(B) $e^{-y}$
$\quad\quad$(C) $\frac{1}{x}$
$\quad\quad$(D) $x$
Show Answer
Solution
The given differential equation is:
$x \frac{d y}{d x}-y=2 x^{2}$
$\Rightarrow \frac{d y}{d x}-\frac{y}{x}=2 x$
This is a linear differential equation of the form:
$\frac{d y}{d x}+p y=Q(.$ where $p=-\frac{1}{x}$ and $.Q=2 x)$
The integrating factor (I.F) is given by the relation,
$e^{\int p d x}$
$\therefore$ I.F $=e^{\int \frac{1}{x} d x}=e^{-\log x}=e^{\log (x^{-1})}=x^{-1}=\frac{1}{x}$
Hence, the correct answer is $C$.
19. The Integrating Factor of the differential equation $\left(1-y^{2}\right) \frac{d x}{d y}+y x=a y(-1<y<1)$
(A) $\frac{1}{y^{2}-1}$
(B) $\frac{1}{\sqrt{y^{2}-1}}$
(C) $\frac{1}{1-y^{2}}$
(D) $\frac{1}{\sqrt{1-y^{2}}}$
Show Answer
Solution
The given differential equation is:
$(1-y^{2}) \frac{d x}{d y}+y x=a y$
$\Rightarrow \frac{d y}{d x}+\frac{y x}{1-y^{2}}=\frac{a y}{1-y^{2}}$
This is a linear differential equation of the form:
$\frac{d x}{d y}+p y=Q(.$ where $p=\frac{y}{1-y^{2}}$ and $Q=\frac{a y}{1-y^{2}}$ )
The integrating factor (I.F) is given by the relation,
$e^{\int p d x}$
$\therefore I . F=e^{\int p d y}=e^{\int \frac{y}{1-y^{2}} d y}=e^{-\frac{1}{2} \log (1-y^{2})}=e^{\log [\frac{1}{\sqrt{1-y^{2}}}]}=\frac{1}{\sqrt{1-y^{2}}}$
Hence, the correct answer is D.