Chapter 6 Application Of Derivatives EXERCISE 6.3

EXERCISE 6.3

1. Find the maximum and minimum values, if any, of the following functions given by

(i) $f(x)=(2 x-1)^{2}+3$

(ii) $f(x)=9 x^{2}+12 x+2$

(iii) $f(x)=-(x-1)^{2}+10$

(iv) $g(x)=x^{3}+1$

Show Answer

Solution

(i) The given function is $f(x)=(2 x-1)^{2}+3$.

It can be observed that $(2 x-1)^{2} \geq 0$ for every $x \square \mathbf{R}$.

Therefore, $f(x)=(2 x-1)^{2}+3 \geq 3$ for every $x \square \mathbf{R}$.

The minimum value of $f$ is attained when $2 x-1=0$.

$2 x-1=0$

$ x=\frac{1}{2} $

$\square$ Minimum value of $f=f(\frac{1}{2})=(2 \cdot \frac{1}{2}-1)^{2}+3=3$

Hence, function $f$ does not have a maximum value.

(ii) The given function is $f(x)=9 x^{2}+12 x+2=(3 x+2)^{2}-2$.

It can be observed that $(3 x+2)^{2} \geq 0$ for every $x \square \mathbf{R}$.

Therefore, $f(x)=(3 x+2)^{2}-2 \geq-2$ for every $x \square \mathbf{R}$.

The minimum value of $f$ is attained when $3 x+2=0$.

$3 x+2=0 \square^{x=\frac{-2}{3}}$

$\square$ Minimum value of $f=f(-\frac{2}{3})=(3(\frac{-2}{3})+2)^{2}-2=-2$

Hence, function $f$ does not have a maximum value.

(iii) The given function is $f(x)=-(x-1)^{2}+10$.

It can be observed that $(x-1)^{2} \geq 0$ for every $x \square \mathbf{R}$.

Therefore, $f(x)=-(x-1)^{2}+10 \leq 10$ for every $x \square \mathbf{R}$.

The maximum value of $f$ is attained when $(x-1)=0$.

$(x-1)=0 \square x=0$

$\square$ Maximum value of $f=f(1)=-(1-1)^{2}+10=10$

Hence, function $f$ does not have a minimum value.

(iv) The given function is $g(x)=x^{3}+1$.

Hence, function $g$ neither has a maximum value nor a minimum value.

2. Find the maximum and minimum values, if any, of the following functions given by

(i) $f(x)=|x+2|-1$

(ii) $g(x)=-|x+1|+3$

(iii) $h(x)=\sin (2 x)+5$

(iv) $f(x)=|\sin 4 x+3|$

(v) $h(x)=x+1, x \in(-1,1)$

Show Answer

Solution

(i) $f(x)=|x+2|-1$

We know that $|x+2| \geq 0$ for every $x \square \mathbf{R}$.

Therefore, $f(x)=|x+2|-1 \geq-1$ for every $x \square \mathbf{R}$.

The minimum value of $f$ is attained when $|x+2|=0$.

$|x+2|=0$

$\Rightarrow x=-2$

$\square$ Minimum value of $f=f(-2)=|-2+2|-1=-1$

Hence, function $f$ does not have a maximum value.

(ii) $g(x)=-|x+1|+3$

We know that $-|x+1| \leq 0$ for every $x \square \mathbf{R}$.

Therefore, $g(x)=-|x+1|+3 \leq 3$ for every $x \square \mathbf{R}$.

The maximum value of $g$ is attained when $|x+1|=0$.

$|x+1|=0$

$\Rightarrow x=-1$

$\square$ Maximum value of $g=g(-1)=-|-1+1|+3=3$

Hence, function $g$ does not have a minimum value. (iii) $h(x)=\sin 2 x+5$

We know that $-1 \leq \sin 2 x \leq 1$.

$\square-1+5 \leq \sin 2 x+5 \leq 1+5$

$\square 4 \leq \sin 2 x+5 \leq 6$

Hence, the maximum and minimum values of $h$ are 6 and 4 respectively.

(iv) $f(x)=|\sin 4 x+3|$

We know that $-1 \leq \sin 4 x \leq 1$.

$\square 2 \leq \sin 4 x+3 \leq 4$

$\square 2 \leq^{|\sin 4 x+3|} \leq 4$

Hence, the maximum and minimum values of $f$ are 4 and 2 respectively.

(v) $h(x)=x+1, x \square(-1,1)$

Here, if a point $x_0$ is closest to -1 , then we find $\frac{x_0}{2}+1<x_0+1$ for all $x_0 \square(-1,1)$.

Also, if $x_1$ is closest to 1 , then $x_1+1<\frac{x_1+1}{2}+1$ for all $x_1 \square(-1,1)$.

Hence, function $h(x)$ has neither maximum nor minimum value in $(-1,1)$.

3. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

(i) $f(x)=x^{2}$

(ii) $g(x)=x^{3}-3 x$

(iii) $h(x)=\sin x+\cos x, 0<x<\frac{\pi}{2}$

(iv) $f(x)=\sin x-\cos x, 0<x<2 \pi$

(v) $f(x)=x^{3}-6 x^{2}+9 x+15 \quad$ (vi) $g(x)=\frac{x}{2}+\frac{2}{x}, x>0$

(vii) $g(x)=\frac{1}{x^{2}+2}$

(viii) $f(x)=x \sqrt{1-x}, 0<x<1$

Show Answer

Solution

(i) $f(x)=x^{2}$

$\therefore f^{\prime}(x)=2 x$

Now,

$f^{\prime}(x)=0 \Rightarrow x=0$

Thus, $x=0$ is the only critical point which could possibly be the point of local maxima or local minima of $f$.

We have $f^{\prime \prime}(0)=2$, which is positive.

Therefore, by second derivative test, $x=0$ is a point of local minima and local minimum value of $f$ at $x=0$ is $f(0)=0$.

(ii) $g(x)=x^{3}-3 x$

$\therefore g^{\prime}(x)=3 x^{2}-3$

Now,

$g^{\prime}(x)=0 \Rightarrow 3 x^{2}=3 \Rightarrow x= \pm 1$

$g^{\prime}(x)=6 x$

$g^{\prime}(1)=6>0$

$g^{\prime}(-1)=-6<0$

By second derivative test, $x=1$ is a point of local minima and local minimum value of $g$ at $x=1$ is $g(1)=1^{3}-3=1-3=-2$. However, $x=-1$ is a point of local maxima and local maximum value of $g$ at $x=-1$ is $g(1)=(-1)^{3}-3(-1)=-1+3=2$.

(iii) $h(x)=\sin x+\cos x, 0<x<\frac{\pi}{2}$

$\therefore h^{\prime}(x)=\cos x-\sin x$

$h^{\prime}(x)=0 \Rightarrow \sin x=\cos x \Rightarrow \tan x=1 \Rightarrow x=\frac{\pi}{4} \in(0, \frac{\pi}{2})$

$h^{\prime \prime}(x)=-\sin x-\cos x=-(\sin x+\cos x)$

$h^{\prime \prime}(\frac{\pi}{4})=-(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}})=-\frac{2}{\sqrt{2}}=-\sqrt{2}<0$

Therefore, by second derivative test, $x=\frac{\pi}{4}$ is a point of local maxima and the local

maximum value of $h$ at $x=\frac{\pi}{4}$ is $h(\frac{\pi}{4})=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$.

(iv) $f(x)=\sin x-\cos x, 0<x<2 \pi$

$\therefore f^{\prime}(x)=\cos x+\sin x$

$f^{\prime}(x)=0 \Rightarrow \cos x=-\sin x \Rightarrow \tan x=-1 \Rightarrow x=\frac{3 \pi}{4}, \frac{7 \pi}{4} \in(0,2 \pi)$

$f^{\prime \prime}(x)=-\sin x+\cos x$

$f^{\prime \prime}(\frac{3 \pi}{4})=-\sin \frac{3 \pi}{4}+\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}>0$

$f^{\prime \prime}(\frac{7 \pi}{4})=-\sin \frac{7 \pi}{4}+\cos \frac{7 \pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}>0$

Therefore, by second derivative test, $x=\frac{3 \pi}{4}$ is a point of local maxima and the local

maximum value of $f$ at $x=\frac{3 \pi}{4}$ is

$f(\frac{3 \pi}{4})=\sin \frac{3 \pi}{4}-\cos \frac{3 \pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$ However, $x=\frac{7 \pi}{4}$ is a point of local minima and

the local minimum value of $f$ at $x=\frac{7 \pi}{4}$ is $f(\frac{7 \pi}{4})=\sin \frac{7 \pi}{4}-\cos \frac{7 \pi}{4}=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}$.

(v) $f(x)=x^{3}-6 x^{2}+9 x+15$

$\therefore f^{\prime}(x)=3 x^{2}-12 x+9$

$f^{\prime}(x)=0 \Rightarrow 3(x^{2}-4 x+3)=0$

$\Rightarrow 3(x-1)(x-3)=0$

$\Rightarrow x=1,3$

Now, $f^{\prime \prime}$

$(x)=6 x-12=6(x-2)$

$f^{\prime \prime}(1)=6(1-2)=-6<0$

$f^{\prime \prime}(3)=6(3-2)=6>0$

Therefore, by second derivative test, $x=1$ is a point of local maxima and the local maximum value of $f$ at $x=1$ is $f(1)=1-6+9+15=19$. However, $x=3$ is a point of local minima and the local minimum value of $f$ at $x=3$ is $f(3)=27-54+27+15=$ 15.

(vi) $g(x)=\frac{x}{2}+\frac{2}{x}, x>0$

$\therefore g^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}$

Now,

$g^{\prime}(x)=0$ gives $\frac{2}{x^{2}}=\frac{1}{2} \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$

Since $x>0$, we take $x=2$.

Now,

$g^{\prime \prime}(x)=\frac{4}{x^{3}}$

$g^{\prime \prime}(2)=\frac{4}{2^{3}}=\frac{1}{2}>0$

Therefore, by second derivative test, $x=2$ is a point of local minima and the local

minimum value of $g$ at $x=2$ is $g(2)=\frac{2}{2}+\frac{2}{2}=1+1=2$.

(vii) $g(x)=\frac{1}{x^{2}+2}$

$\therefore g^{\prime}(x)=\frac{-(2 x)}{(x^{2}+2)^{2}}$

$g^{\prime}(x)=0 \Rightarrow \frac{-2 x}{(x^{2}+2)^{2}}=0 \Rightarrow x=0$

Now, for values close to $x=0$ and to the left of $0, g^{\prime}(x)>0$. Also, for values close to $x=$ 0 and to the right of $0, g^{\prime}(x)<0$.

Therefore, by first derivative test, $x=0$ is a point of local maxima and the local maximum value of $g(0)$ is $\frac{1}{0+2}=\frac{1}{2}$.

(viii) $f(x)=x \sqrt{1-x}, x>0$

$\therefore f^{\prime}(x)=\sqrt{1-x}+x \cdot \frac{1}{2 \sqrt{1-x}}(-1)=\sqrt{1-x}-\frac{x}{2 \sqrt{1-x}}$

$=\frac{2(1-x)-x}{2 \sqrt{1-x}}=\frac{2-3 x}{2 \sqrt{1-x}}$

$f^{\prime}(x)=0 \Rightarrow \frac{2-3 x}{2 \sqrt{1-x}}=0 \Rightarrow 2-3 x=0 \Rightarrow x=\frac{2}{3}$

$f^{\prime \prime}(x)=\frac{1}{2}[\frac{\sqrt{1-x}(-3)-(2-3 x)(\frac{-1}{2 \sqrt{1-x}})}{1-x}]$

$=\frac{\sqrt{1-x}(-3)+(2-3 x)(\frac{1}{2 \sqrt{1-x}})}{2(1-x)}$

$=\frac{-6(1-x)+(2-3 x)}{4(1-x)^{\frac{3}{2}}}$

$=\frac{3 x-4}{4(1-x)^{\frac{3}{2}}}$

$f^{\prime \prime}(\frac{2}{3})=\frac{3(\frac{2}{3})-4}{4(1-\frac{2}{3})^{\frac{3}{2}}}=\frac{2-4}{4(\frac{1}{3})^{\frac{3}{2}}}=\frac{-1}{2(\frac{1}{3})^{\frac{3}{2}}}<0$

Therefore, by second derivative test, $x=\frac{2}{3}$ is a point of local maxima and the local

maximum value of $f$ at $x=\frac{2}{3}$ is $f(\frac{2}{3})=\frac{2}{3} \sqrt{1-\frac{2}{3}}=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{3 \sqrt{3}}=\frac{2 \sqrt{3}}{9}$.

4. Prove that the following functions do not have maxima or minima:

(i) $f(x)=e^{x}$

(ii) $g(x)=\log x$

(iii) $h(x)=x^{3}+x^{2}+x+1$

Show Answer

Solution

i. We have,

$f(x)=e^{x}$

$\therefore f^{\prime}(x)=e^{x}$

Now, if $f^{\prime}(x)=0$, then $e^{x}=0$. But, the exponential function can never assume 0 for any value of $x$.

Therefore, there does not exist $c \square \mathbf{R}$ such that $f^{\prime}(c)=0$.

Hence, function $f$ does not have maxima or minima.

ii. We have,

$g(x)=\log x$

$\therefore g^{\prime}(x)=\frac{1}{x}$

Since $\log x$ is defined for a positive number $x, g^{\prime}(x)>0$ for any $x$.

Therefore, there does not exist $c \square \mathbf{R}$ such that $g^{\prime}(c)=0$.

Hence, function $g$ does not have maxima or minima.

iii. We have,

$h(x)=x^{3}+x^{2}+x+1$

$\therefore h^{\prime}(x)=3 x^{2}+2 x+1$

Now,

$h(x)=0 \square 3 x^{2}+2 x+1=0 \square x=\frac{-2 \pm 2 \sqrt{2} i}{6}=\frac{-1 \pm \sqrt{2} i}{3} \notin \mathbf{R}$

Therefore, there does not exist $c \square \mathbf{R}$ such that $h^{\prime}(c)=0$.

Hence, function $h$ does not have maxima or minima.

5. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:

(i) $f(x)=x^{3}, x \in[-2,2]$

(ii) $f(x)=\sin x+\cos x, x \in[0, \pi]$

(iii) $f(x)=4 x-\frac{1}{2} x^{2}, x \in[-2, \frac{9}{2}]$

(iv) $.f(x)=(x-1)^{2}+3, x \in-3,1]$

Show Answer

Solution

(i) The given function is $f(x)=x^{3}$.

$\therefore f^{\prime}(x)=3 x^{2}$

Now,

$f^{\prime}(x)=0 \Rightarrow x=0$

Then, we evaluate the value of $f$ at critical point $x=0$ and at end points of the interval $[-2,2]$.

$f(0)=0$

$f(-2)=(-2)^{3}=-8$

$f(2)=(2)^{3}=8$

Hence, we can conclude that the absolute maximum value of $f$ on $[-2,2]$ is 8 occurring at $x=2$. Also, the absolute minimum value of $f$ on $[-2,2]$ is -8 occurring at $x=-2$.

(ii) The given function is $f(x)=\sin x+\cos x$.

$\therefore f^{\prime}(x)=\cos x-\sin x$

Now,

$f^{\prime}(x)=0 \Rightarrow \sin x=\cos x \Rightarrow \tan x=1 \Rightarrow x=\frac{\pi}{4}$

Then, we evaluate the value of $f$ at critical point $x=\frac{\pi}{4}$ and at the end points of the interval $[0, \pi]$.

6. Find the maximum profit that a company can make, if the profit function is given by

$ p(x)=41-72 x-18 x^{2} $

Show Answer

Solution

The profit function is given as $p(x)=41-24 x-18 x^{2}$.

$\therefore p^{\prime}(x)=-24-36 x$

$p^{\prime \prime}(x)=-36$

Now,

$p^{\prime}(x)=0 \Rightarrow x=\frac{-24}{36}=-\frac{2}{3}$

Also,

$p^{\prime \prime}(\frac{-2}{3})=-36<0$

By second derivative test, $x=-\frac{2}{3}$ is the point of local maxima of $p$.

$\therefore$ Maximum profit $=p(-\frac{2}{3})$

$ \begin{aligned} & =41-24(-\frac{2}{3})-18(-\frac{2}{3})^{2} \\ & =41+16-8 \\ & =49 \end{aligned} $

Hence, the maximum profit that the company can make is 49 units.

7. Find both the maximum value and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval $[0,3]$.

Show Answer

Solution

$f(x)=3 x^4-8 x^3+12 x^2-48 x+25$

$f^{\prime}(x)=0$ for finding critical points

$f^{\prime}(x)=12 x^3-24 x^2+24 x-48$

$12 x^3-24 x^2+24 x-48=0$

$12 x^2(x-2)+24(x-2)=0$

$\left(12 x^2+24\right)(x-2)=0$

Since $12 x^2+24 \neq 0$ and $x-2=0 \Longrightarrow x=2$

We need to check at $x=0,2,3$ $f(0)=25$

$f(2)=-39$

$f(3)=16$

$\therefore$ Maximum of $f(x)$ at $x=0$ is 25

Minimum of $f(x)$ at $x=2$ is -39

8. At what points in the interval $[0,2 \pi]$, does the function $\sin 2 x$ attain its maximum value?

Show Answer

Solution

Let $f(x)=\sin 2 x$.

$\therefore f^{\prime}(x)=2 \cos 2 x$

Now,

$ \begin{aligned} & f^{\prime}(x)=0 \Rightarrow \cos 2 x=0 \\ & \Rightarrow 2 x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2} \\ & \Rightarrow x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \end{aligned} $

Then, we evaluate the values of $f$ at critical points $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$ and at the end points of the interval $[0,2 \pi]$.

$f(\frac{\pi}{4})=\sin \frac{\pi}{2}=1, f(\frac{3 \pi}{4})=\sin \frac{3 \pi}{2}=-1$

$f(\frac{5 \pi}{4})=\sin \frac{5 \pi}{2}=1, f(\frac{7 \pi}{4})=\sin \frac{7 \pi}{2}=-1$

$f(0)=\sin 0=0, f(2 \pi)=\sin 2 \pi=0$

Hence, we can conclude that the absolute maximum value of $f$ on $[0,2 \pi]$ is occurring

at $x=\frac{\pi}{4}$ and $\quad x=\frac{5 \pi}{4}$.

9. What is the maximum value of the function $\sin x+\cos x$ ?

Show Answer

Solution

Let $f(x)=\sin x+\cos x$.

$\therefore f^{\prime}(x)=\cos x-\sin x$

$f^{\prime}(x)=0 \Rightarrow \sin x=\cos x \Rightarrow \tan x=1 \Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4} \ldots$,

$f^{\prime \prime}(x)=-\sin x-\cos x=-(\sin x+\cos x)$

Now, $f^{\prime \prime}(x)$ will be negative when $(\sin x+\cos x)$ is positive i.e., when $\sin x$ and $\cos x$ are both positive. Also, we know that $\sin x$ and $\cos x$ both are positive in the first

quadrant. Then, $f^{\prime \prime}(x)$ will be negative when $x \in(0, \frac{\pi}{2})$.

Thus, we consider $x=\frac{\pi}{4}$.

$f^{\prime \prime}(\frac{\pi}{4})=-(\sin \frac{\pi}{4}+\cos \frac{\pi}{4})=-(\frac{2}{\sqrt{2}})=-\sqrt{2}<0$ $\square$ By second derivative test, $f$ will be the maximum at $x=\frac{\pi}{4}$ and the maximum value of $f$ is $f(\frac{\pi}{4})=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$.

10. Find the maximum value of $2 x^{3}-24 x+107$ in the interval $[1,3]$. Find the maximum value of the same function in $[-3,-1]$.

Show Answer

Solution

Let $f(x)=2 x^{3}-24 x+107$.

$\therefore f^{\prime}(x)=6 x^{2}-24=6(x^{2}-4)$

Now,

$f^{\prime}(x)=0 \Rightarrow 6(x^{2}-4)=0 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$

We first consider the interval $[1,3]$.

Then, we evaluate the value of $f$ at the critical point $x=2 \square[1,3]$ and at the end points of the interval $[1,3]$.

$f(2)=2(8)-24(2)+107=16-48+107=75$

$f(1)=2(1)-24(1)+107=2-24+107=85$

$f(3)=2(27)-24(3)+107=54-72+107=89$

Hence, the absolute maximum value of $f(x)$ in the interval $[1,3]$ is 89 occurring at $x=$ 3.

Next, we consider the interval $[-3,-1]$.

Evaluate the value of $f$ at the critical point $x=-2 \square[-3,-1]$ and at the end points of the interval $[1,3]$.

$f(-3)=2(-27)-24(-3)+107=-54+72+107=125$

$f(-1)=2(-1)-24(-1)+107=-2+24+107=129$

$f(-2)=2(-8)-24(-2)+107=-16+48+107=139$

Hence, the absolute maximum value of $f(x)$ in the interval $[-3,-1]$ is 139 occurring at $x$ $=-2$.

11. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value, on the interval $[0,2]$. Find the value of $a$.

Show Answer

Solution

Let $f(x)=x^{4}-62 x^{2}+a x+9$.

$\therefore f^{\prime}(x)=4 x^{3}-124 x+a$

It is given that function $f$ attains its maximum value on the interval $[0,2]$ at $x=1$.

$\therefore f^{\prime}(1)=0$

$\Rightarrow 4-124+a=0$

$\Rightarrow a=120$

Hence, the value of $a$ is 120 .

12. Find the maximum and minimum values of $x+\sin 2 x$ on $[0,2 \pi]$.

Show Answer

Solution

Let $f(x)=x+\sin 2 x$.

$\therefore f^{\prime}(x)=1+2 \cos 2 x$

Now, $f^{\prime}(x)=0 \Rightarrow \cos 2 x=-\frac{1}{2}=-\cos \frac{\pi}{3}=\cos (\pi-\frac{\pi}{3})=\cos \frac{2 \pi}{3}$

$2 x=2 \pi \pm \frac{2 \pi}{3} \quad n \in \mathbf{Z}$

$\Rightarrow x=n \pi \pm \frac{\pi}{3}, n \in \mathbf{Z}$

$\Rightarrow x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \in[0,2 \pi]$

Then, we evaluate the value of $f$ at critical points $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$ and at the end points of the interval $[0,2 \pi]$. $f(\frac{\pi}{3})=\frac{\pi}{3}+\sin \frac{2 \pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}$

$f(\frac{2 \pi}{3})=\frac{2 \pi}{3}+\sin \frac{4 \pi}{3}=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}$

$f(\frac{4 \pi}{3})=\frac{4 \pi}{3}+\sin \frac{8 \pi}{3}=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}$

$f(\frac{5 \pi}{3})=\frac{5 \pi}{3}+\sin \frac{10 \pi}{3}=\frac{5 \pi}{3}-\frac{\sqrt{3}}{2}$

$f(0)=0+\sin 0=0$

$f(2 \pi)=2 \pi+\sin 4 \pi=2 \pi+0=2 \pi$

Hence, we can conclude that the absolute maximum value of $f(x)$ in the interval $[0,2 \pi]$ is $2 \pi$ occurring at $x=2 \pi$ and the absolute minimum value of $f(x)$ in the interval $[0,2 \pi]$ is 0 occurring at $x=0$.

13. Find two numbers whose sum is 24 and whose product is as large as possible.

Show Answer

Solution

Let one number be $x$. Then, the other number is $(24-x)$.

Let $P(x)$ denote the product of the two numbers. Thus, we have:

$ \begin{aligned} & P(x)=x(24-x)=24 x-x^{2} \\ & \therefore P^{\prime}(x)=24-2 x \\ & P^{\prime \prime}(x)=-2 \end{aligned} $

Now,

$P^{\prime}(x)=0 \Rightarrow x=12$

Also,

$P^{\prime \prime}(12)=-2<0$

$\square$ By second derivative test, $x=12$ is the point of local maxima of $P$. Hence, the product of the numbers is the maximum when the numbers are 12 and $24-12=12$.

14. Find two positive numbers $x$ and $y$ such that $x+y=60$ and $x y^{3}$ is maximum.

Show Answer

Solution

The two numbers are $x$ and $y$ such that $x+y=60$.

$\square y=60-x$

Let $f(x)=x y^{3}$.

$\Rightarrow f(x)=x(60-x)^{3}$

$\therefore f^{\prime}(x)=(60-x)^{3}-3 x(60-x)^{2}$

$=(60-x)^{2}[60-x-3 x]$

$=(60-x)^{2}(60-4 x)$

And, $f^{\prime \prime}(x)=-2(60-x)(60-4 x)-4(60-x)^{2}$

$ \begin{aligned} & =-2(60-x)[60-4 x+2(60-x)] \\ & =-2(60-x)(180-6 x) \\ & =-12(60-x)(30-x) \end{aligned} $

Now, $f^{\prime}(x)=0 \Rightarrow x=60$ or $x=15$

When $x=60, f^{\prime \prime}(x)=0$.

When $x=15, f^{\prime \prime}(x)=-12(60-15)(30-15)=-12 \times 45 \times 15<0$.

$\square$ By second derivative test, $x=15$ is a point of local maxima of $f$. Thus, function $x y^{3}$ is maximum when $x=15$ and $y=60-15=45$.

Hence, the required numbers are 15 and 45 .

15. Find two positive numbers $x$ and $y$ such that their sum is 35 and the product $x^{2} y^{5}$ is a maximum.

Show Answer

Solution

Let one number be $x$. Then, the other number is $y=(35-x)$.

Let $P(x)=x^{2} y^{5}$. Then, we have:

$ \begin{aligned} & P(x)=x^{2}(35-x)^{5} \\ & \begin{aligned} \therefore P^{\prime}(x) & =2 x(35-x)^{5}-5 x^{2}(35-x)^{4} \\ & =x(35-x)^{4}[2(35-x)-5 x] \\ & =x(35-x)^{4}(70-7 x) \\ & =7 x(35-x)^{4}(10-x) \end{aligned} \end{aligned} $

And, $P^{\prime \prime}(x)=7(35-x)^{4}(10-x)+7 x[-(35-x)^{4}-4(35-x)^{3}(10-x)]$

$ \begin{aligned} & =7(35-x)^{4}(10-x)-7 x(35-x)^{4}-28 x(35-x)^{3}(10-x) \\ & =7(35-x)^{3}[(35-x)(10-x)-x(35-x)-4 x(10-x)] \\ & =7(35-x)^{3}[350-45 x+x^{2}-35 x+x^{2}-40 x+4 x^{2}] \\ & =7(35-x)^{3}(6 x^{2}-120 x+350) \end{aligned} $

Now, $P^{\prime}(x)=0 \Rightarrow x=0, x=35, x=10$

When $x=35,{ }^{\prime}(x)=f(x)=0$ and $y=35-35=0$. This will make the product $x^{2} y^{5}$ equal to 0 .

When $x=0, y=35-0=35$ and the product $x^{2} y^{2}$ will be 0 .

$\square x=0$ and $x=35$ cannot be the possible values of $x$.

When $x=10$, we have:

$ \begin{aligned} P^{\prime \prime}(x) & =7(35-10)^{3}(6 \times 100-120 \times 10+350) \\ & =7(25)^{3}(-250)<0 \end{aligned} $

$\square$ By second derivative test, $P(x)$ will be the maximum when $x=10$ and $y=35-10=$ 25.

Hence, the required numbers are 10 and 25 .

16. Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

Show Answer

Solution

Let one number be $x$. Then, the other number is $(16-x)$.

Let the sum of the cubes of these numbers be denoted by $S(x)$. Then,

$S(x)=x^{3}+(16-x)^{3}$

$\therefore S^{\prime}(x)=3 x^{2}-3(16-x)^{2}, S^{\prime \prime}(x)=6 x+6(16-x)$

Now, $S^{\prime}(x)=0 \Rightarrow 3 x^{2}-3(16-x)^{2}=0$

$\Rightarrow x^{2}-(16-x)^{2}=0$

$\Rightarrow x^{2}-256-x^{2}+32 x=0$

$\Rightarrow x=\frac{256}{32}=8$

Now, $S^{\prime \prime}(8)=6(8)+6(16-8)=48+48=96>0$

$\square$ By second derivative test, $x=8$ is the point of local minima of $S$.

Hence, the sum of the cubes of the numbers is the minimum when the numbers are 8 and $16-8=8$.

17. A square piece of tin of side $18 cm$ is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible.

Show Answer

Solution

Let the side of the square to be cut off be $x cm$. Then, the length and the breadth of the box will be $(18-2 x) cm$ each and the height of the box is $x cm$.

Therefore, the volume $V(x)$ of the box is given by,

$V(x)=x(18-2 x)^{2}$ $\therefore V^{\prime}(x)=(18-2 x)^{2}-4 x(18-2 x)$

$=(18-2 x)[18-2 x-4 x]$

$=(18-2 x)(18-6 x)$

$=6 \times 2(9-x)(3-x)$

$=12(9-x)(3-x)$

And, $V^{\prime \prime}(x)=12[-(9-x)-(3-x)]$

$=-12(9-x+3-x)$

$=-12(12-2 x)$

$=-24(6-x)$

Now, $V^{\prime}(x)=0 \Rightarrow x=9$ or $x=3$

If $x=9$, then the length and the breadth will become 0 .

$\therefore x \neq 9$.

$\Rightarrow x=3$.

Now, $V^{\prime \prime}(3)=-24(6-3)=-72<0$

$\therefore$ By second derivative test, $x=3$ is the point of maxima of $V$.

Hence, if we remove a square of side $3 cm$ from each corner of the square tin and make a box from the remaining sheet, then the volume of the box obtained is the largest possible.

18. A rectangular sheet of tin $45 cm$ by $24 cm$ is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?

Show Answer

Solution

Let the side of the square to be cut off be $x cm$. Then, the height of the box is $x$, the length is $45-2 x$, and the breadth is $24-2 x$.

Therefore, the volume $V(x)$ of the box is given by,

$ \begin{aligned} V(x) & =x(45-2 x)(24-2 x) \\ & =x(1080-90 x-48 x+4 x^{2}) \\ & =4 x^{3}-138 x^{2}+1080 x \end{aligned} $

$\therefore V^{\prime}(x)=12 x^{2}-276 x+1080$

$ =12(x^{2}-23 x+90) $

$ =12(x-18)(x-5) $

$V^{\prime \prime}(x)=24 x-276=12(2 x-23)$

Now, ${ }^{V^{\prime}}(x)=0 \Rightarrow x=18$ and $x=5$

It is not possible to cut off a square of side $18 cm$ from each corner of the rectangular sheet. Thus, $x$ cannot be equal to 18 .

$\square x=5$

Now, $V^{\prime \prime}(5)=12(10-23)=12(-13)=-156<0$

$\therefore$ By second derivative test, $x=5$ is the point of maxima.

Hence, the side of the square to be cut off to make the volume of the box maximum possible is $5 cm$.

19. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

Show Answer

Solution

Let a rectangle of length / and breadth $b$ be inscribed in the given circle of radius $a$. Then, the diagonal passes through the centre and is of length $2 a cm$.

Now, by applying the Pythagoras theorem, we have:

$ \begin{aligned} & (2 a)^{2}=l^{2}+b^{2} \\ & \Rightarrow b^{2}=4 a^{2}-l^{2} \\ & \Rightarrow b=\sqrt{4 a^{2}-l^{2}} \end{aligned} $

$\square$ Area of the rectangle, $A=l \sqrt{4 a^{2}-l^{2}}$

$\therefore \frac{d A}{d l}=\sqrt{4 a^{2}-l^{2}}+l \frac{1}{2 \sqrt{4 a^{2}-l^{2}}}(-2 l)=\sqrt{4 a^{2}-l^{2}}-\frac{l^{2}}{\sqrt{4 a^{2}-l^{2}}}$

$ =\frac{4 a^{2}-2 l^{2}}{\sqrt{4 a^{2}-l^{2}}} $

$\frac{d^{2} A}{d l^{2}}=\frac{\sqrt{4 a^{2}-l^{2}}(-4 l)-(4 a^{2}-2 l^{2}) \frac{(-2 l)}{2 \sqrt{4 a^{2}-l^{2}}}}{(4 a^{2}-l^{2})}$

$ =\frac{(4 a^{2}-l^{2})(-4 l)+l(4 a^{2}-2 l^{2})}{(4 a^{2}-l^{2})^{\frac{3}{2}}} $

$ =\frac{-12 a^{2} l+2 l^{3}}{(4 a^{2}-l^{2})^{\frac{3}{2}}}=\frac{-2 l(6 a^{2}-l^{2})}{(4 a^{2}-l^{2})^{\frac{3}{2}}} $

Now, $\frac{d A}{d l}=0$ gives $4 a^{2}=2 l^{2} \Rightarrow l=\sqrt{2} a$

$ \Rightarrow b=\sqrt{4 a^{2}-2 a^{2}}=\sqrt{2 a^{2}}=\sqrt{2} a $

Now, when $l=\sqrt{2} a$,

$\frac{d^{2} A}{d l^{2}}=\frac{-2(\sqrt{2} a)(6 a^{2}-2 a^{2})}{2 \sqrt{2} a^{3}}=\frac{-8 \sqrt{2} a^{3}}{2 \sqrt{2} a^{3}}=-4<0$

$\therefore$ By the second derivative test, when $l=\sqrt{2} a$, then the area of the rectangle is the maximum.

Since $l=b=\sqrt{2} a$, the rectangle is a square.

Hence, it has been proved that of all the rectangles inscribed in the given fixed circle, the square has the maximum area.

20. Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

Show Answer

Solution

Let $r$ and $h$ be the radius and height of the cylinder respectively.

Then, the surface area $(S)$ of the cylinder is given by,

$ \begin{aligned} & S=2 \pi r^{2}+2 \pi r h \\ & \Rightarrow h=\frac{S-2 \pi r^{2}}{2 \pi r} \\ &=\frac{S}{2 \pi}(\frac{1}{r})-r \end{aligned} $

Let $V$ be the volume of the cylinder. Then,

$V=\pi r^{2} h=\pi r^{2}[\frac{S}{2 \pi}(\frac{1}{r})-r]=\frac{S r}{2}-\pi r^{3}$

Then, $\frac{d V}{d r}=\frac{S}{2}-3 \pi r^{2}, \frac{d^{2} V}{d r^{2}}=-6 \pi r$

Now, $\frac{d V}{d r}=0 \Rightarrow \frac{S}{2}=3 \pi r^{2} \Rightarrow r^{2}=\frac{S}{6 \pi}$

When $r^{2}=\frac{S}{6 \pi}$, then $\frac{d^{2} V}{d r^{2}}=-6 \pi(\sqrt{\frac{S}{6 \pi}})<0$.

By second derivative test, the volume is the maximum when $r^{2}=\frac{S}{6 \pi}$.

Now, when $r^{2}=\frac{S}{6 \pi}$, then $h=\frac{6 \pi r^{2}}{2 \pi}(\frac{1}{r})-r=3 r-r=2 r$.

Hence, the volume is the maximum when the height is twice the radius i.e., when the height is equal to the diameter.

21. Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?

Show Answer

Solution

Let $r$ and $h$ be the radius and height of the cylinder respectively.

Then, volume $(V)$ of the cylinder is given by,

$V=\pi r^{2} h=100 \quad$ (given)

$\therefore h=\frac{100}{\pi r^{2}}$

Surface area $(S$ ) of the cylinder is given by,

$S=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+\frac{200}{r}$

$\therefore \frac{d S}{d r}=4 \pi r-\frac{200}{r^{2}}, \frac{d^{2} S}{d r^{2}}=4 \pi+\frac{400}{r^{3}}$

$\frac{d S}{d r}=0 \Rightarrow 4 \pi r=\frac{200}{r^{2}}$

$\Rightarrow r^{3}=\frac{200}{4 \pi}=\frac{50}{\pi}$

$\Rightarrow r=(\frac{50}{\pi})^{\frac{1}{3}}$

Now, it is observed that when $r=(\frac{50}{\pi})^{\frac{1}{3}}, \frac{d^{2} S}{d r^{2}}>0$.

$\square$ By second derivative test, the surface area is the minimum when the radius of the

cylinder is $(\frac{50}{\pi})^{\frac{1}{3}} cm$.

When $r=(\frac{50}{\pi})^{\frac{1}{3}}, h=\frac{100}{\pi(\frac{50}{\pi})^{\frac{2}{3}}}=\frac{2 \times 50}{(50)^{\frac{2}{3}}()^{1-\frac{2}{3}}}=2(\frac{50}{\pi})^{\frac{1}{3}} cm$.

Hence, the required dimensions of the can which has the minimum surface area is given

by radius $=(\frac{50}{\pi})^{\frac{1}{3}} cm$ and height $=2(\frac{50}{\pi})^{\frac{1}{3}} cm$.

22. A wire of length $28 m$ is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

Show Answer

Solution

Let a piece of length / be cut from the given wire to make a square.

Then, the other piece of wire to be made into a circle is of length $(28-I) m$.

Now, side of square $=\frac{l}{4}$.

Let $r$ be the radius of the circle. Then,

$ 2 \pi r=28-l \Rightarrow r=\frac{1}{2 \pi}(28-l) \text{. } $

The combined areas of the square and the circle $(A)$ is given by,

$A=(\text{ side of the square })^{2}+r^{2}$

$=\frac{l^{2}}{16}+\pi[\frac{1}{2 \pi}(28-l)]^{2}$

$=\frac{l^{2}}{16}+\frac{1}{4 \pi}(28-l)^{2}$

$\therefore \frac{d A}{d l}=\frac{2 l}{16}+\frac{2}{4 \pi}(28-l)(-1)=\frac{l}{8}-\frac{1}{2 \pi}(28-l)$

$\frac{d^{2} A}{d l^{2}}=\frac{1}{8}+\frac{1}{2 \pi}>0$

Now, $\frac{d A}{d l}=0 \Rightarrow \frac{l}{8}-\frac{1}{2 \pi}(28-l)=0$

$\Rightarrow \frac{\pi l-4(28-l)}{8 \pi}=0$

$\Rightarrow(\pi+4) l-112=0$

$\Rightarrow l=\frac{112}{\pi+4}$

Thus, when $l=\frac{112}{\pi+4}, \frac{d^{2} A}{d l^{2}}>0$.

$\therefore$ By second derivative test, the area $(A)$ is the minimum when $l=\frac{112}{\pi+4}$.

Hence, the combined area is the minimum when the length of the wire in making the

square is $\frac{112}{\pi+4} cm$ while the length of the wire in making the circle

is $28-\frac{112}{\pi+4}=\frac{28 \pi}{\pi+4} cm$.

23. Prove that the volume of the largest cone that can be inscribed in a sphere of radius $R$ is $\frac{8}{27}$ of the volume of the sphere.

Show Answer

Solution

Let $r$ and $h$ be the radius and height of the cone respectively inscribed in a sphere of radius $R$.

Let $V$ be the volume of the cone.

Then, $V=\frac{1}{3} \pi r^{2} h$

Height of the cone is given by,

$h=R+AB=R+\sqrt{R^{2}-r^{2}} \quad$ [ $ABC$ is a right triangle]

$ \begin{aligned} & \therefore V=\frac{1}{3} \pi r^{2}(R+\sqrt{R^{2}-r^{2}}) \\ & =\frac{1}{3} \pi r^{2} R+\frac{1}{3} \pi r^{2} \sqrt{R^{2}-r^{2}} \\ & \therefore \frac{d V}{d r}=\frac{2}{3} \pi r R+\frac{2}{3} \pi r \sqrt{R^{2}-r^{2}}+\frac{1}{3} \pi r^{2} \cdot \frac{(-2 r)}{2 \sqrt{R^{2}-r^{2}}} \\ & =\frac{2}{3} \pi r R+\frac{2}{3} \pi r \sqrt{R^{2}-r^{2}}-\frac{1}{3} \pi \frac{r^{3}}{\sqrt{R^{2}-r^{2}}} \\ & =\frac{2}{3} \pi r R+\frac{2 \pi r(R^{2}-r^{2})-\pi r^{3}}{3 \sqrt{R^{2}-r^{2}}} \\ & =\frac{2}{3} \pi r R+\frac{2 \pi r R^{2}-3 \pi r^{3}}{3 \sqrt{R^{2}-r^{2}}} \\ & \frac{d^{2} V}{d r^{2}}=\frac{2 \pi R}{3}+\frac{3 \sqrt{R^{2}-r^{2}}(2 \pi R^{2}-9 \pi r^{2})-(2 \pi r R^{2}-3 \pi r^{3}) \cdot \frac{(-2 r)}{6 \sqrt{R^{2}-r^{2}}}}{9(R^{2}-r^{2})} \\ & =\frac{2}{3} \pi R+\frac{9(R^{2}-r^{2})(2 \pi R^{2}-9 \pi r^{2})+2 \pi r^{2} R^{2}+3 \pi r^{4}}{27(R^{2}-r^{2})^{\frac{3}{2}}} \end{aligned} $

Now, $\frac{d V}{d r}=0 \Rightarrow \frac{2}{3} \quad r R=\frac{3 \pi r^{3}-2 \pi r R^{2}}{3 \sqrt{R^{2}-r^{2}}}$

$\Rightarrow 2 R=\frac{3 r^{2}-2 R^{2}}{\sqrt{R^{2}-r^{2}}} \Rightarrow 2 R \sqrt{R^{2}-r^{2}}=3 r^{2}-2 R^{2}$

$\Rightarrow 4 R^{2}(R^{2}-r^{2})=(3 r^{2}-2 R^{2})^{2}$

$\Rightarrow 4 R^{4}-4 R^{2} r^{2}=9 r^{4}+4 R^{4}-12 r^{2} R^{2}$

$\Rightarrow 9 r^{4}=8 R^{2} r^{2}$

$\Rightarrow r^{2}=\frac{8}{9} R^{2}$

When $r^{2}=\frac{8}{9} R^{2}$, then $\frac{d^{2} V}{d r^{2}}<0$.

By second derivative test, the volume of the cone is the maximum when $r^{2}=\frac{8}{9} R^{2}$.

When $r^{2}=\frac{8}{9} R^{2}, h=R+\sqrt{R^{2}-\frac{8}{9} R^{2}}=R+\sqrt{\frac{1}{9} R^{2}}=R+\frac{R}{3}=\frac{4}{3} R$.

Therefore,

$=\frac{1}{3} \pi(\frac{8}{9} R^{2})(\frac{4}{3} R)$

$=\frac{8}{27}(\frac{4}{3} \pi R^{3})$

$=\frac{8}{27} \times($ Volume of the sphere $)$

Hence, the volume of the largest cone that can be inscribed in the sphere is $\frac{8}{27}$ the volume of the sphere.

24. Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ time the radius of the base.

Show Answer

Solution

Let $r$ and $h$ be the radius and the height (altitude) of the cone respectively.

Then, the volume $(V)$ of the cone is given as:

$V=\frac{1}{3} \pi r^{2} h \Rightarrow h=\frac{3 V}{r^{2}}$

The surface area $(S)$ of the cone is given by,

$S=\pi r l$ (where $/$ is the slant height)

$=\pi r \sqrt{r^{2}+h^{2}}$

$=\pi r \sqrt{r^{2}+\frac{9 \hbar^{2}}{\pi^{2} r^{4}}} \stackrel{\pi}{=} \frac{r \sqrt{9^{2} r^{6}+V^{2}}}{\pi r^{2}}$

$=\frac{1}{r} \sqrt{\pi^{2} r^{6}+9 V^{2}}$

$ \begin{aligned} \therefore \frac{d S}{d r} & =\frac{r \cdot \frac{6 \pi^{2} r^{5}}{2 \sqrt{{ }^{2} r^{6} 9 V^{2}}}-\sqrt{\pi^{2} r^{6}+9 V^{2}}}{r^{2}} \\ & =\frac{3 \pi^{2} r^{6}-\pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}} \\ & =\frac{2 \pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}} \\ & =\frac{2 \pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}} \end{aligned} $

Now, $\frac{d S}{d r}=0 \Rightarrow 2 \pi^{2} r^{6}=9 V^{2} \Rightarrow r^{6}=\frac{9 V^{2}}{2 \pi^{2}}$

Thus, it can be easily verified that when $r^{6}=\frac{9 V^{2}}{2 \pi^{2}}, \frac{d^{2} S}{d r^{2}}>0$.

$\square$ By second derivative test, the surface area of the cone is the least when $r^{6}=\frac{9 V^{2}}{2 \pi^{2}}$.

When $r^{6}=\frac{9 V^{2}}{2 \pi^{2}}, h=\frac{3 V}{\pi r^{2}}=\frac{3}{\pi r^{2}}(\frac{2 \pi^{2} r^{6}}{9})^{\frac{1}{2}}=\frac{3}{\pi r^{2}} \cdot \frac{\sqrt{2} \pi r^{3}}{3}=\sqrt{2} r$.

Hence, for a given volume, the right circular cone of the least curved surface has an altitude equal to $\sqrt{2}$ times the radius of the base.

25. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan ^{-1} \sqrt{2}$.

Show Answer

Solution

Let $\theta$ be the semi-vertical angle of the cone.

It is clear that

$ \theta \in[0, \frac{\pi}{2}] $

Let $r, h$, and $/$ be the radius, height, and the slant height of the cone respectively. The slant height of the cone is given as constant.

Now, $r=I \sin \theta$ and $h=I \cos \theta$

The volume $(V)$ of the cone is given by,

$ \begin{aligned} & V=\frac{1}{3} \pi r^{2} h \\ & =\frac{1}{3} \pi(l^{2} \sin ^{2} \theta)(l \cos \theta) \\ & =\frac{1}{3} \pi l^{3} \sin ^{2} \theta \cos \theta \\ & \begin{aligned} \therefore \frac{d V}{d \theta} & =\frac{l^{3} \pi}{3}[\sin ^{2} \theta(-\sin \theta)+\cos \theta(2 \sin \theta \cos \theta)] \\ & =\frac{l^{3} \pi}{3}[-\sin ^{3}+2 \sin \theta \cos ^{2} \theta] \end{aligned} \\ & \begin{aligned} \frac{d^{2} V}{d \theta^{2}} & =\frac{l^{3} \pi}{3}[-3 \sin ^{2} \theta \cos \theta+2 \cos ^{3} \theta-4 \sin ^{2} \theta \cos \theta] \\ & =\frac{l^{3} \pi}{3}[2 \cos ^{3} \theta-7 \sin ^{2} \theta \cos \theta] \end{aligned} \end{aligned} $

Now, $\frac{d V}{d \theta}=0$

$\Rightarrow \sin ^{3} \theta=2 \sin \theta \cos ^{2} \theta$

$\Rightarrow \tan ^{2} \theta=2$

$\Rightarrow \tan \theta=\sqrt{2}$

$\Rightarrow \theta=\tan ^{-1} \sqrt{2}$

Now, when $\theta=\tan ^{-1} \sqrt{2}$, then $\tan ^{2} \theta=2$ or $\sin ^{2} \theta=2 \cos ^{2} \theta$.

Then, we have:

$\frac{d^{2} V}{d \theta^{2}}=\frac{l^{3} \pi}{3}[2 \cos ^{3} \theta-14 \cos ^{3} \theta]=-4 \pi l^{3} \cos ^{3} \theta<0$ for $\theta \in[0, \frac{\pi}{2}]$

$\square$ By second derivative test, the volume $(V)$ is the maximum when $\theta=\tan ^{-1} \sqrt{2}$.

Hence, for a given slant height, the semi-vertical angle of the cone of the maximum volume is $\tan ^{-1} \sqrt{2}$.

26. Show that semi-vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1} \frac{1}{3}$.

Show Answer

Solution

Let $\mathrm{r}, \mathrm{h}, \mathrm{l}$ be the radius, height and slant height of the right circular cone respectively. Let $S$ be the given surface area of the cone. We have, $l^2=\mathrm{r}^2+\mathrm{h}^2 \ldots .(1)$

$\begin{aligned} & S=\pi r l+\pi r^2 \ & S-\pi r^2=\pi r l \ & \Rightarrow l=\frac{S-\pi r^2}{\pi r} \ldots . . \end{aligned}$

$\begin{aligned} & \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^2 \mathrm{~h} \\ & \Rightarrow \mathrm{V}=\frac{1}{3} \pi \mathrm{r}^2 \sqrt{1^2-\mathrm{r}^2}(\mathrm{by}(1)) \\ & \Rightarrow \mathrm{V}^2=\frac{1}{9} \pi^2 \mathrm{r}^4\left(\mathrm{l}^2-\mathrm{r}^2\right) \end{aligned}$

$\begin{aligned} & \Rightarrow \mathrm{V}^2=\frac{1}{9} \pi^2 \mathrm{r}^4\left[\left(\frac{\mathrm{S}-\pi \mathrm{r}^2}{\pi \mathrm{r}}\right)^2-\mathrm{r}^2\right] \\ & \Rightarrow \mathrm{V}^2=\frac{1}{9} \pi^2 \mathrm{r}^4\left[\frac{\left(\mathrm{S}-\pi \mathrm{r}^2\right)^2-\pi^2 \mathrm{r}^4}{\pi^2 \mathrm{r}^2}\right] \\ & \Rightarrow \mathrm{V}^2=\frac{1}{9} \mathrm{r}^2\left[\left(\mathrm{~S}-\pi \mathrm{r}^2\right)^2-\pi^2 \mathrm{r}^4\right] \\ & \Rightarrow \mathrm{V}^2=\frac{1}{9} \mathrm{r}^2\left[\mathrm{~S}^2-2 \pi \mathrm{Sr}^2+\pi^2 \mathrm{r}^4-\pi^2 \mathrm{r}^4\right] \\ & \Rightarrow \mathrm{V}^2=\frac{1}{9}\left(\mathrm{r}^2 \mathrm{~S}^2-2 \pi \mathrm{Sr}^4\right) \\ \end{aligned}$

$2 \mathrm{~V} \frac{\mathrm{dV}}{\mathrm{dr}}=\frac{\mathrm{S}^2}{9} 2 \mathrm{r}-\frac{2 \pi \mathrm{S}}{9} 4 \mathrm{r}^3$

$2 \mathrm{~V} \frac{\mathrm{dV}}{\mathrm{dr}}=\frac{2 \mathrm{rS}}{9}\left(\mathrm{~S}-4 \pi \mathrm{r}^2\right)$

For maximum volume, $\frac{\mathrm{dV}}{\mathrm{dr}}=0$

$\begin{aligned} & \Rightarrow \frac{2 \mathrm{rS}}{9}\left(\mathrm{~S}-4 \pi \mathrm{r}^2\right)=0 \\ & \Rightarrow \mathrm{r}=\mathrm{o} \text { or } \mathrm{S}-4 \pi \mathrm{r}^2=0 \end{aligned}$

Since, $r$ cannot be $o$

$\begin{aligned} & \Rightarrow \mathrm{S}=4 \pi \mathrm{r}^2 \ & \Rightarrow \mathrm{r}^2=\frac{\mathrm{S}}{4 \pi} \ & \Rightarrow \mathrm{r}^2=\frac{\pi \mathrm{rl}+\pi \mathrm{r}^2}{4 \pi} \end{aligned}$

$\begin{aligned} & \Rightarrow 4 \pi r^2=\pi r l+\pi r^2 \ & \Rightarrow 3 \pi r^2=\pi r l \ & \Rightarrow l=3 r \end{aligned}$

Let $\alpha$ be the semi-vertical angle.

$\begin{aligned} & \sin \alpha=\frac{r}{l} \\ & \sin \alpha=\frac{r}{3 r} \\ & \Rightarrow \alpha=\sin ^{-1}\left(\frac{1}{3}\right) \end{aligned}$

Choose the correct answer in Questions 27 and 29.

27. The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is

(A) $(2 \sqrt{2}, 4)$

(B) $(2 \sqrt{2}, 0)$

(C) $(0,0)$

(D) $(2,2)$

Show Answer

Solution

The given curve is $x^{2}=2 y$.

For each value of $x$, the position of the point will be $(x, \frac{x^{2}}{2})$.

The distance $d(x)$ between the points $(x, \frac{x^{2}}{2})$ and $(0,5)$ is given by,

$d(x)=\sqrt{(x-0)^{2}+(\frac{x^{2}}{2}-5)^{2}}=\sqrt{x^{2}+\frac{x^{4}}{4}+25-5 x^{2}}=\sqrt{\frac{x^{4}}{4}-4 x^{2}+25}$

$\therefore d^{\prime}(x)=\frac{(x^{3}-8 x)}{2 \sqrt{\frac{x^{4}}{4}-4 x^{2}+25}}=\frac{(x^{3}-8 x)}{\sqrt{x^{4}-16 x^{2}+100}}$

Now, $d^{\prime}(x)=0 \Rightarrow x^{3}-8 x=0$

$\Rightarrow x(x^{2}-8)=0$

$\Rightarrow x=0, \pm 2 \sqrt{2}$

$ \begin{aligned} & \begin{aligned} & \text{ And, } d^{\prime \prime}(x)= \frac{\sqrt{x^{4}-16 x^{2}+100}(3 x^{2}-8)-(x^{3}-8 x) \cdot \frac{4 x^{3}-32 x}{2 \sqrt{x^{4}-16 x^{2}+100}}}{(x^{4}-16 x^{2}+100)} \\ &=\frac{(x^{4}-16 x^{2}+100)(3 x^{2}-8)-2(x^{3}-8 x)(x^{3}-8 x)}{(x^{4}-16 x^{2}+100)^{\frac{3}{2}}} \\ &=\frac{(x^{4}-16 x^{2}+100)(3 x^{2}-8)-2(x^{3}-8 x)^{2}}{(x^{4}-16 x^{2}+100)^{\frac{3}{2}}} \\ & \text{ When, } x=0 \text{, then } d^{\prime \prime}(x)=\frac{36(-8)}{6^{3}}<0 . \end{aligned} \\ & \text{ When, } x= \pm 2 \sqrt{2}, d^{\prime \prime}(x)>0 . \end{aligned} $

$\square$ By second derivative test, $d(x)$ is the minimum at $x= \pm 2 \sqrt{2}$.

When $x= \pm 2 \sqrt{2}, y=\frac{(2 \sqrt{2})^{2}}{2}=4$.

Hence, the point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is $( \pm 2 \sqrt{2}, 4)$. The correct answer is $A$.

28. For all real values of $x$, the minimum value of $\frac{1-x+x^{2}}{1+x+x^{2}}$ is

(A) 0

(B) 1

(C) 3

(D) $\frac{1}{3}$

Show Answer

Solution

Let $f(x)=\frac{1-x+x^{2}}{1+x+x^{2}}$.

$ \begin{aligned} \therefore f^{\prime}(x) & =\frac{(1+x+x^{2})(-1+2 x)-(1-x+x^{2})(1+2 x)}{(1+x+x^{2})^{2}} \\ & =\frac{-1+2 x-x+2 x^{2}-x^{2}+2 x^{3}-1-2 x+x+2 x^{2}-x^{2}-2 x^{3}}{(1+x+x^{2})^{2}} \\ & =\frac{2 x^{2}-2}{(1+x+x^{2})^{2}}=\frac{2(x^{2}-1)}{(1+x+x^{2})^{2}} \end{aligned} $

$\therefore f^{\prime}(x)=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1$

Now, $f^{\prime \prime}(x)=\frac{2[(1+x+x^{2})^{2}(2 x)-(x^{2}-1)(2)(1+x+x^{2})(1+2 x)]}{(1+x+x^{2})^{4}}$

$ =\frac{4(1+x+x^{2})[(1+x+x^{2}) x-(x^{2}-1)(1+2 x)]}{(1+x+x^{2})^{4}} $

$ \begin{aligned} & =\frac{4[x+x^{2}+x^{3}-x^{2}-2 x^{3}+1+2 x]}{(1+x+x^{2})^{3}} \\ & =\frac{4(1+3 x-x^{3})}{(1+x+x^{2})^{3}} \end{aligned} $

And, $f^{\prime \prime}(1)=\frac{4(1+3-1)}{(1+1+1)^{3}}=\frac{4(3)}{(3)^{3}}=\frac{4}{9}>0$

Also, $f^{\prime \prime}(-1)=\frac{4(1-3+1)}{(1-1+1)^{3}}=4(-1)=-4<0$

$\square$ By second derivative test, $f$ is the minimum at $x=1$ and the minimum value is given

by $f(1)=\frac{1-1+1}{1+1+1}=\frac{1}{3}$.

The correct answer is $D$.

29. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}, 0 \leq x \leq 1$ is

(A) $\frac{1}{3} \frac{1}{3}$

(B) $\frac{1}{2}$

(C) 1

(D) 0

Show Answer

Solution

Let $f(x)=[x(x-1)+1]^{\frac{1}{3}}$.

$\therefore f^{\prime}(x)=\frac{2 x-1}{3[x(x-1)+1]^{\frac{2}{3}}}$

Now, $f^{\prime}(x)=0 \Rightarrow x=\frac{1}{2}$

Then, we evaluate the value of $f$ at critical point $x=\frac{1}{2}$ and at the end points of the interval $[0,1]$ {i.e., at $x=0$ and $x=1}$.

$f(0)=[0(0-1)+1]^{\frac{1}{3}}=1$

$f(1)=[1(1-1)+1]^{\frac{1}{3}}=1$

$f(\frac{1}{2})=[\frac{1}{2}(\frac{-1}{2})+1]^{\frac{1}{3}}=(\frac{3}{4})^{\frac{1}{3}}$

Hence, we can conclude that the maximum value of $f$ in the interval $[0,1]$ is 1 .

The correct answer is $C$.



Table of Contents