Chapter 5 Continuity And Differentiability EXERCISE 5.1
EXERCISE 5.1
1. Prove that the function $f(x)=5 x-3$ is continuous at $x=0$, at $x=-3$ and at $x=5$.
Show Answer
Solution
The given function is $f(x)=5 x-3$
At $x=0, f(0)=5 \times 0-3=3$
$\lim _{x \to 0} f(x)=\lim _{x \to 0}(5 x-3)=5 \times 0-3=-3$
$\therefore \lim _{x \to 0} f(x)=f(0)$
Therefore, $f$ is continuous at $x=0$
At $x=-3, f(-3)=5 \times(-3)-3=-18$
$\lim _{x \to-3} f(x)=\lim _{x \to-3}(5 x-3)=5 \times(-3)-3=-18$
$\therefore \lim _{x \to-3} f(x)=f(-3)$
Therefore, $f$ is continuous at $x=-3$
At $x=5, f(x)=f(5)=5 \times 5-3=25-3=22$
$\lim _{x \to 5} f(x)=\lim _{x \to 5}(5 x-3)=5 \times 5-3=22$
$\therefore \lim _{x \to 5} f(x)=f(5)$
Therefore, $f$ is continuous at $x=5$
2. Examine the continuity of the function $f(x)=2 x^{2}-1$ at $x=3$.
Show Answer
Solution
The given function is $f(x)=2 x^{2}-1$
At $x=3, f(x)=f(3)=2 \times 3^{2}-1=17$
$\lim _{x \to 3} f(x)=\lim _{x \to 3}(2 x^{2}-1)=2 \times 3^{2}-1=17$
$\therefore \lim _{x \to 3} f(x)=f(3)$
Thus, $f$ is continuous at $x=3$
3. Examine the following functions for continuity.
(a) $f(x)=x-5$
(b) $f(x)=\frac{1}{x-5}, x \neq 5$
(c) $f(x)=\frac{x^{2}-25}{x+5}, x \neq-5$
(d) $f(x)=|x-5|$
Show Answer
Solution
(a) The given function is $f(x)=x-5$
It is evident that $f$ is defined at every real number $k$ and its value at $k$ is $k-5$.
It is also observed that, $\lim _{x \to k} f(x)=\lim _{x \to k}(x-5)=k-5=f(k)$
$\therefore \lim _{x \to k} f(x)=f(k)$
Hence, $f$ is continuous at every real number and therefore, it is a continuous function.
(b) The given function is $f(x)=\frac{1}{x-5}, x \neq 5$
For any real number $k \neq 5$, we obtain
$\lim _{x \to k} f(x)=\lim _{x \to k} \frac{1}{x-5}=\frac{1}{k-5}$
Also, $f(k)=\frac{1}{k-5} \quad($ As $k \neq 5)$
$\therefore \lim _{x \to k} f(x)=f(k)$
Hence, $f$ is continuous at every point in the domain of $f$ and therefore, it is a continuous function.
(c) The given function is $f(x)=\frac{x^{2}-25}{x+5}, x \neq-5$
For any real number $c \neq-5$, we obtain
$ \begin{aligned} & \lim _{x \to c} f(x)=\lim _{x \to c} \frac{x^{2}-25}{x+5}=\lim _{x \to c} \frac{(x+5)(x-5)}{x+5}=\lim _{x \to c}(x-5)=(c-5) \\ & \text{ Also, } f(c)=\frac{(c+5)(c-5)}{c+5}=(c-5) \quad(\text{ as } c \neq-5) \\ & \therefore \lim _{x \to c} f(x)=f(c) \end{aligned} $
Hence, $f$ is continuous at every point in the domain of $f$ and therefore, it is a continuous function.
(d) The given function is $f(x)=|x-5|=\begin{cases} 5-x, \text{ if } x<5 \\ x-5, \text{ if } x \geq 5 \end{cases} .$
This function $f$ is defined at all points of the real line.
Let $c$ be a point on a real line. Then, $c<5$ or $c=5$ or $c>5$
Case I: $c<5$
Then, $f(c)=5-c$
$\lim _{x \to c} f(x)=\lim _{x \to c}(5-x)=5-c$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all real numbers less than 5 .
Case II : $c=5$
Then, $f(c)=f(5)=(5-5)=0$
$\lim _{x \to 5^{-}} f(x)=\lim _{x \to 5}(5-x)=(5-5)=0$
$\lim _{x \to 5^{+}} f(x)=\lim _{x \to 5}(x-5)=0$
$\therefore \lim _{x \to c^{-}} f(x)=\lim _{x \to c^{+}} f(x)=f(c)$
Therefore, $f$ is continuous at $x=5$
Case III: $c>5$
Then, $f(c)=f(5)=c-5$
$\lim _{x \to c} f(x)=\lim _{x \to c}(x-5)=c-5$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all real numbers greater than 5 .
Hence, $f$ is continuous at every real number and therefore, it is a continuous function.
4. Prove that the function $f(x)=x^{n}$ is continuous at $x=n$, where $n$ is a positive integer.
Show Answer
Solution
The given function is $f(x)=x^{n}$
It is evident that $f$ is defined at all positive integers, $n$, and its value at $n$ is $n^{n}$.
Then, $\lim _{x \to n} f(n)=\lim _{x \to n}(x^{n})=n^{n}$
$\therefore \lim _{x \to n} f(x)=f(n)$
Therefore, $f$ is continuous at $n$, where $n$ is a positive integer.
5. Is the function $f$ defined by
$ f(x)= \begin{cases}x, & \text{ if } x \leq 1 \\ 5, & \text{ if } x>1\end{cases} $
continuous at $x=0$ ? At $x=1$ ? At $x=2$ ?
Show Answer
Solution
The given function $f$ is $f(x)= \begin{cases}x, & \text{ if } x \leq 1 \\ 5, & \text{ if } x>1\end{cases}$
At $x=0$,
It is evident that $f$ is defined at 0 and its value at 0 is 0 .
Then, $\lim _{x \to 0} f(x)=\lim _{x \to 0} x=0$
$\therefore \lim _{x \to 0} f(x)=f(0)$
Therefore, $f$ is continuous at $x=0$
At $x=1$,
$f$ is defined at 1 and its value at 1 is 1 .
The left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}} x=1$
The right hand limit of $f$ at $x=1$ is,
$ \begin{aligned} & \lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}}(5)=5 \\ & \therefore \lim _{x \to 1^{-}} f(x) \neq \lim _{x \to 1^{+}} f(x) \end{aligned} $
Therefore, $f$ is not continuous at $x=1$
At $x=2$,
$f$ is defined at 2 and its value at 2 is 5 .
Then, $\lim _{x \to 2} f(x)=\lim _{x \to 2}(5)=5$
$\therefore \lim _{x \to 2} f(x)=f(2)$
Therefore, $f$ is continuous at $x=2$
Find all points of discontinuity of $f$, where $f$ is defined by
6. $f(x)=\begin{cases}2 x+3, \text{ if } x \leq 2 \\ 2 x-3, \text{ if } x>2\end{cases}.$ $\quad\quad$
Show Answer
Solution
$ f(x)=\begin{cases} 2 x+3, \text{ if } x \leq 2 \\ 2 x-3, \text{ if } x>2 \end{cases} . $
It is evident that the given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line. Then, three cases arise.
(i) $c<2$
(ii) $c>2$
(iii) $c=2$
Case (i) $c<2$
Then, $f(c)=2 c+3$
$\lim _{x \to c} f(x)=\lim _{x \to c}(2 x+3)=2 c+3$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<2$
Case (ii) $c>2$
Then, $f(c)=2 c-3$
$\lim _{x \to c} f(x)=\lim _{x \to c}(2 x-3)=2 c-3$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>2$
Case (iii) $c=2$
Then, the left hand limit of $f$ at $x=2$ is,
$\lim _{x \to 2^{-}} f(x)=\lim _{x \to 2^{-}}(2 x+3)=2 \times 2+3=7$
The right hand limit of $f$ at $x=2$ is,
$\lim _{x \to 2^{+}} f(x)=\lim _{x \to 2^{+}}(2 x-3)=2 \times 2-3=1$
It is observed that the left and right hand limit of $f$ at $x=2$ do not coincide.
Therefore, $f$ is not continuous at $x=2$
Hence, $x=2$ is the only point of discontinuity of $f$.
7. $f(x)= \begin{cases}|x|+3, & \text{ if } x \leq-3 \\ -2 x, & \text{ if }-3<x<3 \\ 6 x+2, & \text{ if } x \geq 3\end{cases}$
Show Answer
Solution
$ f(x)=\begin{cases} |x|+3=-x+3, \text{ if } x \leq-3 \\ -2 x, \text{ if }-3<x<3 \\ 6 x+2, \text{ if } x \geq 3 \end{cases} . $
The given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<-3$, then $f(c)=-c+3$
$\lim _{x \to c} f(x)=\lim _{x \to c}(-x+3)=-c+3$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<-3$
Case II:
If $c=-3$, then $f(-3)=-(-3)+3=6$
$\lim _{x \to-3^{-}} f(x)=\lim _{x \to-3^{-}}(-x+3)=-(-3)+3=6$
$\lim _{x \to-3^{+}} f(x)=\lim _{x \to-3^{+}}(-2 x)=-2 \times(-3)=6$
$\therefore \lim _{x \to-3} f(x)=f(-3)$
Therefore, $f$ is continuous at $x=-3$
Case III:
If $-3<c<3$, then $f(c)=-2 c$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(-2 x)=-2 c$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous in $(-3,3)$.
Case IV:
If $c=3$, then the left hand limit of $f$ at $x=3$ is,
$\lim _{x \to 3^{-}} f(x)=\lim _{x \to 3^{-}}(-2 x)=-2 \times 3=-6$
The right hand limit of $f$ at $x=3$ is,
$\lim _{x \to 3^{+}} f(x)=\lim _{x \to 3^{+}}(6 x+2)=6 \times 3+2=20$
It is observed that the left and right hand limit of $f$ at $x=3$ do not coincide.
Therefore, $f$ is not continuous at $x=3$
Case V:
If $c>3$, then $f(c)=6 c+2$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(6 x+2)=6 c+2$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>3$
Hence, $x=3$ is the only point of discontinuity of $f$.
8. $f(x)=\begin{cases}\frac{|x|}{x}, & \text{ if } x \neq 0 \\ 0, & \text{ if } x=0\end{cases}.$
Show Answer
Solution
$ f(x)=\begin{matrix} \frac{|x|}{x} \text{ if } x \neq 0 \\ 0, \text{ if } x=0 \end{matrix} . $
It is known that, $x<0 \Rightarrow|x|=-x$ and $x>0 \Rightarrow|x|=x$
Therefore, the given function can be rewritten as
$f(x)=\begin{cases} \frac{|x|}{x}=\frac{-x}{x}=-1 \text{ if } x<0 \\ 0, \text{ if } x=0 \\ \frac{|x|}{x}=\frac{x}{x}=1, \text{ if } x>0 \end{cases} .$
The given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<0$, then $f(c)=-1$
$\lim _{x \to c} f(x)=\lim _{x \to c}(-1)=-1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x<0$
Case II:
If $c=0$, then the left hand limit of $f$ at $x=0$ is,
$\lim _{x \to 0^{-}} f(x)=\lim _{x \to 0^{-}}(-1)=-1$
The right hand limit of $f$ at $x=0$ is,
$\lim _{x \to 0^{+}} f(x)=\lim _{x \to 0^{+}}(1)=1$
It is observed that the left and right hand limit of $f$ at $x=0$ do not coincide.
Therefore, $f$ is not continuous at $x=0$
Case III:
If $c>0$, then $f(c)=1$
$\lim _{x \to c} f(x)=\lim _{x \to c}(1)=1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>0$
Hence, $x=0$ is the only point of discontinuity of $f$.
9. $f(x)= \begin{cases}\frac{x}{|x|}, & \text{ if } x<0 \\ -1, & \text{ if } x \geq 0\end{cases}$
Show Answer
Solution
$ f(x)=\begin{matrix} \frac{x}{|x|}, \text{ if } x<0 \\ -1, \text{ if } x \geq 0 \end{matrix} . $
It is known that, $x<0 \Rightarrow|x|=-x$
Therefore, the given function can be rewritten as
$f(x)=\begin{cases} \frac{x}{|x|}=\frac{x}{-x}=-1, \text{ if } x<0 \\ -1, \text{ if } x \geq 0 \end{cases} .$
$\Rightarrow f(x)=-1$ for all $x \in \mathbf{R}$
Let $c$ be any real number. Then, $\lim _{x \to c} f(x)=\lim _{x \to c}(-1)=-1$
Also, $f(c)=-1=\lim _{x \to c} f(x)$
Therefore, the given function is a continuous function.
Hence, the given function has no point of discontinuity.
10. $f(x)= \begin{cases}x+1, & \text{ if } x \geq 1 \\ x^{2}+1, & \text{ if } x<1\end{cases}$
Show Answer
Solution
$ f(x)=\begin{matrix} x+1, \text{ if } x \geq 1 \\ x^{2}+1, \text{ if } x<1 \end{matrix} . $
The given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<1$, then $f(c)=c^{2}+1$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(x^{2}+1)=c^{2}+1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<1$
Case II:
If $c=1$, then $f(c)=f(1)=1+1=2$
The left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}}(x^{2}+1)=1^{2}+1=2$
The right hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}}(x+1)=1+1=2$
$\therefore \lim _{x \to 1} f(x)=f(1)$
Therefore, $f$ is continuous at $x=1$
Case III:
If $c>1$, then $f(c)=c+1$
$\lim _{x \to c} f(x)=\lim _{x \to c}(x+1)=c+1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Hence, the given function $f$ has no point of discontinuity.
11. $f(x)= \begin{cases}x^{3}-3, & \text{ if } x \leq 2 \\ x^{2}+1, & \text{ if } x>2\end{cases}$
Show Answer
Solution
$ f(x)=\begin{matrix} x^{3}-3, \text{ if } x \leq 2 \\ x^{2}+1, \text{ if } x>2 \end{matrix} . $
The given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<2$, then $f(c)=c^{3}-3$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(x^{3}-3)=c^{3}-3$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<2$
Case II:
If $c=2$, then $f(c)=f(2)=2^{3}-3=5$
$\lim _{x \to 2^{-}} f(x)=\lim _{x \to 2^{-}}(x^{3}-3)=2^{3}-3=5$
$\lim _{x \to 2^{+}} f(x)=\lim _{x \to 2^{+}}(x^{2}+1)=2^{2}+1=5$
$\therefore \lim _{x \to 2} f(x)=f(2)$
Therefore, $f$ is continuous at $x=2$
Case III:
If $c>2$, then $f(c)=c^{2}+1$
$\lim _{x \to c} f(x)=\lim _{x \to c}(x^{2}+1)=c^{2}+1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>2$
Thus, the given function $f$ is continuous at every point on the real line.
Hence, $f$ has no point of discontinuity.
12. $f(x)= \begin{cases}x^{10}-1, & \text{ if } x \leq 1 \\ x^{2}, & \text{ if } x>1\end{cases}$
Show Answer
Solution
$ f(x)= \begin{cases}x^{10}-1, & \text{ if } x \leq 1 \\ x^{2}, & \text{ if } x>1\end{cases} $
The given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<1$, then $f(c)=c^{10}-1$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(x^{10}-1)=c^{10}-1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<1$
Case II:
If $c=1$, then the left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}}(x^{10}-1)=1^{10}-1=1-1=0$
The right hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}}(x^{2})=1^{2}=1$
It is observed that the left and right hand limit of $f$ at $x=1$ do not coincide.
Therefore, $f$ is not continuous at $x=1$
Case III:
If $c>1$, then $f(c)=c^{2}$
$\lim _{x \to c} f(x)=\lim _{x \to c}(x^{2})=c^{2}$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Thus, from the above observation, it can be concluded that $x=1$ is the only point of discontinuity of $f$.
13. Is the function defined by $ f(x)= \begin{cases}x+5, & \text{ if } x \leq 1 \\ x-5, & \text{ if } x>1\end{cases} $ a continuous function?
Discuss the continuity of the function f, where f is defined by
Show Answer
Solution
The given function is $f(x)=\begin{cases} x+5, \text{ if } x \leq 1 \\ x-5, \text{ if } x>1 \end{cases} .$
The given function $f$ is defined at all the points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<1$, then $f(c)=c+5$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(x+5)=c+5$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<1$
Case II:
If $c=1$, then $f(1)=1+5=6$
The left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}}(x+5)=1+5=6$
The right hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}}(x-5)=1-5=-4$
It is observed that the left and right hand limit of $f$ at $x=1$ do not coincide.
Therefore, $f$ is not continuous at $x=1$
Case III:
If $c>1$, then $f(c)=c-5$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(x-5)=c-5$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Thus, from the above observation, it can be concluded that $x=1$ is the only point of discontinuity of $f$.
Discuss the continuity of the function $f$, where $f$ is defined by
14. $f(x)=\begin{cases} 3, \text{ if } 0 \leq x \leq 1 \\ 4, \text{ if } 1<x<3 \\ 5, \text{ if } 3 \leq x \leq 10\end{cases} .$
Show Answer
Solution
The given function is $f(x)=\begin{cases} 3, \text{ if } 0 \leq x \leq 1 \\ 4, \text{ if } 1<x<3 \\ 5, \text{ if } 3 \leq x \leq 10 \end{cases} .$
The given function is defined at all points of the interval $[0,10]$.
Let $c$ be a point in the interval $[0,10]$.
Case I:
If $0 \leq c<1$, then $f(c)=3$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(3)=3$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous in the interval $[0,1)$.
Case II:
If $c=1$, then $f(3)=3$
The left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}}(3)=3$
The right hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}}(4)=4$
It is observed that the left and right hand limits of $f$ at $x=1$ do not coincide.
Therefore, $f$ is not continuous at $x=1$
Case III:
If $1<c<3$, then $f(c)=4$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(4)=4$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points of the interval $(1,3)$.
Case IV:
If $c=3$, then $f(c)=5$
The left hand limit of $f$ at $x=3$ is,
$\lim _{x \to 3^{-}} f(x)=\lim _{x \to 3^{-}}(4)=4$
The right hand limit of $f$ at $x=3$ is,
$\lim _{x \to 3^{+}} f(x)=\lim _{x \to 3^{+}}(5)=5$
It is observed that the left and right hand limits of $f$ at $x=3$ do not coincide.
Therefore, $f$ is not continuous at $x=3$
Case V:
If $3<c \leq 10$, then $f(c)=5$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(5)=5$
$\lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points of the interval $(3,10]$.
Hence, $f$ is not continuous at $x=1$ and $x=3$
15. $f(x)= \begin{cases}2 x, & \text{ if } x<0 \\ 0, & \text{ if } 0 \leq x \leq 1 \\ 4 x, & \text{ if } x>1\end{cases}$
Show Answer
Solution
The given function is $f(x)= \begin{cases}2 x, & \text{ if } x<0 \\ 0, & \text{ if } 0 \leq x \leq 1 \\ 4 x, & \text{ if } x>1\end{cases}$
The given function is defined at all points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<0$, then $f(c)=2 c$
$\lim _{x \to c} f(x)=\lim _{x \to c}(2 x)=2 c$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<0$
Case II:
If $c=0$, then $f(c)=f(0)=0$
The left hand limit of $f$ at $x=0$ is,
$\lim _{x \to 0^{-}} f(x)=\lim _{x \to 0^{-}}(2 x)=2 \times 0=0$
The right hand limit of $f$ at $x=0$ is,
$\lim _{x \to 0^{+}} f(x)=\lim _{x \to 0^{+}}(0)=0$
$\therefore \lim _{x \to 0} f(x)=f(0)$
Therefore, $f$ is continuous at $x=0$
Case III:
If $0<c<1$, then $f(x)=0$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(0)=0$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points of the interval $(0,1)$.
Case IV:
If $c=1$, then $f(c)=f(1)=0$
The left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}}(0)=0$
The right hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}}(4 x)=4 \times 1=4$
It is observed that the left and right hand limits of $f$ at $x=1$ do not coincide.
Therefore, $f$ is not continuous at $x=1$
Case V:
If $c<1$, then $f(c)=4 c$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(4 x)=4 c$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Hence, $f$ is not continuous only at $x=1$
16. $f(x)= \begin{cases}-2, & \text{ if } x \leq-1 \\ 2 x, & \text{ if }-1<x \leq 1 \\ 2, & \text{ if } x>1\end{cases}$
Show Answer
Solution
$ f(x)=\begin{matrix} -2, \text{ if } x \leq-1 \\ 2 x, \text{ if }-1<x \leq 1 \\ 2, \text{ if } x>1 \end{matrix} . $
The given function is defined at all points of the real line.
Let $c$ be a point on the real line.
Case I:
If $c<-1$, then $f(c)=-2$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(-2)=-2$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<-1$
Case II:
If $c=-1$, then $f(c)=f(-1)=-2$
The left hand limit of $f$ at $x=-1$ is,
$\lim _{x \to-1^{-}} f(x)=\lim _{x \to-1^{-}}(-2)=-2$
The right hand limit of $f$ at $x=-1$ is,
$ \begin{aligned} & \lim _{x \to-1^{+}} f(x)=\lim _{x \to-1^{+}}(2 x)=2 \times(-1)=-2 \\ & \therefore \lim _{x \to-1} f(x)=f(-1) \end{aligned} $
Therefore, $f$ is continuous at $x=-1$
Case III:
If $-1<c<1$, then $f(c)=2 c$
$\lim _{x \to c} f(x)=\lim _{x \to c}(2 x)=2 c$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points of the interval $(-1,1)$.
Case IV:
If $c=1$, then $f(c)=f(1)=2 \times 1=2$
The left hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{-}} f(x)=\lim _{x \to 1^{-}}(2 x)=2 \times 1=2$
The right hand limit of $f$ at $x=1$ is,
$\lim _{x \to 1^{+}} f(x)=\lim _{x \to 1^{+}} 2=2$
$\therefore \lim _{x \to 1} f(x)=f(c)$
Therefore, $f$ is continuous at $x=2$
Case V:
If $c>1$, then $f(c)=2$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(2)=2$
$\lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>1$
Thus, from the above observations, it can be concluded that $f$ is continuous at all points of the real line.
17. Find the relationship between $a$ and $b$ so that the function $f$ defined by
$$ f(x)= \begin{cases}a x+1, & \text{ if } x \leq 3 \\ b x+3, & \text{ if } x>3\end{cases} $$
is continuous at $x=3$.
Show Answer
Solution
$ f(x)=\begin{matrix} a x+1, \text{ if } x \leq 3 \\ b x+3, \text{ if } x>3 \end{matrix} . $
If $f$ is continuous at $x=3$, then $\lim _{x \to 3^{-}} f(x)=\lim _{x \to 3^{+}} f(x)=f(3)$
Also,
$\lim _{x \to 3^{-}} f(x)=\lim _{x \to 3^{-}}(a x+1)=3 a+1$
$\lim _{x \to 3^{+}} f(x)=\lim _{x \to 3^{+}}(b x+3)=3 b+3$
$f(3)=3 a+1$
Therefore, from (1), we obtain
$3 a+1=3 b+3=3 a+1$
$\Rightarrow 3 a+1=3 b+3$
$\Rightarrow 3 a=3 b+2$
$\Rightarrow a=b+\frac{2}{3}$
Therefore, the required relationship is given by, $a=b+\frac{2}{3}$
18. For what value of $\lambda$ is the function defined by
$$ f(x)= \begin{cases}\lambda(x^{2}-2 x), & \text{ if } x \leq 0 \\ 4 x+1, & \text{ if } x>0\end{cases} $$
continuous at $x=0$ ? What about continuity at $x=1$ ?
Show Answer
Solution
The given function is $f(x)= \begin{cases}\lambda(x^{2}-2 x), & \text{ if } x \leq 0 \\ 4 x+1, & \text{ if } x>0\end{cases}$
If $f$ is continuous at $x=0$, then
$\lim _{x \to 0^{-}} f(x)=\lim _{x \to 0^{+}} f(x)=f(0)$
$\Rightarrow \lim _{x \to 0^{-}} \lambda(x^{2}-2 x)=\lim _{x \to 0^{+}}(4 x+1)=\lambda(0^{2}-2 \times 0)$
$\Rightarrow \lambda(0^{2}-2 \times 0)=4 \times 0+1=0$
$\Rightarrow 0=1=0$, which is not possible
Therefore, there is no value of $\lambda$ for which $f$ is continuous at $x=0$
At $x=1$,
$f(1)=4 x+1=4 \times 1+1=5$
$\lim _{x \to 1}(4 x+1)=4 \times 1+1=5$
$\therefore \lim _{x \to 1} f(x)=f(1)$
Therefore, for any values of $\lambda, f$ is continuous at $x=1$
19. Show that the function defined by $g(x)=x-[x]$ is discontinuous at all integral points. Here $[x]$ denotes the greatest integer less than or equal to $x$.
Show Answer
Solution
The given function is $g(x)=x-[x]$
It is evident that $g$ is defined at all integral points.
Let $n$ be an integer.
Then,
$g(n)=n-[n]=n-n=0$
The left hand limit of $f$ at $x=n$ is,
$\lim _{x \to n^{-}} g(x)=\lim _{x \to n^{-}}(x-[x])=\lim _{x \to n^{-}}(x)-\lim _{x \to n^{-}}[x]=n-(n-1)=1$
The right hand limit of $f$ at $x=n$ is,
$\lim _{x \to n^{+}} g(x)=\lim _{x \to n^{+}}(x-[x])=\lim _{x \to n^{+}}(x)-\lim _{x \to n^{+}}[x]=n-n=0$
It is observed that the left and right hand limits of $f$ at $x=n$ do not coincide.
Therefore, $f$ is not continuous at $x=n$
Hence, $g$ is discontinuous at all integral points.
20. Is the function defined by f(x) = x2 – sin x + 5 continuous at x = π?
21. Discuss the continuity of the following functions:
(a) $f(x)=\sin x+\cos x$
(b) $f(x)=\sin x-\cos x$
(c) $f(x)=\sin x \cdot \cos x$
Show Answer
Solution
It is known that if $g$ and $h$ are two continuous functions, then
$g+h, g-h$, and $g . h$ are also continuous.
It has to proved first that $g(x)=\sin x$ and $h(x)=\cos x$ are continuous functions.
Let $g(x)=\sin x$
It is evident that $g(x)=\sin x$ is defined for every real number.
Let $c$ be a real number. Put $x=c+h$
If $x \to c$, then $h \to 0$
$ \begin{aligned} & g(c)=\sin c \\ & \begin{aligned} \lim _{x \to c} g(x) & =\lim _{x \to c} \sin x \\ & =\lim _{h \to 0} \sin (c+h) \\ & =\lim _{h \to 0}[\sin c \cos h+\cos c \sin h] \\ & =\lim _{h \to 0}(\sin c \cos h)+\lim _{h \to 0}(\cos c \sin h) \\ & =\sin c \cos 0+\cos c \sin 0 \\ & =\sin c+0 \\ & =\sin c \end{aligned} \\ & \therefore \lim _{x \to c} g(x)=g(c) \end{aligned} $
Therefore, $g$ is a continuous function.
Let $h(x)=\cos x$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let $c$ be a real number. Put $x=c+h$
If $x \to c$, then $h \to 0$
$h(c)=\cos c$
$ \begin{aligned} \lim _{x \to c} h(x) & =\lim _{x \to c} \cos x \\ & =\lim _{h \to 0} \cos (c+h) \\ & =\lim _{h \to 0}[\cos c \cos h-\sin c \sin h] \\ & =\lim _{h \to 0} \cos c \cos h-\lim _{h \to 0} \sin c \sin h \\ & =\cos c \cos 0-\sin c \sin 0 \\ & =\cos c \times 1-\sin c \times 0 \\ & =\cos c \end{aligned} $
$\therefore \lim _{x \to c} h(x)=h(c)$
Therefore, $h$ is a continuous function.
Therefore, it can be concluded that
(a) $f(x)=g(x)+h(x)=\sin x+\cos x$ is a continuous function
(b) $f(x)=g(x)-h(x)=\sin x-\cos x$ is a continuous function
(c) $f(x)=g(x) \times h(x)=\sin x \times \cos x$ is a continuous function
22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Show Answer
Solution
It is known that if $g$ and $h$ are two continuous functions, then
(i) $\frac{h(x)}{g(x)}, g(x) \neq 0$ is continuous
(ii) $\frac{1}{g(x)}, g(x) \neq 0$ is continuous
(iii) $\frac{1}{h(x)}, h(x) \neq 0$ is continuous
It has to be proved first that $g(x)=\sin x$ and $h(x)=\cos x$ are continuous functions.
Let $g(x)=\sin x$
It is evident that $g(x)=\sin x$ is defined for every real number.
Let $c$ be a real number. Put $x=c+h$
If $x \to c$, then $h \to 0$
$g(c)=\sin c$
$\lim _{x \to c} g(x)=\lim _{x \to c} \sin x$
$=\lim _{h \to 0} \sin (c+h)$
$=\lim _{h \to 0}[\sin c \cos h+\cos c \sin h]$
$=\lim _{h \to 0}(\sin c \cos h)+\lim _{h \to 0}(\cos c \sin h)$
$=\sin c \cos 0+\cos c \sin 0$
$=\sin c+0$
$=\sin c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is a continuous function.
Let $h(x)=\cos x$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let $c$ be a real number. Put $x=c+h$
If $x \to c$, then $h \to 0$
$h(c)=\cos c$
$ \begin{aligned} \lim _{x \to c} h(x) & =\lim _{x \to c} \cos x \\ & =\lim _{h \to 0} \cos (c+h) \\ & =\lim _{h \to 0}[\cos c \cos h-\sin c \sin h] \\ & =\lim _{h \to 0} \cos c \cos h-\lim _{h \to 0} \sin c \sin h \\ & =\cos c \cos 0-\sin c \sin 0 \\ & =\cos c \times 1-\sin c \times 0 \\ & =\cos c \end{aligned} $
$\therefore \lim _{x \to c} h(x)=h(c)$
Therefore, $h(x)=\cos x$ is continuous function.
It can be concluded that,
$cosec x=\frac{1}{\sin x}, \sin x \neq 0$ is continuous
$\Rightarrow cosec x, x \neq n \pi(n \in Z)$ is continuous
Therefore, cosecant is continuous except at $x=n p, n$ Î $\mathbf{Z}$
$\sec x=\frac{1}{\cos x}, \cos x \neq 0$ is continuous
$\Rightarrow \sec x, x \neq(2 n+1) \frac{\pi}{2}(n \in \mathbf{Z})$ is continuous
Therefore, secant is continuous except at $x=(2 n+1) \frac{\pi}{2}(n \in \mathbf{Z})$
$\cot x=\frac{\cos x}{\sin x}, \sin x \neq 0$ is continuous
$\Rightarrow \cot x, x \neq n \pi(n \in Z)$ is continuous
Therefore, cotangent is continuous except at $x=n p, n \hat{I} \mathbf{Z}$
23. Find all points of discontinuity of $f$, where
$$ f(x)= \begin{cases}\frac{\sin x}{x}, & \text{ if } x<0 \\ x+1, & \text{ if } x \geq 0\end{cases} $$
Show Answer
Solution
$ f(x)=\begin{cases} \frac{\sin x}{x}, \text{ if } x<0 \\ x+1, \text{ if } x \geq 0 \end{cases} . $
It is evident that $f$ is defined at all points of the real line.
Let $c$ be a real number.
Case I:
If $c<0$, then $f(c)=\frac{\sin c}{c}$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(\frac{\sin x}{x})=\frac{\sin c}{c}$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x<0$
Case II:
If $c>0$, then $f(c)=c+1$ and $\lim _{x \to c} f(x)=\lim _{x \to c}(x+1)=c+1$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x>0$
Case III:
If $c=0$, then $f(c)=f(0)=0+1=1$
The left hand limit of $f$ at $x=0$ is,
$\lim _{x \to 0^{-}} f(x)=\lim _{x \to 0} \frac{\sin x}{x}=1$
The right hand limit of $f$ at $x=0$ is,
$ \begin{aligned} & \lim _{x \to 0^{+}} f(x)=\lim _{x \to 0^{+}}(x+1)=1 \\ & \therefore \lim _{x \to 0^{-}} f(x)=\lim _{x \to 0^{+}} f(x)=f(0) \end{aligned} $
Therefore, $f$ is continuous at $x=0$
From the above observations, it can be concluded that $f$ is continuous at all points of the real line.
Thus, $f$ has no point of discontinuity.
24. Determine if $f$ defined by
$$ f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text{ if } x \neq 0 \\ 0, & \text{ if } x=0\end{cases} $$
is a continuous function?
Show Answer
Solution
$ f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text{ if } x \neq 0 \\ 0, & \text{ if } x=0\end{cases} $
It is evident that $f$ is defined at all points of the real line.
Let $c$ be a real number.
Case I:
If $c \neq 0$, then $f(c)=c^{2} \sin \frac{1}{c}$
$\lim _{x \to c} f(x)=\lim _{x \to c}(x^{2} \sin \frac{1}{x})=(\lim _{x \to c} x^{2})(\lim _{x \to c} \sin \frac{1}{x})=c^{2} \sin \frac{1}{c}$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x \neq 0$
Case II:
If $c=0$, then $f(0)=0$ $\lim _{x \to 0^{-}} f(x)=\lim _{x \to 0^{-}}(x^{2} \sin \frac{1}{x})=\lim _{x \to 0}(x^{2} \sin \frac{1}{x})$
It is known that, $-1 \leq \sin \frac{1}{x} \leq 1, x \neq 0$
$\Rightarrow-x^{2} \leq \sin \frac{1}{x} \leq x^{2}$
$\Rightarrow \lim _{x \to 0}(-x^{2}) \leq \lim _{x \to 0}(x^{2} \sin \frac{1}{x}) \leq \lim _{x \to 0} x^{2}$
$\Rightarrow 0 \leq \lim _{x \to 0}(x^{2} \sin \frac{1}{x}) \leq 0$
$\Rightarrow \lim _{x \to 0}(x^{2} \sin \frac{1}{x})=0$
$\therefore \lim _{x \to 0^{-}} f(x)=0$
Similarly, $\lim _{x \to 0^{+}} f(x)=\lim _{x \to 0^{+}}(x^{2} \sin \frac{1}{x})=\lim _{x \to 0}(x^{2} \sin \frac{1}{x})=0$
$\therefore \lim _{x \to 0^{-}} f(x)=f(0)=\lim _{x \to 0^{+}} f(x)$
Therefore, $f$ is continuous at $x=0$
From the above observations, it can be concluded that $f$ is continuous at every point of the real line.
Thus, $f$ is a continuous function.
25. Examine the continuity of $f$, where $f$ is defined by
$$ f(x)= \begin{cases}\sin x-\cos x, & \text{ if } x \neq 0 \\ -1, & \text{ if } x=0\end{cases} $$
Show Answer
Solution
$ f(x)= \begin{cases}\sin x-\cos x, & \text{ if } x \neq 0 \\ -1 & \text{ if } x=0\end{cases} $
It is evident that $f$ is defined at all points of the real line.
Let $c$ be a real number.
Case I:
If $c \neq 0$, then $f(c)=\sin c-\cos c$
$\lim _{x \to c} f(x)=\lim _{x \to c}(\sin x-\cos x)=\sin c-\cos c$
$\therefore \lim _{x \to c} f(x)=f(c)$
Therefore, $f$ is continuous at all points $x$, such that $x \neq 0$
Case II:
If $c=0$, then $f(0)=-1$
$\lim _{x \to 0^{-}} f(x)=\lim _{x \to 0}(\sin x-\cos x)=\sin 0-\cos 0=0-1=-1$
$\lim _{x \to 0^{+}} f(x)=\lim _{x \to 0}(\sin x-\cos x)=\sin 0-\cos 0=0-1=-1$
$\therefore \lim _{x \to 0^{-}} f(x)=\lim _{x \to 0^{+}} f(x)=f(0)$
Therefore, $f$ is continuous at $x=0$
From the above observations, it can be concluded that $f$ is continuous at every point of the real line.
Thus, $f$ is a continuous function.
Find the values of $k$ so that the function $f$ is continuous at the indicated point in Exercises 26 to 29.
26. $f(x)=\begin{cases}\frac{k \cos x}{\pi-2 x}, & \text{ if } x \neq \frac{\pi}{2} \\ 3, & \text{ if } x=\frac{\pi}{2}\end{cases} \quad.$ at $x=\frac{\pi}{2}$
Show Answer
Solution
$ f(x)= \begin{cases}\frac{k \cos x}{\pi-2 x}, & \text{ if } x \neq \frac{\pi}{2} \\ 3, & \text{ if } x=\frac{\pi}{2}\end{cases} $
The given function $f$ is continuous at $x=\frac{\pi}{2}$, if $f$ is defined at $x=\frac{\pi}{2}$ and if the value of the $f$ at $x=\frac{\pi}{2}$ equals the limit of $f$ at $x=\frac{\pi}{2}$.
It is evident that $f$ is defined at $x=\frac{\pi}{2}$ and $f(\frac{\pi}{2})=3$
$\lim _{x \to \frac{\pi}{2}} f(x)=\lim _{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}$
Put $x=\frac{\pi}{2}+h$
Then, $x \to \frac{\pi}{2} \Rightarrow h \to 0$
$\begin{aligned} \therefore \lim _{x \to \frac{\pi}{2}} f(x) & =\lim _{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=\lim _{h \to 0} \frac{k \cos (\frac{\pi}{2}+h)}{\pi-2(\frac{\pi}{2}+h)} \\ & =k \lim _{h \to 0} \frac{-\sin h}{-2 h}=\frac{k}{2} \lim _{h \to 0} \frac{\sin h}{h}=\frac{k}{2} \cdot 1=\frac{k}{2}\end{aligned}$
$\therefore \lim _{x \to \frac{\pi}{2}} f(x)=f(\frac{\pi}{2})$
$\Rightarrow \frac{k}{2}=3$
$\Rightarrow k=6$
Therefore, the required value of $k$ is 6 .
27. $f(x)=\begin{cases}k x^{2}, & \text{ if } x \leq 2 \\ 3, & \text{ if } x>2\end{cases} \quad.$ at $x=2$
Show Answer
Solution
The given function is $f(x)= \begin{cases}k x^{2}, & \text{ if } x \leq 2 \\ 3, & \text{ if } x>2\end{cases}$
The given function $f$ is continuous at $x=2$, if $f$ is defined at $x=2$ and if the value of $f$ at $x=2$ equals the limit of $f$ at $x=2$
It is evident that $f$ is defined at $x=2$ and $f(2)=k(2)^{2}=4 k$
$ \begin{aligned} & \lim _{x \to 2^{-}} f(x)=\lim _{x \to 2^{+}} f(x)=f(2) \\ & \Rightarrow \lim _{x \to 2^{-}}(k x^{2})=\lim _{x \to 2^{+}}(3)=4 k \\ & \Rightarrow k \times 2^{2}=3=4 k \\ & \Rightarrow 4 k=3=4 k \\ & \Rightarrow 4 k=3 \\ & \Rightarrow k=\frac{3}{4} \end{aligned} $
Therefore, the required value of $k$ is $\frac{3}{4}$.
28. $f(x)=\begin{cases}k x+1, & \text{ if } x \leq \pi \\ \cos x, & \text{ if } x>\pi\end{cases} \quad.$ at $x=\pi$
Show Answer
Solution
The given function is $f(x)=\begin{cases} k x+1, \text{ if } x \leq \pi \\ \cos x, \text{ if } x>\pi \end{cases} .$
The given function $f$ is continuous at $x=p$, if $f$ is defined at $x=p$ and if the value of $f$ at $x=p$ equals the limit of $f$ at $x=p$
It is evident that $f$ is defined at $x=p$ and $f(\pi)=k \pi+1$
$ \begin{aligned} & \lim _{x \to \pi^{-}} f(x)=\lim _{x \to \pi^{+}} f(x)=f(\pi) \\ & \Rightarrow \lim _{x \to \pi^{-}}(k x+1)=\lim _{x \to \pi^{+}} \cos x=k \pi+1 \\ & \Rightarrow k \pi+1=\cos \pi=k \pi+1 \\ & \Rightarrow k \pi+1=-1=k \pi+1 \\ & \Rightarrow k=-\frac{2}{\pi} \end{aligned} $
Therefore, the required value of $k$ is $-\frac{2}{\pi}$.
29. $f(x)=\begin{cases}k x+1, & \text{ if } x \leq 5 \\ 3 x-5, & \text{ if } x>5\end{cases} \quad.$ at $x=5$
Show Answer
Solution
$ f(x)=\begin{cases} k x+1, \text{ if } x \leq 5 \\ 3 x-5, \text{ if } x>5 \end{cases} . $
The given function $f$ is continuous at $x=5$, if $f$ is defined at $x=5$ and if the value of $f$ at $x=5$ equals the limit of $f$ at $x=5$
It is evident that $f$ is defined at $x=5$ and $f(5)=k x+1=5 k+1$
$ \begin{aligned} & \lim _{x \to 5^{-}} f(x)=\lim _{x \to 5^{+}} f(x)=f(5) \\ & \Rightarrow \lim _{x \to 5^{-}}(k x+1)=\lim _{x \to 5^{+}}(3 x-5)=5 k+1 \\ & \Rightarrow 5 k+1=15-5=5 k+1 \\ & \Rightarrow 5 k+1=10 \\ & \Rightarrow 5 k=9 \\ & \Rightarrow k=\frac{9}{5} \end{aligned} $
Therefore, the required value of $k$ is $\frac{9}{5}$.
30. Find the values of $a$ and $b$ such that the function defined by
$$ f(x)= \begin{cases}5, & \text{ if } x \leq 2 \\ a x+b, & \text{ if } 2<x<10 \\ 21, & \text{ if } x \geq 10\end{cases} $$
is a continuous function.
Show Answer
Solution
$ f(x)= \begin{cases}5, & \text{ if } x \leq 2 \\ a x+b, & \text{ if } 2<x<10 \\ 21, & \text{ if } x \geq 10\end{cases} $
It is evident that the given function $f$ is defined at all points of the real line.
If $f$ is a continuous function, then $f$ is continuous at all real numbers.
In particular, $f$ is continuous at $x=2$ and $x=10$
Since $f$ is continuous at $x=2$, we obtain
$ \begin{aligned} & \lim _{x \to 2^{-}} f(x)=\lim _{x \to 2^{+}} f(x)=f(2) \\ & \Rightarrow \lim _{x \to 2^{-}}(5)=\lim _{x \to 2^{+}}(a x+b)=5 \\ & \Rightarrow 5=2 a+b=5 \\ & \Rightarrow 2 a+b=5 \\ \end{aligned} $
Since $f$ is continuous at $x=10$, we obtain
$$ \begin{align*} & \lim _{x \to 10^{-}} f(x)=\lim _{x \to 10^{+}} f(x)=f(10) \\ & \Rightarrow \lim _{x \to 10^{-}}(a x+b)=\lim _{x \to 10^{+}}(21)=21 \\ & \Rightarrow 10 a+b=21=21 \\ & \Rightarrow 10 a+b=21 \tag{2} \end{align*} $$
On subtracting equation (1) from equation (2), we obtain
$8 a=16$
$\Rightarrow a=2$
By putting $a=2$ in equation (1), we obtain
$2 \times 2+b=5$
$\Rightarrow 4+b=5$ $\Rightarrow b=1$
Therefore, the values of $a$ and $b$ for which $f$ is a continuous function are 2 and 1 respectively.
31. Show that the function defined by $f(x)=\cos (x^{2})$ is a continuous function.
Show Answer
Solution
The given function is $f(x)=\cos (x^{2})$
This function $f$ is defined for every real number and $f$ can be written as the composition of two functions as,
$f=g \circ h$, where $g(x)=\cos x$ and $h(x)=x^{2}$
$[\because(g \circ h)(x)=g(h(x))=g(x^{2})=\cos (x^{2})=f(x)]$
It has to be first proved that $g(x)=\cos x$ and $h(x)=x^{2}$ are continuous functions.
It is evident that $g$ is defined for every real number.
Let $c$ be a real number.
Then, $g(c)=\cos c$
Put $x=c+h$
If $x \to c$, then $h \to 0$
$\lim _{x \to c} g(x)=\lim _{x \to c} \cos x$
$=\lim _{h \to 0} \cos (c+h)$
$=\lim _{h \to 0}[\cos c \cos h-\sin c \sin h]$
$=\lim _{h \to 0} \cos c \cos h-\lim _{h \to 0} \sin c \sin h$
$=\cos c \cos 0-\sin c \sin 0$
$=\cos c \times 1-\sin c \times 0$
$=\cos c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g(x)=\cos x$ is continuous function. $h(x)=x^{2}$
Clearly, $h$ is defined for every real number.
Let $k$ be a real number, then $h(k)=k^{2}$
$\lim _{x \to k} h(x)=\lim _{x \to k} x^{2}=k^{2}$
$\therefore \lim _{x \to k} h(x)=h(k)$
Therefore, $h$ is a continuous function.
It is known that for real valued functions $g$ and $h$, such that $(g \circ h)$ is defined at $c$, if $g$ is continuous at $c$ and if $f$ is continuous at $g(c)$, then $(f \circ g)$ is continuous at $c$.
Therefore, $f(x)=(g o h)(x)=\cos (x^{2})$ is a continuous function.
32. Show that the function defined by $f(x)=|\cos x|$ is a continuous function.
Show Answer
Solution
The given function is $f(x)=|\cos x|$
This function $f$ is defined for every real number and $f$ can be written as the composition of two functions as,
$f=g \circ h$, where $g(x)=|x|$ and $h(x)=\cos x$
$[\because(g \circ h)(x)=g(h(x))=g(\cos x)=|\cos x|=f(x)]$
It has to be first proved that $g(x)=|x|$ and $h(x)=\cos x$ are continuous functions.
$g(x)=|x|$ can be written as
$g(x)= \begin{cases}-x, & \text{ if } x<0 \\ x, & \text{ if } x \geq 0\end{cases}$
Clearly, $g$ is defined for all real numbers.
Let $c$ be a real number.
Case I:
If $c<0$, then $g(c)=-c$ and $\lim _{x \to c} g(x)=\lim _{x \to c}(-x)=-c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is continuous at all points $x$, such that $x<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \to c} g(x)=\lim _{x \to c} x=c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is continuous at all points $x$, such that $x>0$
Case III:
If $c=0$, then $g(c)=g(0)=0$
$ \begin{aligned} & \lim _{x \to 0^{-}} g(x)=\lim _{x \to 0^{-}}(-x)=0 \\ & \lim _{x \to 0^{+}} g(x)=\lim _{x \to 0^{+}}(x)=0 \\ & \therefore \lim _{x \to 0^{-}} g(x)=\lim _{x \to 0^{+}}(x)=g(0) \end{aligned} $
Therefore, $g$ is continuous at $x=0$
From the above three observations, it can be concluded that $g$ is continuous at all points.
$h(x)=\cos x$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let $c$ be a real number. Put $x=c+h$
If $x \to c$, then $h \to 0$
$h(c)=\cos c$
$ \begin{aligned} \lim _{x \to c} h(x) & =\lim _{x \to c} \cos x \\ & =\lim _{h \to 0} \cos (c+h) \\ & =\lim _{h \to 0}[\cos c \cos h-\sin c \sin h] \\ & =\lim _{h \to 0} \cos c \cos h-\lim _{h \to 0} \sin c \sin h \\ & =\cos c \cos 0-\sin c \sin 0 \\ & =\cos c \times 1-\sin c \times 0 \\ & =\cos c \end{aligned} $
$\therefore \lim _{x \to c} h(x)=h(c)$
Therefore, $h(x)=\cos x$ is a continuous function.
It is known that for real valued functions $g$ and $h$, such that $(g \circ h)$ is defined at $c$, if $g$ is continuous at $c$ and if $f$ is continuous at $g(c)$, then $(f \circ g)$ is continuous at $c$.
Therefore, $f(x)=(g \circ h)(x)=g(h(x))=g(\cos x)=|\cos x|$ is a continuous function.
33. Examine that $\sin |x|$ is a continuous function.
Show Answer
Solution
Let $f(x)=\sin |x|$
This function $f$ is defined for every real number and $f$ can be written as the composition of two functions as,
$f=g \circ h$, where $g(x)=|x|$ and $h(x)=\sin x$
$[\because(g \circ h)(x)=g(h(x))=g(\sin x)=|\sin x|=f(x)]$
It has to be proved first that $g(x)=|x|$ and $h(x)=\sin x$ are continuous functions.
$g(x)=|x|$ can be written as
$g(x)= \begin{cases}-x, & \text{ if } x<0 \\ x, & \text{ if } x \geq 0\end{cases}$
Clearly, $g$ is defined for all real numbers.
Let $c$ be a real number.
Case I:
If $c<0$, then $g(c)=-c$ and $\lim _{x \to c} g(x)=\lim _{x \to c}(-x)=-c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is continuous at all points $x$, such that $x<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \to c} g(x)=\lim _{x \to c} x=c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is continuous at all points $x$, such that $x>0$
Case III:
If $c=0$, then $g(c)=g(0)=0$
$ \begin{aligned} & \lim _{x \to 0^{-}} g(x)=\lim _{x \to 0^{-}}(-x)=0 \\ & \lim _{x \to 0^{+}} g(x)=\lim _{x \to 0^{+}}(x)=0 \\ & \therefore \lim _{x \to 0^{-}} g(x)=\lim _{x \to 0^{+}}(x)=g(0) \end{aligned} $
Therefore, $g$ is continuous at $x=0$
From the above three observations, it can be concluded that $g$ is continuous at all points.
$h(x)=\sin x$
It is evident that $h(x)=\sin x$ is defined for every real number.
Let $c$ be a real number. Put $x=c+k$
If $x \to c$, then $k \to 0$
$h(c)=\sin c$
$h(c)=\sin c$
$ \begin{aligned} \lim _{x \to c} h(x) & =\lim _{x \to c} \sin x \\ & =\lim _{k \to 0} \sin (c+k) \\ & =\lim _{k \to 0}[\sin c \cos k+\cos c \sin k] \\ & =\lim _{k \to 0}(\sin c \cos k)+\lim _{h \to 0}(\cos c \sin k) \\ & =\sin c \cos 0+\cos c \sin 0 \\ & =\sin c+0 \\ & =\sin c \end{aligned} $
$\therefore \lim _{x \to c} h(x)=g(c)$
Therefore, $h$ is a continuous function.
It is known that for real valued functions $g$ and $h$, such that $(g \circ h)$ is defined at $c$, if $g$ is continuous at $c$ and if $f$ is continuous at $g(c)$, then $(f \circ g)$ is continuous at $c$.
Therefore, $f(x)=(g \circ h)(x)=g(h(x))=g(\sin x)=|\sin x|$ is a continuous function.
34. Find all the points of discontinuity of $f$ defined by $f(x)=|x|-|x+1|$.
Show Answer
Solution
The given function is $f(x)=|x|-|x+1|$
The two functions, $g$ and $h$, are defined as
$g(x)=|x|$ and $h(x)=|x+1|$
Then, $f=g-h$
The continuity of $g$ and $h$ is examined first.
$g(x)=|x|$ can be written as
$g(x)= \begin{cases}-x, & \text{ if } x<0 \\ x, & \text{ if } x \geq 0\end{cases}$
Clearly, $g$ is defined for all real numbers.
Let $c$ be a real number.
Case I:
If $c<0$, then $g(c)=-c$ and $\lim _{x \to c} g(x)=\lim _{x \to c}(-x)=-c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is continuous at all points $x$, such that $x<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \to c} g(x)=\lim _{x \to c} x=c$
$\therefore \lim _{x \to c} g(x)=g(c)$
Therefore, $g$ is continuous at all points $x$, such that $x>0$
Case III:
If $c=0$, then $g(c)=g(0)=0$
$\lim _{x \to 0^{-}} g(x)=\lim _{x \to 0^{-}}(-x)=0$
$\lim _{x \to 0^{+}} g(x)=\lim _{x \to 0^{+}}(x)=0$
$\therefore \lim _{x \to 0^{-}} g(x)=\lim _{x \to 0^{+}}(x)=g(0)$
Therefore, $g$ is continuous at $x=0$
From the above three observations, it can be concluded that $g$ is continuous at all points.
$h(x)=|x+1|$ can be written as
$h(x)= \begin{cases}-(x+1), & \text{ if, } x<-1 \\ x+1, & \text{ if } x \geq-1\end{cases}$
Clearly, $h$ is defined for every real number.
Let $c$ be a real number.
Case I:
If $c<-1$, then $h(c)=-(c+1)$ and $\lim _{x \to c} h(x)=\lim _{x \to c}[-(x+1)]=-(c+1)$
$\therefore \lim _{x \to c} h(x)=h(c)$
Therefore, $h$ is continuous at all points $x$, such that $x<-1$
Case II:
If $c>-1$, then $h(c)=c+1$ and $\lim _{x \to c} h(x)=\lim _{x \to c}(x+1)=c+1$
$\therefore \lim _{x \to c} h(x)=h(c)$
Therefore, $h$ is continuous at all points $x$, such that $x>-1$
Case III:
If $c=-1$, then $h(c)=h(-1)=-1+1=0$
$\lim _{x \to-1^{-}} h(x)=\lim _{x \to-1^{-}}[-(x+1)]=-(-1+1)=0$
$\lim _{x \to-1^{+}} h(x)=\lim _{x \to-1^{+}}(x+1)=(-1+1)=0$
$\therefore \lim _{x \to-1^{-}} h(x)=\lim _{h \to-1^{+}} h(x)=h(-1)$
Therefore, $h$ is continuous at $x=-1$
From the above three observations, it can be concluded that $h$ is continuous at all points of the real line.
$g$ and $h$ are continuous functions. Therefore, $f=g-h$ is also a continuous function.
Therefore, $f$ has no point of discontinuity.