Chapter 3 Matrices EXERCISE 3.2
EXERCISE 3.2
1. Let $A=\begin{bmatrix}2 & 4 \\ 3 & 2\end{bmatrix}, B=\begin{bmatrix}1 & 3 \\ -2 & 5\end{bmatrix}, C=\begin{bmatrix}-2 & 5 \\ 3 & 4\end{bmatrix}$
Find each of the following:
(i) $A+B$ $\quad$
(ii) $A-B$ $\quad$
(iii) $3 A-C$
(iv) $AB$ $\quad$
(v) $BA$
Show Answer
Solution
(i) $\quad A+B= \begin{bmatrix} 2 & 4 \\ 3 & 2\end{bmatrix} + \begin{bmatrix} 1 & 3 \\ -2 & 5\end{bmatrix} = \begin{bmatrix} 2+1 & 4+3 \\ 3-2 & 2+5\end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 1 & 7 \end{bmatrix} $
(ii) $A-B= \begin{bmatrix} 2 & 4 \\ 3 & 2\end{bmatrix} - \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} =$ (iii) $3 A-C=3 \begin{bmatrix} 2 & 4 \\ 3 & 2\end{bmatrix} - \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} $
$= \begin{bmatrix} 3 \times 2 & 3 \times 4 \\ 3 \times 3 & 3 \times 2\end{bmatrix} - \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} $
$= \begin{bmatrix} 6 & 12 \\ 9 & 6\end{bmatrix} - \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} $
$= \begin{bmatrix} 6+2 & 12-5 \\ 9-3 & 6-4 \end{bmatrix} $
$= \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix} $
(iv) Matrix $A$ has 2 columns. This number is equal to the number of rows in matrix $B$.
Therefore, $A B$ is defined as:
$ \begin{aligned} A B & = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 2(1)+4(-2) & 2(3)+4(5) \\ 3(1)+2(-2) & 3(3)+2(5) \end{bmatrix} \\ & = \begin{bmatrix} 2-8 & 6+20 \\ 3-4 & 9+10 \end{bmatrix} = \begin{bmatrix} -6 & 26 \\ -1 & 19 \end{bmatrix} \end{aligned} $
(v) Matrix $B$ has 2 columns. This number is equal to the number of rows in matrix $A$. Therefore, $B A$ is defined as:
$ \begin{aligned} B A & = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1(2)+3(3) & 1(4)+3(2) \\ -2(2)+5(3) & -2(4)+5(2) \end{bmatrix} \\ & = \begin{bmatrix} 2+9 & 4+6 \\ -4+15 & -8+10 \end{bmatrix} = \begin{bmatrix} 11 & 10 \\ 11 & 2 \end{bmatrix} \end{aligned} $
2. Compute the following:
(i) $\begin{bmatrix}a & b \\ -b & a\end{bmatrix}+\begin{bmatrix}a & b \\ b & a\end{bmatrix}$ $\quad$ (ii) $\begin{bmatrix}a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2}\end{bmatrix}+\begin{bmatrix}2 a b & 2 b c \\ -2 a c & -2 a b\end{bmatrix}$
(iii) $\begin{bmatrix}-1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5\end{bmatrix}+\begin{bmatrix}12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4\end{bmatrix}$ $\quad$ (iv) $\begin{bmatrix}\cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{bmatrix}+\begin{bmatrix}\sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x\end{bmatrix}$
Show Answer
Solution
(i) $ \begin{bmatrix} a & b \\ -b & a\end{bmatrix} + \begin{bmatrix} a & b \\ b & a\end{bmatrix} = \begin{bmatrix} a+a & b+b \\ -b+b & a+a\end{bmatrix} = \begin{bmatrix} 2 a & 2 b \\ 0 & 2 a \end{bmatrix} $
(ii) $ \begin{bmatrix} a^{2}+b^{2} & b^{2}+c^{2} \\ a^{2}+c^{2} & a^{2}+b^{2}\end{bmatrix} + \begin{bmatrix} 2 a b & 2 b c \\ -2 a c & -2 a b \end{bmatrix} $
$ \begin{aligned} & = \begin{bmatrix} a^{2}+b^{2}+2 a b & b^{2}+c^{2}+2 b c \\ a^{2}+c^{2}-2 a c & a^{2}+b^{2}-2 a b \end{bmatrix} \\ & = \begin{bmatrix} (a+b)^{2} & (b+c)^{2} \\ (a-c)^{2} & (a-b)^{2} \end{bmatrix} \end{aligned} $
(iii) $ \begin{bmatrix} -1 & 4 & -6 \\ 8 & 5 & 16 \\ 2 & 8 & 5\end{bmatrix} + \begin{bmatrix} 12 & 7 & 6 \\ 8 & 0 & 5 \\ 3 & 2 & 4 \end{bmatrix} $
$= \begin{bmatrix} -1+12 & 4+7 & -6+6 \\ 8+8 & 5+0 & 16+5 \\ 2+3 & 8+2 & 5+4 \end{bmatrix} $
$= \begin{bmatrix} 11 & 11 & 0 \\ 16 & 5 & 21 \\ 5 & 10 & 9 \end{bmatrix} $
(iv) $ \begin{bmatrix} \cos ^{2} x & \sin ^{2} x \\ \sin ^{2} x & \cos ^{2} x\end{bmatrix} + \begin{bmatrix} \sin ^{2} x & \cos ^{2} x \\ \cos ^{2} x & \sin ^{2} x \end{bmatrix} $
$= \begin{bmatrix} \cos ^{2} x+\sin ^{2} x & \sin ^{2} x+\cos ^{2} x \\ \sin ^{2} x+\cos ^{2} x & \cos ^{2} x+\sin ^{2} x \end{bmatrix} $
$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad(\because \sin ^{2} x+\cos ^{2} x=1)$
3. Compute the indicated products.
(i) $\begin{bmatrix}a & b \\ -b & a\end{bmatrix}\begin{bmatrix}a & -b \\ b & a\end{bmatrix}$ (ii) $\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\begin{bmatrix}2 & 3 & 4\end{bmatrix}$ (iii) $\begin{bmatrix}1 & -2 \\ 2 & 3\end{bmatrix}\begin{bmatrix}1 & 2 & 3 \\ 2 & 3 & 1\end{bmatrix}$
(iv) $\begin{bmatrix}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{bmatrix}\begin{bmatrix}1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5\end{bmatrix}$ (v) $\begin{bmatrix}2 & 1 \\ 3 & 2 \\ -1 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & 1 \\ -1 & 2 & 1\end{bmatrix}$
(vi) $\begin{bmatrix}3 & -1 & 3 \\ -1 & 0 & 2\end{bmatrix}\begin{bmatrix}2 & -3 \\ 1 & 0 \\ 3 & 1\end{bmatrix}$
Show Answer
Solution
(i) $ \begin{bmatrix} a & b \\ -b & a\end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} $
$= \begin{bmatrix} a(a)+b(b) & a(-b)+b(a) \\ -b(a)+a(b) & -b(-b)+a(a) \end{bmatrix} $
$= \begin{bmatrix} a^{2}+b^{2} & -a b+a b \\ -a b+a b & b^{2}+a^{2}\end{bmatrix} = \begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2} \end{bmatrix} $
(ii) $ \begin{bmatrix} 1 \\ 2 \\ 3\end{bmatrix} \begin{bmatrix} 2 & 3 & 4\end{bmatrix} = \begin{bmatrix} 1(2) & 1(3) & 1(4) \\ 2(2) & 2(3) & 2(4) \\ 3(2) & 3(3) & 3(4)\end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{bmatrix} $
(iii) $ \begin{bmatrix} 1 & -2 \\ 2 & 3\end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} $
$ \begin{aligned} & = \begin{bmatrix} 1(1)-2(2) & 1(2)-2(3) & 1(3)-2(1) \\ 2(1)+3(2) & 2(2)+3(3) & 2(3)+3(1) \end{bmatrix} \\ & = \begin{bmatrix} 1-4 & 2-6 & 3-2 \\ 2+6 & 4+9 & 6+3 \end{bmatrix} = \begin{bmatrix} -3 & -4 & 1 \\ 8 & 13 & 9 \end{bmatrix} \end{aligned} $
(iv) $ \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{bmatrix} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{bmatrix} $
$= \begin{bmatrix} 2(1)+3(0)+4(3) & 2(-3)+3(2)+4(0) & 2(5)+3(4)+4(5) \\ 3(1)+4(0)+5(3) & 3(-3)+4(2)+5(0) & 3(5)+4(4)+5(5) \\ 4(1)+5(0)+6(3) & 4(-3)+5(2)+6(0) & 4(5)+5(4)+6(5) \end{bmatrix} $
$= \begin{bmatrix} 2+0+12 & -6+6+0 & 10+12+20 \\ 3+0+15 & -9+8+0 & 15+16+25 \\ 4+0+18 & -12+10+0 & 20+20+30\end{bmatrix} = \begin{bmatrix} 14 & 0 & 42 \\ 18 & -1 & 56 \\ 22 & -2 & 70 \end{bmatrix} $
(v) $ \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ -1 & 1\end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \end{bmatrix} $
$= \begin{bmatrix} 2(1)+1(-1) & 2(0)+1(2) & 2(1)+1(1) \\ 3(1)+2(-1) & 3(0)+2(2) & 3(1)+2(1) \\ -1(1)+1(-1) & -1(0)+1(2) & -1(1)+1(1) \end{bmatrix} $
$= \begin{bmatrix} 2-1 & 0+2 & 2+1 \\ 3-2 & 0+4 & 3+2 \\ -1-1 & 0+2 & -1+1\end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0 \end{bmatrix} $
(vi) $ \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2\end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{bmatrix} $
$ \begin{aligned} & = \begin{bmatrix} 3(2)-1(1)+3(3) & 3(-3)-1(0)+3(1) \\ -1(2)+0(1)+2(3) & -1(-3)+0(0)+2(1) \end{bmatrix} \\ & = \begin{bmatrix} 6-1+9 & -9-0+3 \\ -2+0+6 & 3+0+2 \end{bmatrix} = \begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix} \end{aligned} $
4. If $A=\begin{bmatrix}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{bmatrix}, B=\begin{bmatrix}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{bmatrix}$ and $C=\begin{bmatrix}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{bmatrix}$, then compute $(A+B)$ and $(B-C)$. Also, verify that $A+(B-C)=(A+B)-C$.
Show Answer
Solution
$ \begin{aligned} A+B & = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} + \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} \\ & = \begin{bmatrix} 1+3 & 2-1 & -3+2 \\ 5+4 & 0+2 & 2+5 \\ 1+2 & -1+0 & 1+3 \end{bmatrix} = \begin{bmatrix} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{bmatrix} \\ B-C & = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix} \\ & = \begin{bmatrix} 3-4 & -1-1 & 2-2 \\ 4-0 & 2-3 & 5-2 \\ 2-1 & 0-(-2) & 3-3 \end{bmatrix} = \begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{bmatrix} \end{aligned} $
$ \begin{aligned} A+(B-C) & = \begin{bmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 1+(-1) & 2+(-2) & -3+0 \\ 5+4 & 0+(-1) & 2+3 \\ 1+1 & -1+2 & 1+0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{bmatrix} \\ (A+B)-C & = \begin{bmatrix} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{bmatrix} - \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{bmatrix} \\ & = \begin{bmatrix} 4-4 & 1-1 \\ 9-0 & 2-3 \\ 3-1 & -1-(-2) & 4-3 \end{bmatrix} \begin{bmatrix} 0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1 \end{bmatrix} \end{aligned} $
Hence, we have verified that $A+(B-C)=(A+B)-C$.
5. If $A=\begin{bmatrix}\frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3}\end{bmatrix}$ and $B=\begin{bmatrix}\frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5}\end{bmatrix}$, then compute $3 A-5 B$.
Show Answer
Solution
$ \begin{aligned} 3 A-5 B & =3 \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} -5 \begin{bmatrix} \frac{2}{5} & \frac{3}{5} & 1 \\ \frac{1}{5} & \frac{2}{5} & \frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix} \\ & = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 7 & 6 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \end{aligned} $
6. Simplify $\cos \theta\begin{bmatrix}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{bmatrix}+\sin \theta\begin{bmatrix}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{bmatrix}$
Show Answer
Solution
$ \begin{aligned} & \cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} +\sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} \\ & = \begin{bmatrix} \cos ^{2} \theta & \cos \theta \sin \theta \\ -\sin \theta \cos \theta & \cos ^{2} \theta \end{bmatrix} + \begin{bmatrix} \sin ^{2} \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin ^{2} \theta \end{bmatrix} \\ & = \begin{bmatrix} \cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\ -\sin \theta \cos \theta+\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta \end{bmatrix} \\ & = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad(\because \cos ^{2} \theta+\sin ^{2} \theta=1) \end{aligned} $
7. Find $X$ and $Y$, if
(i) $X+Y=\begin{bmatrix}7 & 0 \\ 2 & 5\end{bmatrix}$ and $X-Y=\begin{bmatrix}3 & 0 \\ 0 & 3\end{bmatrix}$
(ii) $2 X+3 Y=\begin{bmatrix}2 & 3 \\ 4 & 0\end{bmatrix}$ and $3 X+2 Y=\begin{bmatrix}2 & -2 \\ -1 & 5\end{bmatrix}$
Show Answer
Solution
$ X-Y= \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} $
Adding equations (1) and (2), we get:
$ \begin{aligned} & 2 X= \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 7+3 & 0+0 \\ 2+0 & 5+3 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix} \\ & \therefore X=\frac{1}{2} \begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} \end{aligned} $
Now, $X+Y= \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} $
$\Rightarrow \begin{bmatrix} 5 & 0 \\ 1 & 4\end{bmatrix} +Y= \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} $
$\Rightarrow Y= \begin{bmatrix} 7 & 0 \\ 2 & 5\end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix} $
$\Rightarrow Y= \begin{bmatrix} 7-5 & 0-0 \\ 2-1 & 5-4 \end{bmatrix} $
$\therefore Y= \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} $
(ii) $2 X+3 Y= \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} $
$ 3 X+2 Y= \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix} $
Multiplying equation (3) with (2), we get:
$$ \begin{align} & 2(2 X+3 Y)=2 \begin{bmatrix} 2 & 3 \\ 4 & 0 \\ \end{bmatrix} \\ & \Rightarrow 4 X+6 Y= \begin{bmatrix} 4 & 6 \\ 8 & 0 \\ \end{bmatrix} \end{align} $$
Multiplying equation (4) with (3), we get:
$$ \begin{align*} & 3(3 X+2 Y)=3 \begin{bmatrix} 2 & -2 \\ -1 & 5 \\ \end{bmatrix} \\ & \Rightarrow 9 X+6 Y= \begin{bmatrix} 6 & -6 \\ -3 & 15 \\ \end{bmatrix} \tag{6} \end{align*} $$
From (5) and (6), we have:
$ \begin{aligned} & (4 X+6 Y)-(9 X+6 Y)= \begin{bmatrix} 4 & 6 \\ 8 & 0 \end{bmatrix} - \begin{bmatrix} 6 & -6 \\ -3 & 15 \end{bmatrix} \\ & \Rightarrow-5 X= \begin{bmatrix} 4-6 & 6-(-6) \\ 8-(-3) & 0-15 \end{bmatrix} = \begin{bmatrix} -2 & 12 \\ 11 & -15 \end{bmatrix} \\ & \therefore X=-\frac{1}{5} \begin{bmatrix} -2 & 12 \\ 11 & -15 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & -\frac{12}{5} \\ -\frac{11}{5} & 3 \end{bmatrix} \end{aligned} $
Now, $2 X+3 Y= \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} $ $\Rightarrow 2 \begin{bmatrix} \frac{2}{5} & -\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix} +3 Y= \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} $
$\Rightarrow \begin{bmatrix} \frac{4}{5} & -\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix} +3 Y= \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix} $
$\Rightarrow 3 Y= \begin{bmatrix} 2 & 3 \\ 4 & 0\end{bmatrix} - \begin{bmatrix} \frac{4}{5} & -\frac{24}{5} \\ -\frac{22}{5} & 6 \end{bmatrix} $
$\Rightarrow 3 Y= \begin{bmatrix} 2-\frac{4}{5} & 3+\frac{24}{5} \\ 4+\frac{22}{5} & 0-6\end{bmatrix} = \begin{bmatrix} \frac{6}{5} & \frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} $
$\therefore Y=\frac{1}{3} \begin{bmatrix} \frac{6}{5} & \frac{39}{5} \\ \frac{42}{5} & -6\end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} $
8. Find $X$, if $Y=\begin{bmatrix}3 & 2 \\ 1 & 4\end{bmatrix}$ and $2 X+Y=\begin{bmatrix}1 & 0 \\ -3 & 2\end{bmatrix}$
Show Answer
Solution
$ \begin{aligned} & 2 X+Y= \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \\ & \Rightarrow 2 X+ \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} \\ & \Rightarrow 2 X= \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1-3 & 0-2 \\ -3-1 & 2-4 \end{bmatrix} \\ & \Rightarrow 2 X= \begin{bmatrix} -2 & -2 \\ -4 & -2 \end{bmatrix} \\ & \therefore X=\frac{1}{2} \begin{bmatrix} -2 & -2 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix} \end{aligned} $
9. Find $x$ and $y$, if $2\begin{bmatrix}1 & 3 \\ 0 & x\end{bmatrix}+\begin{bmatrix}y & 0 \\ 1 & 2\end{bmatrix}=\begin{bmatrix}5 & 6 \\ 1 & 8\end{bmatrix}$
Show Answer
Solution
$ \begin{aligned} & 2 \begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2 & 6 \\ 0 & 2 x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2+y & 6 \\ 1 & 2 x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix} \end{aligned} $
Comparing the corresponding elements of these two matrices, we have:
$ \begin{aligned} & 2+y=5 \\ & \Rightarrow y=3 \\ & 2 x+2=8 \\ & \Rightarrow x=3 \\ & \therefore x=3 \text{ and } y=3 \end{aligned} $
10. Solve the equation for $x, y, z$ and $t$, if $2\begin{bmatrix}x & z \\ y & t\end{bmatrix}+3\begin{bmatrix}1 & -1 \\ 0 & 2\end{bmatrix}=3\begin{bmatrix}3 & 5 \\ 4 & 6\end{bmatrix}$
Show Answer
Solution
$ \begin{aligned} & 2 \begin{bmatrix} x & z \\ y & t \end{bmatrix} +3 \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} =3 \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2 x & 2 z \\ 2 y & 2 t \end{bmatrix} + \begin{bmatrix} 3 & -3 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 9 & 15 \\ 12 & 18 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2 x+3 & 2 z-3 \\ 2 y & 2 t+6 \end{bmatrix} = \begin{bmatrix} 9 & 15 \\ 12 & 18 \end{bmatrix} \end{aligned} $
Comparing the corresponding elements of these two matrices, we get:
$ \begin{aligned} & 2 x+3=9 \\ & \Rightarrow 2 x=6 \\ & \Rightarrow x=3 \end{aligned} $
$2 y=12$
$\Rightarrow y=6$
$ \begin{aligned} & 2 z-3=15 \\ & \Rightarrow 2 z=18 \\ & \Rightarrow z=9 \end{aligned} $
$ \begin{aligned} & 2 t+6=18 \\ & \Rightarrow 2 t=12 \\ & \Rightarrow t=6 \end{aligned} $
$\therefore x=3, y=6, z=9$, and $t=6$
11. If $x\begin{bmatrix}2 \\ 3\end{bmatrix}+y\begin{bmatrix}{c}-1 \\ 1\end{bmatrix}=\begin{bmatrix}10 \\ 5\end{bmatrix}$, find the values of $x$ and $y$.
Show Answer
Solution
$ \begin{aligned} & x \begin{bmatrix} 2 \\ 3 \end{bmatrix} +y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2 x \\ 3 x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2 x-y \\ 3 x+y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} \end{aligned} $
Comparing the corresponding elements of these two matrices, we get:
$2 x-y=10$ and $3 x+y=5$
Adding these two equations, we have:
$5 x=15$
$\Rightarrow x=3$
Now, $3 x+y=5$
$\Rightarrow y=5-3 x$
$\Rightarrow y=5-9=-4$
$\therefore x=3$ and $y=-4$
12. Given $3\begin{bmatrix}x & y \\ z & w\end{bmatrix}=\begin{bmatrix}x & 6 \\ -1 & 2 w\end{bmatrix}+\begin{bmatrix}4 & x+y \\ z+w & 3\end{bmatrix}$, find the values of $x, y, z$ and $w$.
Show Answer
Solution
$ \begin{aligned} & 3 \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2 w \end{bmatrix} + \begin{bmatrix} 4 & x+y \\ z+w & 3 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 3 x & 3 y \\ 3 z & 3 w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2 w+3 \end{bmatrix} \end{aligned} $
Comparing the corresponding elements of these two matrices, we get:
$ \begin{aligned} & 3 x=x+4 \\ & \Rightarrow 2 x=4 \\ & \Rightarrow x=2 \end{aligned} $
$3 y=6+x+y$
$\Rightarrow 2 y=6+x=6+2=8$
$\Rightarrow y=4$
$3 w=2 w+3$
$\Rightarrow w=3$
$3 z=-1+z+w$
$\Rightarrow 2 z=-1+w=-1+3=2$
$\Rightarrow z=1$
$\therefore x=2, y=4, z=1$, and $w=3$
13. If $F(x)=\begin{bmatrix}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{bmatrix}$, show that $F(x) F(y)=F(x+y)$.
Show Answer
Solution
$ \begin{aligned} & F(x)= \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} , F(y)= \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & F(x+y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & F(x) F(y) \\ & = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} \cos x \cos y-\sin x \sin y+0 & -\cos x \sin y-\sin x \cos y+0 & 0 \\ \sin x \cos y+\cos x \sin y+0 & -\sin x \sin y+\cos x \cos y+0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ & = \begin{bmatrix} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & =F(x+y) \\ & \therefore F(x) F(y)=F(x+y) \end{aligned} $
14. Show that
(i) $\begin{bmatrix}5 & -1 \\ 6 & 7\end{bmatrix}\begin{bmatrix}2 & 1 \\ 3 & 4\end{bmatrix} \neq\begin{bmatrix}2 & 1 \\ 3 & 4\end{bmatrix}\begin{bmatrix}5 & -1 \\ 6 & 7\end{bmatrix}$
(ii) $\begin{bmatrix}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{bmatrix}\begin{bmatrix}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{bmatrix} \neq\begin{bmatrix}-1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4\end{bmatrix}\begin{bmatrix}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{bmatrix}$
Show Answer
Solution
(i) $ \begin{bmatrix} 5 & -1 \\ 6 & 7\end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} $
$= \begin{bmatrix} 5(2)-1(3) & 5(1)-1(4) \\ 6(2)+7(3) & 6(1)+7(4) \end{bmatrix} $
$= \begin{bmatrix} 10-3 & 5-4 \\ 12+21 & 6+28\end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 33 & 34 \end{bmatrix} $
$ \begin{bmatrix} 2 & 1 \\ 3 & 4\end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} $
$= \begin{bmatrix} 2(5)+1(6) & 2(-1)+1(7) \\ 3(5)+4(6) & 3(-1)+4(7) \end{bmatrix} $
$= \begin{bmatrix} 10+6 & -2+7 \\ 15+24 & -3+28\end{bmatrix} = \begin{bmatrix} 16 & 5 \\ 39 & 25 \end{bmatrix} $
$\therefore \begin{bmatrix} 5 & -1 \\ 6 & 7\end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4\end{bmatrix} \neq \begin{bmatrix} 2 & 1 \\ 3 & 4\end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} $
(ii) $ \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} $
$= \begin{bmatrix} 1(-1)+2(0)+3(2) & 1(1)+2(-1)+3(3) & 1(0)+2(1)+3(4) \\ 0(-1)+1(0)+0(2) & 0(1)+1(-1)+0(3) & 0(0)+1(1)+0(4) \\ 1(-1)+1(0)+0(2) & 1(1)+1(-1)+0(3) & 1(0)+1(1)+0(4) \end{bmatrix} $
$= \begin{bmatrix} 5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} $
$ \begin{aligned} & { \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} } \\ & = \begin{bmatrix} -1(1)+1(0)+0(1) & -1(2)+1(1)+0(1) & -1(3)+1(0)+0(0) \\ 0(1)+(-1)(0)+1(1) & 0(2)+(-1)(1)+1(1) & 0(3)+(-1)(0)+1(0) \\ 2(1)+3(0)+4(1) & 2(2)+3(1)+4(1) & 2(3)+3(0)+4(0) \end{bmatrix} \\ & = \begin{bmatrix} -1 & -1 & -3 \\ 1 & 0 & 0 \\ 6 & 11 & 6 \end{bmatrix} \\ & \therefore \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \end{aligned} $
15. Find $A^{2}-5 A+6 I$, if $A=\begin{bmatrix}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{bmatrix}$
Show Answer
Solution
We have $A^{2}=A \times A$
$ \begin{aligned} & A^{2}=A A= \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \\ & = \begin{bmatrix} 2(2)+0(2)+1(1) & 2(0)+0(1)+1(-1) & 2(1)+0(3)+1(0) \\ 2(2)+1(2)+3(1) & 2(0)+1(1)+3(-1) & 2(1)+1(3)+3(0) \\ 1(2)+(-1)(2)+0(1) & 1(0)+(-1)(1)+0(-1) & 1(1)+(-1)(3)+0(0) \end{bmatrix} \\ & = \begin{bmatrix} 4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1+0 & 1-3+0 \end{bmatrix} \\ & = \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix} \\ & \therefore A^{2}-5 A+6 I \\ & = \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix} -5 \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} +6 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix} - \begin{bmatrix} 10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0 \end{bmatrix} + \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} \\ & = \begin{bmatrix} 5-10 & -1-0 & 2-5 \\ 9-10 & -2-5 & 5-15 \\ 0-5 & -1+5 & -2-0 \end{bmatrix} + \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} \\ & = \begin{bmatrix} -5 & -1 & -3 \\ -1 & -7 & -10 \\ -5 & 4 & -2 \end{bmatrix} + \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} \\ & = \begin{bmatrix} -5+6 & -1+0 & -3+0 \\ -1+0 & -7+6 & -10+0 \\ -5+0 & 4+0 & -2+6 \end{bmatrix} \\ & = \begin{bmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{bmatrix} \end{aligned} $
16. If $A=\begin{bmatrix}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{bmatrix}$, prove that $A^{3}-6 A^{2}+7 A+2 I=0$
Show Answer
Solution
$ \begin{aligned} A^{2}=A A & = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \\ & = \begin{bmatrix} 1+0+4 & 0+0+0 & 2+0+6 \\ 0+0+2 & 0+4+0 & 0+2+3 \\ 2+0+6 & 0+0+0 & 4+0+9 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{bmatrix} \end{aligned} $
Now $A^{3}=A^{2} \cdot A$
$ \begin{aligned} & = \begin{bmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \\ & = \begin{bmatrix} 5+0+16 & 0+0+0 & 10+0+24 \\ 2+0+10 & 0+8+0 & 4+4+15 \\ 8+0+26 & 0+0+0 & 16+0+39 \end{bmatrix} \\ & = \begin{bmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{bmatrix} \\ & \therefore A^{3}-6 A^{2}+7 A+2 I \\ & = \begin{bmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{bmatrix} -6 \begin{bmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{bmatrix} +7 \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} +2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned} $
$ \begin{aligned} & = \begin{bmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{bmatrix} - \begin{bmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{bmatrix} + \begin{bmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \\ & = \begin{bmatrix} 21+7+2 & 0+0+0 & 34+14+0 \\ 12+0+0 & 8+14+2 & 23+7+0 \\ 34+14+0 & 0+0+0 & 55+21+2 \end{bmatrix} - \begin{bmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{bmatrix} \\ & = \begin{bmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{bmatrix} - \begin{bmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{bmatrix} \\ & = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} =O \\ & \therefore A^{3}-6 A^{2}+7 A+2 I=O \end{aligned} $
17. If $A=\begin{bmatrix}3 & -2 \\ 4 & -2\end{bmatrix}$ and $I=\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$, find $k$ so that $A^{2}=k A-2 I$
Show Answer
Solution
$ \begin{aligned} A^{2}=A \cdot A & = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \\ & = \begin{bmatrix} 3(3)+(-2)(4) & 3(-2)+(-2)(-2) \\ 4(3)+(-2)(4) & 4(-2)+(-2)(-2) \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} \end{aligned} $
Now $A^{2}=k A-2 I$
$ \begin{aligned} & \Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} =k \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} -2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3 k & -2 k \\ 4 k & -2 k \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3 k-2 & -2 k \\ 4 k & -2 k-2 \end{bmatrix} \end{aligned} $
Comparing the corresponding elements, we have:
$3 k-2=1$
$\Rightarrow 3 k=3$
$\Rightarrow k=1$
Thus, the value of $k$ is 1 .
18. If $A=\begin{bmatrix}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{bmatrix}$ and I is the identity matrix of order 2, show that $I+A=(I-A)\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$
Show Answer
Solution
On the L.H.S.
$I+A=\begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{bmatrix}$
$=\begin{bmatrix} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{bmatrix}\quad …(1)$
On the R.H.S.
$ (I-A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} $
$=\begin{bmatrix}\begin{bmatrix} 1 & 0 \\0 & 1\end{bmatrix} - \begin{bmatrix} 0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \beta \\ \sin \alpha & \cos \alpha \end{bmatrix}$
$=\begin{bmatrix} 1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1 \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \beta \\ \sin \alpha & \cos \alpha \end{bmatrix}$
$=\left[\begin{array}{ll}\cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{lc}1-2 \sin ^2 \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2} & -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\left(2 \cos ^2 \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2} \\ -\left(2 \cos ^2 \frac{\alpha}{2}-1\right) \tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} & 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \tan \frac{\alpha}{2}+1-2 \sin ^2 \frac{\alpha}{2}\end{array}\right] \\ & =\left[\begin{array}{lc}1-2 \sin ^2 \frac{\alpha}{2}+2 \sin ^2 \frac{\alpha}{2} & -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}-\tan \frac{\alpha}{2} \\ -2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}+\tan \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} & 2 \sin ^2 \frac{\alpha}{2}+1-2 \sin ^2 \frac{\alpha}{2}\end{array}\right] \\ & =\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]\end{aligned}$
Thus, from (1) and (2), we get L.H.S. = R.H.S.
19. A trust fund has ₹ 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide ₹ 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of: (a) ₹ 1800 (b) ₹ 2000
Show Answer
Solution
(a) Let Rs $x$ be invested in the first bond. Then, the sum of money invested in the second bond will be Rs $(30000-x)$.
It is given that the first bond pays $5 %$ interest per year and the second bond pays $7 %$ interest per year.
Therefore, in order to obtain an annual total interest of Rs 1800, we have:
$ \begin{aligned} & { \begin{bmatrix} x & (30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =1800 \quad[\text{ S.I. for 1 year }=\frac{\text{ Principal } \times \text{ Rate }}{100}]} \\ & \Rightarrow \frac{5 x}{100}+\frac{7(30000-x)}{100}=1800 \\ & \Rightarrow 5 x+210000-7 x=180000 \\ & \Rightarrow 210000-2 x=180000 \\ & \Rightarrow 2 x=210000-180000 \\ & \Rightarrow 2 x=30000 \\ & \Rightarrow x=15000 \end{aligned} $
Thus, in order to obtain an annual total interest of Rs 1800 , the trust fund should invest Rs 15000 in the first bond and the remaining Rs 15000 in the second bond.
(b) Let Rs $x$ be invested in the first bond. Then, the sum of money invested in the second bond will be Rs $(30000-x)$.
Therefore, in order to obtain an annual total interest of Rs 2000, we have:
$ \begin{bmatrix} x & (30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =2000 $
$\Rightarrow \frac{5 x}{100}+\frac{7(30000-x)}{100}=2000$
$\Rightarrow 5 x+210000-7 x=200000$
$\Rightarrow 210000-2 x=200000$
$\Rightarrow 2 x=210000-200000$
$\Rightarrow 2 x=10000$
$\Rightarrow x=5000$
Thus, in order to obtain an annual total interest of Rs 2000 , the trust fund should invest Rs 5000 in the first bond and the remaining Rs 25000 in the second bond.
20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are ₹ 80 , ₹ 60 and $\text{ ₹ } 40$ each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.
Show Answer
Solution
The bookshop has 10 dozen chemistry books, 8 dozen physics books, and 10 dozen economics books.
The selling prices of a chemistry book, a physics book, and an economics book are respectively given as Rs 80, Rs 60, and Rs 40.
The total amount of money that will be received from the sale of all these books can be represented in the form of a matrix as:
$ \begin{aligned} & 12 \begin{bmatrix} 10 & 8 & 10 \end{bmatrix} \begin{bmatrix} 80 \\ 60 \\ 40 \end{bmatrix} \\ & =12[10 \times 80+8 \times 60+10 \times 40] \\ & =12(800+480+400) \\ & =12(1680) \\ & =20160 \end{aligned} $
Thus, the bookshop will receive Rs 20160 from the sale of all these books.
21. Assume X, Y, Z, W and P are matrices of order $2 \times n, 3 \times k, 2 \times p, n \times 3$ and $p \times k$, respectively. Choose the correct answer in Exercises 21 and 22.The restriction on $n, k$ and $p$ so that $PY+WY$ will be defined are: (A) $k=3, p=n$ (B) $k$ is arbitrary, $p=2$ (C) $p$ is arbitrary, $k=3$ (D) $k=2, p=3$
Show Answer
Solution
Matrices $P$ and $Y$ are of the orders $p \times k$ and $3 \times k$ respectively.
Therefore, matrix $P Y$ will be defined if $k=3$. Consequently, $P Y$ will be of the order $p \times k$. Matrices $W$ and $Y$ are of the orders $n \times 3$ and $3 \times k$ respectively.
Since the number of columns in $W$ is equal to the number of rows in $Y$, matrix $W Y$ is well-defined and is of the order $n \times k$.
Matrices $P Y$ and $W Y$ can be added only when their orders are the same.
However, $P Y$ is of the order $p \times k$ and $W Y$ is of the order $n \times k$. Therefore, we must have $p=n$.
Thus, $k=3$ and $p=n$ are the restrictions on $n, k$, and $p$ so that $P Y+W Y$ will be defined.
22. If $n=p$, then the order of the matrix $7 X-5 Z$ is:
(A) $p \times 2$
(B) $2 \times n$
(C) $n \times 3$
(D) $p \times n$
Show Answer
Solution
The correct answer is $B$.
Matrix $X$ is of the order $2 \times n$.
Therefore, matrix $7 X$ is also of the same order.
Matrix $Z$ is of the order $2 \times p$, i.e., $2 \times n$ [Since $n=p$ ]
Therefore, matrix $5 Z$ is also of the same order.
Now, both the matrices $7 X$ and $5 Z$ are of the order $2 \times n$.
Thus, matrix $7 X-5 Z$ is well-defined and is of the order $2 \times n$.