Chapter 1 Relations And Functions EXERCISE 1.2
EXERCISE 1.2
1. Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $\mathbf{R}$ is the set of all non-zero real numbers. Is the result true, if the domain $\mathbf{R}$ is replaced by $\mathbf{N}$ with co-domain being same as $\mathbf{R}$ ?
Show Answer
Solution
It is given that $f: \mathbf{R} * \to \mathbf{R} *$ is defined by $f(x)=\frac{1}{x}$.
One-one:
$ \begin{aligned} & f(x)=f(y) \\ & \Rightarrow \frac{1}{x}=\frac{1}{y} \\ & \Rightarrow x=y \end{aligned} $
$\therefore f$ is one-one.
Onto:
It is clear that for $y \in \mathbf{R} _{*}$, there exists $x=\frac{1}{y} \in \mathbf{R}$. (Exists as $.y \neq 0)$ such that
$ f(x)=\frac{1}{(\frac{1}{y})}=y . $
$\therefore f$ is onto.
Thus, the given function $(f)$ is one-one and onto.
Now, consider function $g: \mathbf{N} \to \mathbf{R} *$ defined by
$ g(x)=\frac{1}{x} $
We have,
$ g(x_1)=g(x_2) \Rightarrow \frac{1}{x_1}=\frac{1}{x_2} \Rightarrow x_1=x_2 $
$\therefore g$ is one-one.
Further, it is clear that $g$ is not onto as for $1.2 \in \mathbf{R} *$ there does not exit any $x$ in $\mathbf{N}$ such
that $g(x)=\frac{1}{1.2}$.
Hence, function $g$ is one-one but not onto.
2. Check the injectivity and surjectivity of the following functions:
(i) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{2}$
(ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{2}$
(iii) $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=x^{2}$
(iv) $f: \mathbf{N} \rightarrow \mathbf{N}$ given by $f(x)=x^{3}$
(v) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ given by $f(x)=x^{3}$
Show Answer
Solution
(i) $f: \mathbf{N} \to \mathbf{N}$ is given by,
$f(x)=x^{2}$
It is seen that for $x, y \in \mathbf{N}, f(x)=f(y) \Rightarrow x^{2}=y^{2} \Rightarrow x=y$.
$\therefore f$ is injective.
Now, $2 \in \mathbf{N}$. But, there does not exist any $x$ in $\mathbf{N}$ such that $f(x)=x^{2}=2$.
$\therefore f$ is not surjective.
Hence, function $f$ is injective but not surjective.
(ii) $f: \mathbf{Z} \to \mathbf{Z}$ is given by,
$f(x)=x^{2}$
It is seen that $f(-1)=f(1)=1$, but $-1 \neq 1$.
$\therefore f$ is not injective.
Now, $-2 \in \mathbf{Z}$. But, there does not exist any element $x \in \mathbf{Z}$ such that $f(x)=x^{2}=-2$.
$\therefore f$ is not surjective.
Hence, function $f$ is neither injective nor surjective.
(iii) $f: \mathbf{R} \to \mathbf{R}$ is given by,
$f(x)=x^{2}$
It is seen that $f(-1)=f(1)=1$, but $-1 \neq 1$.
$\therefore f$ is not injective.
Now, $-2 \in \mathbf{R}$. But, there does not exist any element $x \in \mathbf{R}$ such that $f(x)=x^{2}=-2$. $\therefore f$ is not surjective.
Hence, function $f$ is neither injective nor surjective.
(iv) $f: \mathbf{N} \to \mathbf{N}$ given by,
$f(x)=x^{3}$
It is seen that for $x, y \in \mathbf{N}, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.
$\therefore f$ is injective.
Now, $2 \in \mathbf{N}$. But, there does not exist any element $x$ in domain $\mathbf{N}$ such that $f(x)=x^{3}=$
$\therefore f$ is not surjective
Hence, function $f$ is injective but not surjective.
(v) $f: \mathbf{Z} \to \mathbf{Z}$ is given by,
$f(x)=x^{3}$
It is seen that for $x, y \in \mathbf{Z}, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.
$\therefore f$ is injective.
Now, $2 \in \mathbf{Z}$. But, there does not exist any element $x$ in domain $\mathbf{Z}$ such that $f(x)=x^{3}=2$.
$\therefore f$ is not surjective.
Hence, function $f$ is injective but not surjective.
3. Prove that the Greatest Integer Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.
Show Answer
Solution
$f: \mathbf{R} \to \mathbf{R}$ is given by,
$f(x)=[x]$
It is seen that $f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$.
$\therefore f(1.2)=f(1.9)$, but $1.2 \neq 1.9$.
$\therefore f$ is not one-one.
Now, consider $0.7 \in \mathbf{R}$.
It is known that $f(x)=[x]$ is always an integer. Thus, there does not exist any element $x$ $\in \mathbf{R}$ such that $f(x)=0.7$.
$\therefore f$ is not onto.
Hence, the greatest integer function is neither one-one nor onto.
4. Show that the Modulus Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by $f(x)=|x|$, is neither oneone nor onto, where $|x|$ is $x$, if $x$ is positive or 0 and $|x|$ is $-x$, if $x$ is negative.
Show Answer
Solution
$f: \mathbf{R} \to \mathbf{R}$ is given by,
$f(x)=|x|=\begin{cases} x, \text{ if } x \geq 0 \\ -x, \text{ if } x<0 \end{cases} .$
It is seen that $f(-1)=|-1|=1, f(1)=|1|=1$.
$\therefore f(-1)=f(1)$, but $-1 \neq 1$.
$\therefore f$ is not one-one.
Now, consider $-1 \in \mathbf{R}$.
It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any element $x$ in domain $\mathbf{R}$ such that $f(x)=|x|=-1$.
$\therefore f$ is not onto.
Hence, the modulus function is neither one-one nor onto.
5. Show that the Signum Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by
$$ \begin{array}{r} 1, \text { if } x>0 \\ f(x)=0, \text { if } x=0 \\ 1, \text { if } x<0 \end{array} $$
is neither one-one nor onto.
Show Answer
Solution
$f: \mathbf{R} \to \mathbf{R}$ is given by,
$$ f(x)=\begin{matrix} 1, \text{ if } x>0 \\ 0, \text{ if } x=0 \\ -1, \text{ if } x<0 \end{matrix} $$
It is seen that $f(1)=f(2)=1$, but $1 \neq 2$.
$\therefore f$ is not one-one.
Now, as $f(x)$ takes only 3 values $(1,0$, or -1 ) for the element -2 in co-domain $\mathbf{R}$, there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=-2$.
$\therefore f$ is not onto.
Hence, the signum function is neither one-one nor onto.
6. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from $A$ to $B$. Show that $f$ is one-one.
Show Answer
Solution
It is given that $A={1,2,3}, B={4,5,6,7}$.
$f: A \to B$ is defined as $f={(1,4),(2,5),(3,6)}$.
$\therefore f(1)=4, f(2)=5, f(3)=6$
It is seen that the images of distinct elements of $A$ under $f$ are distinct.
Hence, function $f$ is one-one.
7. In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=3-4 x$
(ii) $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=1+x^{2}$
Show Answer
Solution
(i) $f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x)=3-4 x$.
Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1)=f(x_2)$.
$\Rightarrow 3-4 x_1=3-4 x_2$
$\Rightarrow-4 x_1=-4 x_2$
$\Rightarrow x_1=x_2$
$\therefore f$ is one-one.
For any real number $(y)$ in $\mathbf{R}$, there exists $\frac{3-y}{4}$ in $\mathbf{R}$ such that
$f(\frac{3-y}{4})=3-4(\frac{3-y}{4})=y$.
$\therefore f$ is onto.
Hence, $f$ is bijective.
(ii) $f: \mathbf{R} \to \mathbf{R}$ is defined as
$ f(x)=1+x^{2} . $
Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1)=f(x_2)$.
$\Rightarrow 1+x_1^{2}=1+x_2^{2}$
$\Rightarrow x_1^{2}=x_2^{2}$
$\Rightarrow x_1= \pm x_2$
$\therefore f(x_1)=f(x_2)$ does not imply that $x_1=x_2$.
For instance,
$ f(1)=f(-1)=2 $
$\therefore f$ is not one-one.
Consider an element -2 in co-domain $\mathbf{R}$.
It is seen that $f(x)=1+x^{2}$ is positive for all $x \in \mathbf{R}$.
Thus, there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=-2$.
$\therefore f$ is not onto.
Hence, $f$ is neither one-one nor onto.
8. Let $A$ and $B$ be sets. Show that $f: A \times B \rightarrow B \times A$ such that $f(a, b)=(b, a)$ is bijective function.
Show Answer
Solution
$f: A \times B \to B \times A$ is defined as $f(a, b)=(b, a)$.
Let $(a_1, b_1),(a_2, b_2) \in A \times B$ such that $f(a_1, b_1)=f(a_2, b_2)$
$\Rightarrow(b_1, a_1)=(b_2, a_2)$
$\Rightarrow b_1=b_2$ and $a_1=a_2$
$\Rightarrow(a_1, b_1)=(a_2, b_2)$
$\therefore f$ is one-one.
Now, let $(b, a) \in B \times A$ be any element.
Then, there exists $(a, b) \in A \times B$ such that $f(a, b)=(b, a)$. [By definition of $f$ ] $\therefore f$ is onto.
Hence, $f$ is bijective.
9. Let $f: \mathbf{N} \to \mathbf{N}$ be defined by $f(n)=\begin{cases} \frac{n+1}{2}, & \text{ if } n \text{ is odd } \\ \frac{n}{2}, & \text{ if } n \text{ is even } \end{cases} .$ for all $n \in \mathbf{N}$.
State whether the function $f$ is bijective. Justify your answer.
Show Answer
Solution
$ f(n)=\begin{matrix} \frac{n+1}{2}, & \text{ if } n \text{ is odd } \\ \frac{n}{2}, & \text{ if } n \text{ is even }\\ \end{matrix} \text{ for all } n \in \mathbf{N}. $
It can be observed that:
$f(1)=\frac{1+1}{2}=1$ and $f(2)=\frac{2}{2}=1 \quad[$ By definition of $f]$
$\therefore f(1)=f(2)$, where $1 \neq 2$.
$\therefore f$ is not one-one.
Consider a natural number $(n)$ in co-domain $\mathbf{N}$.
Case I: $n$ is odd
$\therefore n=2 r+1$ for some $r \in \mathbf{N}$. Then, there exists $4 r+1 \in \mathbf{N}$ such that
$ f(4 r+1)=\frac{4 r+1+1}{2}=2 r+1 $
Case II: $n$ is even
$\therefore n=2 r$ for some $r \in \mathbf{N}$. Then, there exists $4 r \in \mathbf{N}$ such that $f(4 r)=\frac{4 r}{2}=2 r$.
$\therefore f$ is onto.
Hence, $f$ is not a bijective function.
10. Let $A=\mathbf{R}-\{3\}$ and $B=\mathbf{R}-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=(\frac{x-2}{x-3})$. Is $f$ one-one and onto? Justify your answer.
Show Answer
Solution
$A=\mathbf{R}-{3}, B=\mathbf{R}-{1}$
$f: A \to B$ is defined as $f(x)=(\frac{x-2}{x-3})$.
Let $x, y \in$ A such that $f(x)=f(y)$.
$\Rightarrow \frac{x-2}{x-3}=\frac{y-2}{y-3}$
$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$
$\Rightarrow x y-3 x-2 y+6=x y-3 y-2 x+6$
$\Rightarrow-3 x-2 y=-3 y-2 x$
$\Rightarrow 3 x-2 x=3 y-2 y$
$\Rightarrow x=y$
$\therefore f$ is one-one.
Let $y \in B=\mathbf{R}-{1}$. Then, $y \neq 1$.
The function $f$ is onto if there exists $x \in A$ such that $f(x)=y$.
Now,
$ \begin{aligned} & f(x)=y \\ & \Rightarrow \frac{x-2}{x-3}=y \\ & \Rightarrow x-2=x y-3 y \\ & \Rightarrow x(1-y)=-3 y+2 \\ & \Rightarrow x=\frac{2-3 y}{1-y} \in A \quad[y \neq 1] \end{aligned} $
Thus, for any $y \in B$, there exists $\frac{2-3 y}{1-y} \in A$ such that $f(\frac{2-3 y}{1-y})=\frac{(\frac{2-3 y}{1-y})-2}{(\frac{2-3 y}{1-y})-3}=\frac{2-3 y-2+2 y}{2-3 y-3+3 y}=\frac{-y}{-1}=y$.
$\therefore f$ is onto.
Hence, function $f$ is one-one and onto.
11. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=x^{4}$. Choose the correct answer.
(A) $f$ is one-one onto
(B) $f$ is many-one onto
(C) $f$ is one-one but not onto
(D) $f$ is neither one-one nor onto.
Show Answer
Solution
$f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x)=x^{4}$.
Let $x, y \in \mathbf{R}$ such that $f(x)=f(y)$.
$\Rightarrow x^{4}=y^{4}$
$\Rightarrow x= \pm y$
$\therefore f(x_1)=f(x_2)$ does not imply that $x_1=x_2$.
For instance,
$ f(1)=f(-1)=1 $
$\therefore f$ is not one-one.
Consider an element 2 in co-domain $\mathbf{R}$. It is clear that there does not exist any $x$ in domain $\mathbf{R}$ such that $f(x)=2$.
$\therefore f$ is not onto.
Hence, function $f$ is neither one-one nor onto.
The correct answer is D.
12. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=3 x$. Choose the correct answer.
(A) $f$ is one-one onto
(B) $f$ is many-one onto
(C) $f$ is one-one but not onto
(D) $f$ is neither one-one nor onto.
Show Answer
Solution
$f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x)=3 x$.
Let $x, y \in \mathbf{R}$ such that $f(x)=f(y)$.
$\Rightarrow 3 x=3 y$
$\Rightarrow x=y$
$\therefore f$ is one-one.
Also, for any real number $(y)$ in co-domain $\mathbf{R}$, there exists $\frac{y}{3}$ in $\mathbf{R}$ such that $f(\frac{y}{3})=3(\frac{y}{3})=y$.
$\therefore f$ is onto.
Hence, function $f$ is one-one and onto.
The correct answer is A.