Chapter 8 Sequences And Series EXERCISE 8.2
EXERCISE 8.2
1. Find the $20^{\text{th }}$ and $n^{\text{th }}$ terms of the G.P. $\dfrac{5}{2}, \dfrac{5}{4}, \dfrac{5}{8}, \ldots$
Show Answer
Answer :
The given G.P. is $\dfrac{5}{2}, \dfrac{5}{4}, \dfrac{5}{8}, \ldots$
Here, $a=$ First term $=\dfrac{5}{2}$
$ \begin{gathered} r=\text{ Common ratio }= \quad \dfrac{\dfrac{5}{4}}{\dfrac{5}{2}}=\dfrac{1}{2}\\ a _{20}=a r^{20-1}=\dfrac{5}{2}(\dfrac{1}{2})^{19}=\dfrac{5}{(2)(2)^{19}}=\dfrac{5}{(2)^{20}} \\ a_n=a r^{n-1}=\dfrac{5}{2}(\dfrac{1}{2})^{n-1}=\dfrac{5}{(2)(2)^{n-1}}=\dfrac{5}{(2)^{n}} \end{gathered} $
2. Find the $12^{\text{th }}$ term of a G.P. whose $8^{\text{th }}$ term is 192 and the common ratio is 2 .
Show Answer
Answer :
Common ratio, $r=2$
Let $a$ be the first term of the G.P.
$ \begin{aligned} & a r^{8^{-1}}\\ & \Rightarrow a r^{7}=192 \\ & a(2)^{7}=192 \\ & a(2)^{7}=(2)^{6}(3) \\ & \Rightarrow a=\dfrac{(2)^{6} \times 3}{(2)^{7}}=\dfrac{3}{2} \\ & \therefore a _{12}=a r^{12-1}=(\dfrac{3}{2})(2)^{11}=(3)(2)^{10}=3072 \end{aligned} $
3. The $5^{\text{th }}, 8^{\text{th }}$ and $11^{\text{th }}$ terms of a G.P. are $p, q$ and $s$, respectively. Show that $q^{2}=p s$.
Show Answer
Answer :
Let $a$ be the first term and $r$ be the common ratio of the G.P.
According to the given condition,
$a_5=a r^{5 - 1}=a r^{4}=p$.
$a_8=a r^{8 - 1}=a r^{7}=q \ldots(2)$
$a_{11}=a r^{11 -1}=a r^{10}=s \ldots$
Dividing equation (2) by (1), we obtain
$\dfrac{a r^{7}}{a r^{4}}=\dfrac{q}{p}$
$r^{3}=\dfrac{q}{p}$
Dividing equation (3) by (2), we obtain
$\dfrac{a r^{10}}{a r^{7}}=\dfrac{s}{q}$
$\Rightarrow r^{3}=\dfrac{s}{q}$
Equating the values of $r^{3}$ obtained in (4) and (5), we obtain
$\dfrac{q}{p}=\dfrac{s}{q}$
$\Rightarrow q^{2}=p s$
Thus, the given result is proved.
4. The $4^{\text{th }}$ term of a G.P. is square of its second term, and the first term is -3 . Determine its $7^{\text{th }}$ term.
Show Answer
Answer :
Let $a$ be the first term and $r$ be the common ratio of the G.P.
$\therefore a=-3$
It is known that, $a_n=a r^{n-1}$
$\therefore a_4=a r^{3}=(-3) r^{3}$
$a_2=a r^{1}=(-3) r$
According to the given condition,
$(-3) r^{3}=[(-3) r]^{2}$
$\Rightarrow-3 r^{3}=9 r^{2}$
$\Rightarrow r=-3$
$a r^{7-1}=a r^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$
Thus, the seventh term of the G.P. is -2187 .
5. Which term of the following sequences:
(a) $2,2 \sqrt{2}, 4, \ldots$ is 128 ?
(b) $\sqrt{3}, 3,3 \sqrt{3}, \ldots$ is 729 ?
(c) $\dfrac{1}{3}, \dfrac{1}{9}, \dfrac{1}{27}, \ldots$ is $\dfrac{1}{19683}$ ?
Show Answer
Answer :
(a) The given sequence is $2,2 \sqrt{2}, 4, \ldots$
Here, $a=2$ and $r=\dfrac{2 \sqrt{2}}{2}=\sqrt{2}$
Let the $n^{\text{th }}$ term of the given sequence be 128 .
$a_n=a r^{n-1}$
$\Rightarrow(2)(\sqrt{2})^{n-1}=128$
$\Rightarrow(2)(2)^{\dfrac{n-1}{2}}=(2)^{7}$
$\Rightarrow(2)^{\dfrac{n-1}{2}+1}=(2)^{7}$
$\therefore \dfrac{n-1}{2}+1=7$
$\Rightarrow \dfrac{n-1}{2}=6$
$\Rightarrow n-1=12$
$\Rightarrow n=13$
Thus, the $13^{\text{th }}$ term of the given sequence is 128 .
(b) The given sequence is $\sqrt{3}, 3,3 \sqrt{3}, \ldots$
Here,
$ a=\sqrt{3} \text{ and } r=\dfrac{3}{\sqrt{3}}=\sqrt{3} $
Let the $n^{\text{th }}$ term of the given sequence be 729 . $a_n=a r^{n-1}$
$\therefore a r^{n-1}=729$
$\Rightarrow(\sqrt{3})(\sqrt{3})^{n-1}=729$
$\Rightarrow(3)^{\dfrac{1}{2}}(3)^{\dfrac{n-1}{2}}=(3)^{6}$
$\Rightarrow(3)^{\dfrac{1}{2}+\dfrac{n-1}{2}}=(3)^{6}$
$\therefore \dfrac{1}{2}+\dfrac{n-1}{2}=6$
$\Rightarrow \dfrac{1+n-1}{2}=6$
$\Rightarrow n=12$
Thus, the $12^{\text{th }}$ term of the given sequence is 729 .
(c) The given sequence is $\dfrac{1}{3}, \dfrac{1}{9}, \dfrac{1}{27}, \ldots$
Here, $\quad a=\dfrac{1}{3}$ and $r=\dfrac{1}{9} \div \dfrac{1}{3}=\dfrac{1}{3}$
Let the $n^{\text{th }}$ term of the given sequence be $\dfrac{1}{19683}$.
$a_n=a r^{n-1}$
$\therefore a r^{n-1}=\dfrac{1}{19683}$
$\Rightarrow(\dfrac{1}{3})(\dfrac{1}{3})^{n-1}=\dfrac{1}{19683}$
$\Rightarrow(\dfrac{1}{3})^{n}=(\dfrac{1}{3})^{9}$
$\Rightarrow n=9$
Thus, the $9^{\text{th }}$ term of the given sequence is $\dfrac{1}{19683}$.
6. For what values of $x$, the numbers $-\dfrac{2}{7}, x,-\dfrac{7}{2}$ are in G.P.?
Show Answer
Answer :
The given numbers are $\dfrac{-2}{7}, x, \dfrac{-7}{2}$.
Common ratio $ =\dfrac{x}{(\frac{-2}{7})}=\dfrac{-7 x}{2}$
Also, common ratio $=\dfrac{\dfrac{-7}{2}}{x}=\dfrac{-7}{2 x}$
$\therefore \dfrac{-7 x}{2}=\dfrac{-7}{2 x}$
$\Rightarrow x^{2}=\dfrac{-2 \times 7}{-2 \times 7}=1$
$\Rightarrow x=\sqrt{1}$
$\Rightarrow x= \pm 1$
Thus, for $x= \pm 1$, the given numbers will be in G.P.
Find the sum to indicated number of terms in each of the geometric progressions in Exercises 7 to 10 :
7. $0.15,0.015,0.0015, \ldots 20$ terms.
Show Answer
Answer :
The given G.P. is $0.15,0.015,0.00015, \ldots$
Here, $a=0.15$ and
$ r=\dfrac{0.015}{0.15}=0.1 $
$S_n=\dfrac{a(1-r^{n})}{1-r}$
$\therefore S _{20}=\dfrac{0.15[1-(0.1)^{20}]}{1-0.1}$
$ =\dfrac{0.15}{0.9}[1-(0.1)^{20}] $
$ =\dfrac{15}{90}[1-(0.1)^{20}] $
$=\dfrac{1}{6}[1-(0.1)^{20}]$
8. $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots n$ terms.
Show Answer
Answer :
The given G.P. is $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$
Here, $a=\sqrt{7}$
$r=\dfrac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}$
$S_{12}=\dfrac{a(1-r^{n})}{1-r}$
$\therefore S_{12}=\dfrac{\sqrt{7}[1-(\sqrt{3})^{n}]}{1-\sqrt{3}}$
$=\dfrac{\sqrt{7}[1-(\sqrt{3})^{n}]}{1-\sqrt{3}} \times \dfrac{1+\sqrt{3}}{1+\sqrt{3}}$
(By rationalizing)
$=\dfrac{\sqrt{7}(1+\sqrt{3})[1-(\sqrt{3})^{n}]}{1-3}$
$=\dfrac{-\sqrt{7}(1+\sqrt{3})}{2}[1-(3)^{\dfrac{n}{2}}]$
$=\dfrac{\sqrt{7}(1+\sqrt{3})}{2}[(3)^{\dfrac{n}{2}}-1]$
9. $1,-a, a^{2},-a^{3}, \ldots n$ terms (if $a \neq-1$ ).
Show Answer
Answer :
The given G.P. is $1,-a, a^{2},-a^{3}$,
Here, first term $=a_1=1$
Common ratio $=r=- a$
$ \begin{aligned} & S_n=\dfrac{a_1(1-r^{n})}{1-r} \\ & \therefore S_n=\dfrac{1[1-(-a)^{n}]}{1-(-a)}=\dfrac{[1-(-a)^{n}]}{1+a} \end{aligned} $
10. $x^{3}, x^{5}, x^{7}, \ldots n$ terms (if $x \neq \pm 1$ ).
Show Answer
Answer :
The given G.P. is $x^{3}, x^{5}, x^{7}, \ldots$
Here, $a=x^{3}$ and $r=x^{2}$
$S_n=\dfrac{a(1-r^{n})}{1-r}=\dfrac{x^{3}[1-(x^{2})^{n}]}{1-x^{2}}=\dfrac{x^{3}(1-x^{2 n})}{1-x^{2}}$
11. Evaluate $\sum _{k=1}^{11}(2+3^{k})$.
Show Answer
Answer :
$\sum _{k=1}^{11}(2+3^{k})=\sum _{k=1}^{11}(2)+\sum _{k=1}^{11} 3^{k}=2(11)+\sum _{k=1}^{11} 3^{k}=22+\sum _{k=1}^{11} 3^{k}$
$\sum _{k=1}^{11} 3^{k}=3^{1}+3^{2}+3^{3}+\ldots+3^{11}$
The terms of this sequence $3,3^{2}, 3^{3}, \ldots$ forms a G.P. $S_n=\dfrac{a(r^{n}-1)}{r-1}$
$\Rightarrow S _{11}=\dfrac{3[(3)^{11}-1]}{3-1}$
$\Rightarrow S _{11}=\dfrac{3}{2}(3^{11}-1)$
$\therefore \sum _{k=1}^{11} 3^{k}=\dfrac{3}{2}(3^{11}-1)$
Substituting this value in equation (1), we obtain
$\sum _{k=1}^{11}(2+3^{k})=22+\dfrac{3}{2}(3^{11}-1)$
12. The sum of first three terms of a G.P. is $\dfrac{39}{10}$ and their product is 1 . Find the common ratio and the terms.
Show Answer
Answer :
Let $\dfrac{a}{r}, a, a r$ be the first three terms of the G.P.
$\dfrac{a}{r}+a+a r=\dfrac{39}{10}$
$(\dfrac{a}{r})(a)(a r)=1$
From (2), we obtain
$a^{3}=1$
$\Rightarrow a=1$ (Considering real roots only)
Substituting $a=1$ in equation (1), we obtain $\dfrac{1}{r}+1+r=\dfrac{39}{10}$
$\Rightarrow 1+r+r^{2}=\dfrac{39}{10} r$
$\Rightarrow 10+10 r+10 r^{2}-39 r=0$
$\Rightarrow 10 r^{2}-29 r+10=0$
$\Rightarrow 10 r^{2}-25 r-4 r+10=0$
$\Rightarrow 5 r(2 r-5)-2(2 r-5)=0$
$\Rightarrow(5 r-2)(2 r-5)=0$
$\Rightarrow r=\dfrac{2}{5}$ or $\dfrac{5}{2}$
Thus, the three terms of G.P. are $\dfrac{5}{2}, 1$, and $\dfrac{2}{5}$.
13. How many terms of G.P. $3,3^{2}, 3^{3}, \ldots$ are needed to give the sum 120 ?
Show Answer
Answer :
The given G.P. is $3,3^{2}, 3^{3}, \ldots$
Let $n$ terms of this G.P. be required to obtain the sum as 120 .
$S_n=\dfrac{a(r^{n}-1)}{r-1}$
Here, $a=3$ and $r=3$
$\therefore S_n=120=\dfrac{3(3^{n}-1)}{3-1}$
$\Rightarrow 120=\dfrac{3(3^{n}-1)}{2}$
$\Rightarrow \dfrac{120 \times 2}{3}=3^{n}-1$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81$
$\Rightarrow 3^{n}=3^{4}$
$\therefore n=4$
Thus, four terms of the given G.P. are required to obtain the sum as 120 .
14. The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to $n$ terms of the G.P.
Show Answer
Answer :
Let the G.P. be $a, a r, a r^{2}, a r^{3}, \ldots$
According to the given condition,
$a+a r+a r^{2}=16$ and $a r^{3}+a r^{4}+a r^{5}=128$
$\Rightarrow a(1+r+r^{2})=16$
$ar^{3}(1+r+r^{2})=128$
Dividing equation (2) by (1), we obtain
$\dfrac{a r^{3}(1+r+r^{2})}{a(1+r+r^{2})}=\dfrac{128}{16}$
$\Rightarrow r^{3}=8$
$\therefore r=2$
Substituting $r=2$ in (1), we obtain
$a(1+2+4)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\dfrac{16}{7}$
$S_n=\dfrac{a(r^{n}-1)}{r-1}$
$\Rightarrow S_n=\dfrac{16}{7} \dfrac{(2^{n}-1)}{2-1}=\dfrac{16}{7}(2^{n}-1)$
15. Given a G.P. with $a=729$ and $7^{\text{th }}$ term 64 , determine $S_7$.
Show Answer
Answer :
$a=729$
$a_7=64$
Let $r$ be the common ratio of the G.P.
It is known that, $a_n = ar^{n-1}$
$a_7=a r ^{7-1}=(729) r^{6}$
$\Rightarrow 64=729 r^{6}$
$\Rightarrow r^{6}=\dfrac{64}{729}$
$\Rightarrow r^{6}=(\dfrac{2}{3})^{6}$
$\Rightarrow r=\dfrac{2}{3}$
Also, it is known that, $S_n=\dfrac{a(1-r^{n})}{1-r}$
$ \begin{aligned} \therefore S_7 & =\dfrac{729[1-(\dfrac{2}{3})^{7}]}{1-\dfrac{2}{3}} \\ & =3 \times 729[1-(\dfrac{2}{3})^{7}] \\ & =(3)^{7}[\dfrac{(3)^{7}-(2)^{7}}{(3)^{7}}] \\ & =(3)^{7}-(2)^{7} \\ & =2187-128 \\ & =2059 \end{aligned} $
16. Find a G.P. for which sum of the first two terms is -4 and the fifth term is 4 times the third term.
Show Answer
Answer :
Let $a$ be the first term and $r$ be the common ratio of the G.P.
According to the given conditions,
$S_2=-4=\dfrac{a(1-r^{2})}{1-r}$
$a_5=4 \times a_3$
$a r^{4}=4 a r^{2}$ $\Rightarrow r^{2}=4$
$\therefore r= \pm 2$
From (1), we obtain
$-4=\dfrac{a[1-(2)^{2}]}{1-2}$ for $r=2$
$\Rightarrow-4=\dfrac{a(1-4)}{-1}$
$\Rightarrow-4=a(3)$
$\Rightarrow a=\dfrac{-4}{3}$
Also, $-4=\dfrac{a[1-(-2)^{2}]}{1-(-2)}$ for $r=-2$
$\Rightarrow-4=\dfrac{a(1-4)}{1+2}$
$\Rightarrow-4=\dfrac{a(-3)}{3}$
$\Rightarrow a=4$
Thus, the required G.P. is
$\dfrac{-4}{3}, \dfrac{-8}{3}, \dfrac{-16}{3}, \ldots$ or
4, -8, 16, -32, 64, …
17. If the $4^{\text{th }}, 10^{\text{th }}$ and $16^{\text{th }}$ terms of a G.P. are $x, y$ and $z$, respectively. Prove that $x$, $y, z$ are in G.P.
Show Answer
Answer :
Let $a$ be the first term and $r$ be the common ratio of the G.P.
According to the given condition,
$a_4=a r^{3}=x$
$a _{10}=a r^{9}=y$..
$a _{16}=a r^{15}=z$
Dividing (2) by (1), we obtain
$\dfrac{y}{x}=\dfrac{a r^{9}}{a r^{3}} \Rightarrow \dfrac{y}{x}=r^{6}$
Dividing (3) by (2), we obtain
$\dfrac{z}{y}=\dfrac{a r^{15}}{a r^{9}} \Rightarrow \dfrac{z}{y}=r^{6}$
$\therefore \dfrac{y}{x}=\dfrac{z}{y}$
Thus, $x, y, z$ are in G. P.
18. Find the sum to $n$ terms of the sequence, $8,88,888,8888 \ldots$.
Show Answer
Answer :
The given sequence is $8,88,888,8888 \ldots$
This sequence is not a G.P. However, it can be changed to G.P. by writing the terms as
$S_n=8+88+888+8888+$ to $n$ terms
$=\dfrac{8}{9}[9+99+999+9999+$ ..to $n$ terms]
$=\dfrac{8}{9}[(10-1)+(10^{2}-1)+(10^{3}-1)+(10^{4}-1)+\ldots \ldots ..$. to $n$ terms $]$
$=\dfrac{8}{9}[(10+10^{2}+\ldots . . n..$ terms $)-(1+1+1+\ldots . n$ terms $.)]$
$=\dfrac{8}{9}[\dfrac{10(10^{n}-1)}{10-1}-n]$
$=\dfrac{8}{9}[\dfrac{10(10^{n}-1)}{9}-n]$
$=\dfrac{80}{81}(10^{n}-1)-\dfrac{8}{9} n$
19. Find the sum of the products of the corresponding terms of the sequences $2,4,8$,16,32 and $128,32,8,2, \dfrac{1}{2}$.
Show Answer
Answer :
Required sum $=2 \times 128+4 \times 32+8 \times 8+16 \times 2+32 \times \dfrac{1}{2}$
$=64[4+2+1+\dfrac{1}{2}+\dfrac{1}{2^{2}}]$
Here, $4,2,1, \dfrac{1}{2}, \dfrac{1}{2^{2}}$ is a G.P.
First term, $a=4$
Common ratio, $r=\dfrac{1}{2}$
It is known that, $S_n=\dfrac{a(1-r^{n})}{1-r}$
$\therefore S_5=\dfrac{4[1-(\dfrac{1}{2})^{5}]}{1-\dfrac{1}{2}}=\dfrac{4[1-\dfrac{1}{32}]}{\dfrac{1}{2}}=8(\dfrac{32-1}{32})=\dfrac{31}{4}$
$\therefore$ Required sum $=$
$ 64(\dfrac{31}{4})=(16)(31)=496 $
20. Show that the products of the corresponding terms of the sequences $a, a r, a r^{2}$, $\ldots a r^{n-1}$ and $A, AR, AR^{2}, \ldots AR^{n-1}$ form a G.P, and find the common ratio.
Show Answer
Answer :
It has to be proved that the sequence, $a A, a r A R, a r^{2} A R^{2}, \ldots a r^{n -1} A R^{n - 1}$, forms a G.P.
$ \begin{aligned} & \dfrac{\text{ Second term }}{\text{ First term }}=\dfrac{a r A R}{a A}=r R \\ & \dfrac{\text{ Third term }}{\text{ Second term }}=\dfrac{a r^{2} A R^{2}}{a r A R}=r R \end{aligned} $
Thus, the above sequence forms a G.P. and the common ratio is $r R$.
21. Find four numbers forming a geometric progression in which the third term is greater than the first term by 9 , and the second term is greater than the $4^{\text{th }}$ by 18 .
Show Answer
Answer :
Let $a$ be the first term and $r$ be the common ratio of the G.P.
$a_1=a, a_2=a r, a_3=a r^{2}, a_4=a r^{3}$
By the given condition,
$a_3=a_1+9$
$\Rightarrow a r^{2}=a+9$
$a_2=a_4+18$
$\Rightarrow a r=a r^{3}+18$.
From (1) and (2), we obtain
$a(r^{2}- 1)=9$
$ar(1-{2})=18$
Dividing (4) by (3), we obtain
$\dfrac{a r(1-r^{2})}{a(r^{2}-1)}=\dfrac{18}{9}$
$\Rightarrow-r=2$
$\Rightarrow r=-2$
Substituting the value of $r$ in (1), we obtain
$4 a=a+9$
$\Rightarrow 3 a=9$
$\therefore a=3$
Thus, the first four numbers of the G.P. are $3,-6,12,-24$
22. If the $p^{\text{th }}, q^{\text{th }}$ and $r^{\text{th }}$ terms of a G.P. are $a, b$ and $c$, respectively. Prove that $ a^{q-r} b^{r-p} c^{P-q}=1 $
Show Answer
Answer :
Let $A$ be the first term and $R$ be the common ratio of the G.P.
According to the given information,
$A R^{p-1}=a$
$A R^{q-1}=b$
$A R^{r-1}=c$
$a^{q-r} b^{r-p} C^{p-q}$ $=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$=A q^{-r+r-p+p-q} \times R^{(p r-p r-q+r+(r q-r+p-p q)+(p r-p-q r+q)}$
$=A^{0} \times R^{0}$
$=1$
Thus, the given result is proved.
23. If the first and the $n^{\text{th }}$ term of a G.P. are $a$ and $b$, respectively, and if $P$ is the product of $n$ terms, prove that $P^{2}=(a b)^{n}$.
Show Answer
Answer :
The first term of the G.P is $a$ and the last term is $b$.
Therefore, the G.P. is $a, a r, a r^{2}, a r^{3}, \ldots a r^{n-1}$, where $r$ is the common ratio.
$b=ar^{n-1}$
$P=$ Product of $n$ terms
$=(a)(a r)(a r^{2}) \ldots(a r^{n-1})$
$=(a \times a \times \ldots a)(r \times r^{2} \times \ldots r^{{n-1}})$
$=a^{n} r^{1+2+3\ldots (n-1) }$
Here, $1,2,\ldots(n-1)$ is an A.P.
$\therefore 1+2+\ldots \ldots \ldots+(n- 1)=\dfrac{n-1}{2}[2+(n-1-1) \times 1]=\dfrac{n-1}{2}[2+n-2]=\dfrac{n(n-1)}{2}$
$P=a^{n} r^{\dfrac{n(n-1)}{2}}$
$\therefore P^{2}=a^{2 n} r^{n(n-1)}$
$=[a^{2} r^{(n-1)}]^{n}$
$=[a \times ar^{n-1}]^{n}$
$=(ab)^{n}$
Thus, the given result is proved.
24. Show that the ratio of the sum of first $n$ terms of a G.P. to the sum of terms from $(n+1)^{\text{th }}$ to $(2 n)^{\text{th }}$ term is $\dfrac{1}{r^{n}}$.
Show Answer
Answer :
Let $a$ be the first term and $r$ be the common ratio of the G.P.
Sum of first $n$ terms $=\dfrac{a(1-r^{n})}{(1-r)}$
Since there are $n$ terms from $(n+1)^{\text{th }}$ to $(2 n)^{\text{th }}$ term,
Sum of terms from $(n+1)^{\text{th }}$ to $(2 n)^{\text{th }}$ term
$ =\dfrac{a _{n+1}(1-r^{n})}{(1-r)} $
$a_{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\dfrac{a(1-r^{n})}{(1-r)} \times \dfrac{(1-r)}{a^{n}(1-r^{n})}=\dfrac{1}{r^{n}}$
Thus, the ratio of the sum of first $n$ terms of a G.P. to the sum of terms from $(n+1)^{\text{th }}$ to $(2 n)^{\text{th }}$ term is $\dfrac{1}{r^{n}}$.
25. If $a, b, c$ and $d$ are in G.P. show that $(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})=(a b+b c+c d)^{2}$.
Show Answer
Answer :
$a, b, c, d$ are in G.P.
Therefore,
$b c=a d$.
$b^{2}=a c$.
$c^{2}=b d$.
It has to be proved that,
$(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})=(a b+b c \text{ - } c d)^{2}$
R.H.S.
$=(a b+b c+c d)^{2}$
$=(a b+a d+c d)^{2}[$ Using (1)]
$=[a b+d(a+c)]^{2}$
$ \begin{aligned} & =a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2} \\ & =a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}(a^{2}+2 a c+c^{2}) \\ & =a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}[\text{ Using (1) and (2)] } \\ & =a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2} \\ & =a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2} \end{aligned} $
[Using (2) and (3) and rearranging terms]
$=a^{2}(b^{2}+c^{2}+d^{2})+b^{2}(b^{2}+c^{2}+d^{2})+c^{2}(b^{2}+c^{2}+d^{2})$
$=(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})$
$=$ L.H.S.
$\therefore$ L.H.S. $=$ R.H.S.
$\therefore(a^{2}+b^{2}+c^{2})(b^{2}+c^{2}+d^{2})=(a b+b c+c d)^{2}$
26. Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Show Answer
Answer :
Let $G_1$ and $G_2$ be two numbers between 3 and 81 such that the series, $3, G_1, G_2$, 81, forms a G.P.
Let $a$ be the first term and $r$ be the common ratio of the G.P.
$\therefore 81=(3)(r)^{3}$
$\Rightarrow r^{3}=27$
$\therefore r=3$ (Taking real roots only)
For $r=3$,
$G_1=a r=(3)(3)=9$
$G_2=a r^{2}=(3)(3)^{2}=27$
Thus, the required two numbers are 9 and 27.
27. Find the value of $n$ so that $\dfrac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between $a$ and $b$.
Show Answer
Answer :
G. M. of $a$ and $b$ is $\sqrt{a b}$.
By the given condition, $\dfrac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\sqrt{a b}$
Squaring both sides, we obtain
$ \dfrac{(a^{n+1}+b^{n+1})^{2}}{(a^{n}+b^{n})^{2}}=a b $
$\Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=(a b)(a^{2 n}+2 a^{n} b^{n}+b^{2 n})$
$\Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=a^{2 n+1} b+2 a^{n+1} b^{n+1}+a b^{2 n+1}$
$\Rightarrow a^{2 n+2}+b^{2 n+2}=a^{2 n+1} b+a b^{2 n+1}$
$\Rightarrow a^{2 n+2}-a^{2 n+1} b=a b^{2 n+1}-b^{2 n+2}$
$\Rightarrow a^{2 n+1}(a-b)=b^{2 n+1}(a-b)$
$\Rightarrow(\dfrac{a}{b})^{2 n+1}=1=(\dfrac{a}{b})^{0}$
$\Rightarrow 2 n+1=0$
$\Rightarrow n=\dfrac{-1}{2}$
28. The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.
Show Answer
Answer :
Let the two numbers be $a$ and $b$.
G.M. $=\sqrt{a b}$
According to the given condition,
$a+b=6 \sqrt{a b}$
$\Rightarrow(a+b)^{2}=36(a b)$
Also,
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$
Adding (1) and (2), we obtain
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$\Rightarrow a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of $a$ in (1), we obtain
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$\Rightarrow b=(3-2 \sqrt{2}) \sqrt{a b}$
$\dfrac{a}{b}=\dfrac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\dfrac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Thus, the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$.
29. If $A$ and $G$ be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $A \pm \sqrt{(A+G)(A-G)}$.
Show Answer
Answer :
It is given that $A$ and $G$ are A.M. and G.M. between two positive numbers. Let these two positive numbers be $a$ and $b$.
$\therefore AM=A=\dfrac{a+b}{2}$
$GM=G=\sqrt{ab}$
From (1) and (2), we obtain
$a+b=2 A$.
$a b=G^{2}$.
Substituting the value of $a$ and $b$ from (3) and (4) in the identity $(a - b)^{2}=(a+b)^{2}- 4 a b$, we obtain
$(a- b)^{2}=4 A^{2}- 4 G^{2}=4(A^{2} -G^{2})$
$(a - b)^{2}=4(A+G)(A$- $G)$
$(a-b)=2 \sqrt{(A+G)(A-G)}$
From (3) and (5), we obtain
$ \begin{aligned} & 2 a=2 A+2 \sqrt{(A+G)(A-G)} \\ & \Rightarrow a=A+\sqrt{(A+G)(A-G)} \end{aligned} $
Substituting the value of $a$ in (3), we obtain $b=2 A-A-\sqrt{(A+G)(A-G)}=A-\sqrt{(A+G)(A-G)}$
Thus, the two numbers are
$ A \pm \sqrt{(A+G)(A-G)} $
30. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text{nd }}$ hour, $4^{\text{th }}$ hour and $n^{\text{th }}$ hour ?
Show Answer
Answer :
It is given that the number of bacteria doubles every hour. Therefore, the number of bacteria after every hour will form a G.P.
Here, $a=30$ and $r=2$
$\therefore a_3=a r^{2}=(30)(2)^{2}=120$
Therefore, the number of bacteria at the end of $2^{\text{nd }}$ hour will be 120 .
$a_5=a r^{4}=(30)(2)^{4}=480$
The number of bacteria at the end of $4^{\text{th }}$ hour will be 480 .
$a _{n+1}=a r^{n}=(30) 2^{n}$
Thus, number of bacteria at the end of $n^{\text{th }}$ hour will be $30(2)^{n}$.
31. What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of $10$ % compounded annually?
Show Answer
Answer :
The amount deposited in the bank is Rs 500 .
At the end of first year, amount $=Rs 500(1+\dfrac{1}{10})=Rs 500$ (1.1)
At the end of $2^{\text{nd }}$ year, amount $=$ Rs 500 (1.1) (1.1)
At the end of $3^{\text{rd }}$ year, amount = Rs 500 (1.1) (1.1) (1.1) and so on
$\therefore$ Amount at the end of 10 years $=$ Rs 500 (1.1) (1.1) $\ldots$ (10 times)
$=Rs 500(1.1)^{10}$
32. If A.M. and G.M. of roots of a quadratic equation are 8 and 5 , respectively, then obtain the quadratic equation.
Show Answer
Answer :
Let the root of the quadratic equation be $a$ and $b$.
According to the given condition,
A.M. $=\dfrac{a+b}{2}=8 \Rightarrow a+b=16$
G.M. $=\sqrt{a b}=5 \Rightarrow a b=25$
The quadratic equation is given by,
$x^{2} - x$ (Sum of roots) + (Product of roots) $=0$
$x^{2}- x(a+b)+(a b)=0$
$x^{2} - 16 x+25=0$ [Using (1) and (2)]
Thus, the required quadratic equation is $x^{2}- 16 x+25=0$