Chapter 2 Relations And Functions Miscellaneous Exercise
Miscellaneous Exercise on Chapter 2
1. The relation $f$ is defined by $f(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \ 3 x, 3 \leq x \leq 10\end{array}\right.$
The relation $g$ is defined by $g(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \ 3 x, 2 \leq x \leq 10\end{array}\right.$
Show that $f$ is a function and $g$ is not a function.
Show Answer
\missing2. If $f(x)=x^{2}$, find $\dfrac{f(1.1)-f(1)}{(1.1-1)}$.
Show Answer
Answer :
The relation fis defined as
$ f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 3 \\ 3 x, & 3 \leq x \leq 10\end{cases} $
It is observed that for
$0 \leq x<3, f(x)=x^{2}$
$3<x \leq 10, f(x)=3 x$
Also, at $x=3, f(x)=3^{2}=9$ or $f(x)=3 \times 3=9$
i.e., at $x=3, f(x)=9$
Therefore, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Thus, the given relation is a function.
The relation gis defined as $g(x)= \begin{cases}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{cases}$
It can be observed that for $x=2, g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$
Hence, element 2 of the domain of the relation gcorresponds to two different images i.e., 4 and 6 . Hence, this relation is not a function.
3. Find the domain of the function $f(x)=\dfrac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
Show Answer
Answer :
The given function is
$ f(x)=\dfrac{x^{2}+2 x+1}{x^{2}-8 x+12} $
$f(x)=\dfrac{x^{2}+2 x+1}{x^{2}-8 x+12}=\dfrac{x^{2}+2 x+1}{(x-6)(x-2)}$
It can be seen that function fis defined for all real numbers except at $x=6$ and $x=2$.
Hence, the domain of fis $\mathbf{R}$ - $\{2,6\}$.
4. Find the domain and the range of the real function $f$ defined by $f(x)=\sqrt{(x-1)}$.
Show Answer
Answer :
The given real function is $f(x)=\sqrt{x-1}$.
It can be seen that $\sqrt{x-1}$ is defined for (xâ “ $.^{\prime} 1) \geq 0$.
i.e., $f(x)=\sqrt{(x-1)}$ is defined for $x \geq 1$.
Therefore, the domain of $f$ is the set of all real numbers greater than or equal to 1 i.e., the domain of $f=[1, \infty)$.
As $x \geq 1 \Rightarrow(x - 1) \geq 0 \Rightarrow \sqrt{x-1} \geq 0$
Therefore, the range of fis the set of all real numbers greater than or equal to 0 i.e., the range of $f=[0, \infty)$.
5. Find the domain and the range of the real function $f$ defined by $f(x)=|x-1|$.
Show Answer
Answer :
The given real function $is f(x)=|x-1|$.
It is clear that $|x-1|$ is defined for all real numbers.
$\therefore$ Domain of $f=\mathbf{R}$
Also, for $x \in \mathbf{R},|x-1|$ assumes all real numbers.
Hence, the range of fis the set of all non-negative real numbers.
6. Let $f=\{(x, \dfrac{x^{2}}{1+x^{2}}): x \in \mathbf{R}\}$ be a function from $\mathbf{R}$ into $\mathbf{R}$. Determine the range of $f$.
Show Answer
Answer :
$ \begin{aligned} & f=\{(x, \dfrac{x^{2}}{1+x^{2}}): x \in \mathbf{R}\} \\ & =\{(0,0),( \pm 0.5, \dfrac{1}{5}),( \pm 1, \dfrac{1}{2}),( \pm 1.5, \dfrac{9}{13}),( \pm 2, \dfrac{4}{5}),(3, \dfrac{9}{10}),(4, \dfrac{16}{17}), \ldots\} \end{aligned} $
The range of fis the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.
[Denominator is greater numerator]
Thus, range of $f=[0,1)$
7. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined, respectively by $f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g$ and $\dfrac{f}{g}$.
Show Answer
Answer :
$f, g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x+1, g(x)=2 x$ - 3
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x - 3)=3 x$ - 2
$\therefore(f+g)(x)=3 x$ - 2
$(f - g)(x)=f(x) - g(x)=(x+1)$ -$(2 x - 3)=x+1 -2 x+3= -x+4$
$\therefore(f-g)(x)=\hat{a}-x+4$
$ \begin{aligned} & (\dfrac{f}{g})(x)=\dfrac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R} \\ & \therefore(\dfrac{f}{g})(x)=\dfrac{x+1}{2 x-3}, 2 x-3 \neq 0 \text{ or } 2 x \neq 3 \\ & \therefore(\dfrac{f}{g})(x)=\dfrac{x+1}{2 x-3}, x \neq \dfrac{3}{2} \end{aligned} $
8. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from $\mathbf{Z}$ to $\mathbf{Z}$ defined by $f(x)=a x+b$, for some integers $a, b$. Determine $a, b$.
Show Answer
Answer :
$f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$
$f(x)=a x+b$
$(1,1) \in f$
$\Rightarrow f(1)=1$
$\Rightarrow a \times 1+b=1$
$\Rightarrow a+b=1$
$(0,-1) \in f$
$\Rightarrow f(0)=-1$
$\Rightarrow a \times 0+b=-1$
$\Rightarrow b=-1$
On substituting $b=-1$ in $a+b=1$, we obtain $a+(-1)=1 \Rightarrow a=1+1=2$.
Thus, the respective values of aand bare 2 and -1 .
9. Let $R$ be a relation from $\mathbf{N}$ to $\mathbf{N}$ defined by $R=\{(a, b): a, b \in \mathbf{N}.$ and $.a=b^{2}\}$. Are the following true?
(i) $(a, a) \in R$, for all $a \in \mathbf{N}$
(ii) $(a, b) \in R$, implies $(b, a) \in R$
(iii) $(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R$.
Justify your answer in each case.
Show Answer
Answer:
$ R=\{(a, b): a, b \in \mathbf{N}.$ and $.a=b^{2} \}$
(i) It can be seen that $2 \in \mathbf{N}$;however, $2 \neq 2^{2}=4$.
Therefore, the statement " $(a, a) \in R$, for all $a \in \mathbf{N}$ " is not true.
(ii) It can be seen that $(9,3) \in \mathbf{N}$ because $9,3 \in \mathbf{N}$ and $9=3^{2}$.
Now, $3 \neq 9^{2}=81$; therefore, $(3,9) \in N$
Therefore, the statement " $(a, b) \in R$, implies $(b, a) \in R$ " is not true.
(iii) It can be seen that $(16,4) \in R,(4,2) \in R$ because $16,4,2 \in \mathbf{N}$ and $16=4^{2}$ and $4=2^{2}$.
Now, $16 \neq 2^{2}=4$; therefore, $(16,2) \in N$
Therefore, the statement " $(a, b) \in R,(b, c) \in R$ implies $(a, c) \in R$ " is not true.
10. Let $A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ Are the following true?
(i) $f$ is a relation from $A$ to $B$
(ii) $f$ is a function from $A$ to $B$.
Justify your answer in each case.
Show Answer
Answer :
$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11),(2,15),(2,16),(3,1),(3,5),(3,9)$,
$(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16)\}$
It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
(i) A relation from a non-empty set $A$ to a non-empty set $B$ is a subset of the Cartesian product $A \times B$.
It is observed that fis a subset of $A \times B$.
Thus, fis a relation from $A$ to $B$.
(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11 , relation $f$ is not a function.
11. Let $f$ be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$. Is $f$ a function from $\mathbf{Z}$ to $\mathbf{Z}$ ? Justify your answer.
Show Answer
Answer :
The relation fis defined as $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$
We know that a relation ffrom a set $A$ to a set $B$ is said to be a function if every element of set $A$ has unique images in set B.
Since 2, 6, -2, -6 $\in \mathbf{Z},(2 \times 6,2+6),(-2 \times-6,-2+(-6)) \in f$
i.e., $(12,8),(12,-8) \in f$
It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation fis not a function.
12. Let $A=\{9,10,11,12,13\}$ and let $f: A \rightarrow \mathbf{N}$ be defined by $f(n)=$ the highest prime factor of $n$. Find the range of $f$.
Show Answer
Answer :
$A=\{9,10,11,12,13\}$
$f: A \to$ Nis defined as
$f(n)=$ The highest prime factor of $n$
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
$\therefore f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of fis the set of all $f(n)$, where $n \in A$.
$\therefore$ Range of $f=\{3,5,11,13\}$